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ABSTRACT: 

 

Aiming at the problems of the lack of reasonable judgment of fleet size and non-optimization of rebalancing for dockless bike-

sharing station, based on the usage characteristics of dockless bike-sharing, this paper demonstrates that the Markov chain is suitable 

for the analysis of the fleet size of station. It is concluded that dockless bike-sharing Markov chain probability limit state (steady-

state) only exists and is independent of the initial probability distribution. On that basis, this paper analyses the difficulty of the 

transition probability matrix parameter statistics and the power method of the bike-sharing Markov chain, and constructs the 

transition probability sparse matrix in order to reduce computational complexity. Since the sparse matrices may be reducible, the 

rank-one updating method is used to construct the transition probability random prime matrix to meet the requirements of steady-

state size calculation. An iterative method for solving the steady-state probability is therefore given and the convergence speed of the 

method is analysed. In order to improve the practicability of the algorithm, the paper further analyses the construction methods of the 

initial values of the dockless bike-sharing and the transition probability matrices at different time periods in a day. Finally, the 

algorithm is verified with practical and simulation data. The results of the algorithm can be used as a baseline reference data to 

dynamically optimize the fleet size of dockless bike-sharing station operated by bike-sharing companies for strengthening 

standardized management. 

 

 

1. INTRODUCTION 

Since 2016, bike-sharing (MetroBike, 2018) have been 

flourished in China at an impressive speed (Shao et al., 2017). 

As we known, the Mobike company, which has the world’s 

largest mobile IoT network with over nine million shared 

bicycles in operation serving up to 30 million rides daily 

(Mobike, 2018a). Shared bicycles deployed into market by 

bike-sharing companies since 2016 are mainly dockless type 

(wikipedia, 2018), allowing users to pick up freely (referred to 

as renting) or return a bicycle in public spaces of the city.  

 

In the research of this paper, the public spaces of dockless bike-

sharing placement are defined as stations. For the convenience 

of calculation, a city can be divided into many open square 

spaces with equal area, and each space can be regarded as a 

station of dockless bike-sharing. The fleet size of bike-sharing 

station mentioned below refers to the number of bicycles in the 

station. The total fleet size of the dockless bike-sharing is the 

total number of shared bicycles put into a city. 

 

The emergence of dockless bike-sharing is an innovative mode 

of sharing economy in the Internet era, which improves “the 

first mile/last mile” connection to other modes of transit, and 

lessen the environmental impacts of our transport activities 

(DeMaio, 2009). However, on the other hand, the disorder of 

dockless bike-sharing put into market has become increasingly 

prominent, some bike-sharing companies to win the competition 

by quantity, and expansion presents chaotic. The problems of 

fleet size and rebalancing of the dockless bike-sharing stations 

are mainly as follows: 

 

 (1)  There are too many bicycles in some stations, the problems 

of idleness are prominent, which even can block pedestrian and 

cars normal traffic. At the same time, the number of bicycles in 

some other stations is too small to meet the needs of users. 

 

(2) The bike-sharing replenishment or repositioning transport 

response is not timely, and the rationality of the rebalancing is 

debatable. 

 

Therefore, the fleet size and rebalancing of dockless bike-

sharing stations are in urgent need of scientific analysis. It is 

necessary to propose an algorithm to determine the number of 

shared bicycles rationally and quickly at each station in order to 

achieve the goal of standardized management. 

 

At present, in China and other countries there are many related 

researches on the fleet size and rebalancing of docked bike-

sharing. However, due to the operation time is relatively short, 

there are few research literatures on the fleet size and 

rebalancing of dockless bike-sharing operated by companies. 

Researchers pay more attention to the traffic value and 

development path of dockless bike-sharing (Wang, 2017), the 

profitability approach (Jiao, 2017), behavioural norms (Hu, 

2018) and the design of crime prevention environment (Yang, 

2017). There are significantly difference between dockless and 

docked bike-sharing in station location, renting and returning 

mode, operation and charging mode, and so on. The dockless 

bike-sharing has following characteristics: flexibility, 

convenience and randomness, larger user group, higher 

frequency of use, wider coverage. It is more difficult to study 

the fleet size and rebalancing of dockless bike-sharing stations, 

and the methods is different. 

 

Assuming the location of all stations has been determined, the 

paper uses matrix analysis to solve the optimal value of the fleet 

size of dockless bike-sharing station. In order to eliminate the 

interference of major economic activities, bad weather, and user 
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personal preferences for different dockless bike-sharing brand, 

this paper mainly analyses the fleet size and rebalancing of 

dockless bike-sharing stations from the same company under 

daily use. 

 

2. MARKOV CHAIN APPLICABILITY ANALYSIS 

2.1 Properties of bike-sharing Markov Chain 

Bike-sharing provides people with a convenient way for 

commuting by shared bicycles among users, and solves the 

“first/last mile” problem (DeMaio, 2009). Based on the bike-

sharing usage model, the users mainly rent and return the 

bicycles between adjacent stations. Of course, the concept of 

“being adjacent” is relative. It is also more common for users to 

rent bicycles between stations that are far away from each other. 

In this paper, theoretically assumed that there is connectivity or 

bicycle state transition relationships between any two stations. 

 

Assuming that a user rents the shared bicycle from the station j 

within the time period 0 1t t and returns the rented bicycle at the 

station k. The state of the station k during the transfer is only 

related to the station j, regardless of the state of other stations in 

the same interval, and independent of the state of this station 

and other stations before the time. From this basic sense, the 

state relationship of shared bicycle stations is in accordance 

with the basic conditions of Markov random process application. 

The main characteristic of the dynamic feature of Markov 

random processes is that the probability distribution of future 

states depends only on the current state, and has nothing to do 

with the process of reaching the current state (Liu, 2008). For 

the problem of fleet size and rebalancing of dockless bike-

sharing stations, the paper mainly studies the time-discrete 

Markov random process. 

 

Suppose a city has a total of n shared bicycle stations, the states 

of station j during the time period 0 1t t include: 

 

(1) The user at the station j rents a shared bicycle ride to any 

other stations that exists n-1 kind of possible (mutually 

exclusive), each of which has two states (e.g, the shared bicycle 

at station j and station k). Set the shared bicycle moves from 

station j to station k, and the two states are denoted as jX and kX , 

respectively. The transition probability of this bicycle process is 

denoted as jkP ，  |jk k jP P X X , k j . 

 

(2) The shared bicycle at the station j is not rented by the user or 

returned to the station j after the user used, the state is denoted 

as 0X , and the transition probability is denoted as jjP . 

 

The bicycle transfer state of station j in the time period 0 1t t is 

shown in Figure 1. 

 
Figure 1. Transition states of station j  

 

For the probability of dockless shared bicycle discussed in the 

paper, jkP can be regarded as the ratio of the average number of 

bicycles that the user rides from station j to station k in the 

multiple  time periods to the average number of bicycles in 

station j. jjP  can be regarded as the ratio of the average number 

of bicycles that not rented or returned by users in the multiple  

time periods to the average number of bicycles in station j. 

 

In summary, the probability jkP that the user rides from station j 

to other stations and the probability jjP that is still returned to 

station j after rented or no user rented are accumulated to 1. 
1
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By analogy, the transition state of n stations is shown in Figure 

2. 

 
Figure 2.  Transition states of all stations 

 

The transition probability matrix of all n stations is constructed 

as 
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Since all the elements in the transition probability matrix P are 

nonnegative and the sums of elements in any row are all 1, P is 

a random matrix. 

 

At a certain time, the ratio of the number of bicycles owned by 

each bicycle station to the total number is called the probability 

of the station, and the probability values of all stations 

constitute the probability vector at this time. It is assumed that 

the initial probability vector of the dockless bike-sharing 

stations at time 0t  is (0) , and the probability at time 1t  is (1) . 
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From the nature of the Markov chain, we can 

obtained (1) (0)= P  . 

 

With the passage of time, the probability vectors after the k-1 

steps and k steps transfer are 1)k （ and )k（ , respectively. The 

relationship between the two is 

 

 ) 1)    ( 1)k k P k   （ （  (1) 

 

where  P    = transition probability matrix 

 ( )k   = probability vector after k steps transfer 

 ( 1)k  = probability vector after k-1 steps transfer 

  

Iterate over equation (1) and get 

 

 ) 1) 2) 2 )= = =k k k kp p p    （ （ （ （0   (2) 

 
2.2 Proof of the existence of steady state of bike-sharing 

Markov Chain 

The state of dockless bike-sharing Markov chain based on a city 

is limited and has the following properties: 

 

(1) Irreducible. Let B be a non-empty subset of the state space I . 

If i B and k B , then connectivity probability of j and k 

0ikP  , B  is called a closed set. If all the states in B are 

interconnected, B is called an irreducible closed set (Liu, 2008). 

If Markov chain's state space is an irreducible closed set, it is 

called irreducible (Liu, 2008). The total number of bike-sharing 

stations in a city is limited, all belong to the same category and 

theoretically there is a bidirectional connectivity relationship 

between any two stations. The bike-sharing Markov chain 

theoretically has irreducible properties (Ching et al., 2006). 

 

(2) Aperiodic. Each state in the Markov chain can only be 

accessed at periodic intervals, then it is periodic, otherwise it is 

aperiodic. Theoretically, if the irreducible transition probability 

matrix is a prime matrix, the Markov chain is aperiodic. 

According to Carl D. Meyer's research, if random matrix is 

irreducible and has at least one positive diagonal element, then 

it is a prime matrix (Langville et al., 2011). Investigate the 

transition probability matrix P , which is an irreducible non-

negative square matrix with n diagonal element ( )jjP . 

Investigation of the use of dockless bike-sharing, all the 

bicycles of all stations in the time period 0 1t t are rented by the 

users or there is no return of bicycles to the original stations, 

only at this time all the diagonal elements of P are 0, which is 

inconsistent from the practical situation, non-zero diagonal 

elements are more prevalent. Therefore, the dockless bike-

sharing Markov chain is aperiodic (non-periodic). 

 

(3) Positive-recurrence. If and only if starting from state j, the 

random process can eventually return to state j with probability 

1, then state j is considered as recurrence. When the average 

return time of state j is finite, it is called positive-recurrence. 

Liu (2008) has shown that irreducible finite Markov chains 

must be recurrence in random process. It has been discussed 

above that the bike-sharing Markov chain has the finite and 

irreducible properties, so all the states in the bike-sharing 

Markov chain are positive-recurrence. 

 

It can be seen from the above that the dockless bike-sharing 

Markov chain has the above three properties, and the following 

theorem is established: 

 

Theorem: For any irreducible, aperiodic and positive recurrence 

Markov chain, the limit state probability exists only and 

independent of the initial probability distribution. This limit 

state is called steady-state and the limit state probability is 

called steady-state probability. 

 

When k steps of the bike-sharing Markov chain transition is big 

enough, we have 

 

 lim k

k
 


（ )  (3) 

 

where  )k（ = the probability vector after k steps transfer 

     = a steady state probability vector 

 

From formula (2), we have 

 

 0)lim lim( )k k

k k
P  

 
 （ ) （  (4) 

 

Therefore, the main idea of the algorithm is based on 

multiplying the initial probability vector of the dockless bike-

sharing station by the higher power of the transition probability 

matrix, that is ) kP（0 . The calculated vector will approximate 

the steady-state probability vector with the increase of power. 

With the increase of iteration, the probability vector of the 

dockless bike-sharing stations will gradually stabilize. Each 

element of the steady-state probability vector is the steady-state 

probability of bicycles at each bike-sharing station, and 

multiplied by the total number of shared bicycles respectively, 

thereby obtaining the steady-state fleet size of the bike-sharing 

at each station. Solving the steady-state probability vector of the 

bike-sharing Markov chain can optimize the configuration of 

the fleet size for each dockless bike-sharing station. 

 

The above iterative method is called power method. 

 

3. DIFFICULTY ANALYSIS OF BIKE-SHARING 

STEADY-STATE SOLUTION 

To solve the steady-state probability vector of dockless bike-

sharing stations, we must first determine all the elements of the 

transition probability matrix P . We need to observe and count 

the state transitions of the stations in the city during the time 

period 0 1t t . For any station i , it is necessary to count the 

specific destination station for each user riding out of the 

bicycle. And for any station j , it is necessary to count the 

specific source station that each user rides back of the bicycle. 

 

The relationship between n stations is n2, and the workload of 

observation and calculation increases exponentially with the 

increase of stations. If the number of dockless bike-sharing 

stations in first-tier cities is thousands, the observation statistics 

of the transfer probability value is greater than one 

million 2( 1000 ) . For those bike-sharing companies that cannot 

monitor, observe and count the bike-sharing data online, the 

workload is huge and the operability is poor. If the number of 

bike-sharing stations in tier 2 cities is hundreds, the observation 

statistics of the transfer probability value is tens of thousands to 

hundreds of thousands, and the workload is considerable. In 

addition, it is also necessary to calculate the initial value of the 

fleet size of each station in the same segment, so n stations have 

n numbers in total. And you should consider the total fleet size 

of bicycles deployed by the bike-sharing company in the city, 

the total number of statistics to be counted is not less than 
2 1n n  .The statistical workload is very huge, which is the 
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main bottleneck for solving the steady-state probability vector 

of dockless bike-sharing stations. 

 

Solving equation (4) by power method usually requires 2( )O n  

sub-vector-matrix multiplication calculation (n is the total 

number of bike-sharing stations), the amount of calculation is 

large.  Markov chain steady-state probability vector solving is 

usually complicated (Liu, 2012). 

 

In summary, combined with the fact that the accuracy of the 

requirements is not critical but the reaction speed is high, the 

dockless bike-sharing operation needs to simplify and optimize 

the algorithm, reduce the statistical workload, and improve the 

solution speed to improve feasibility. 

 

4. FLEET SIZE ANALYSIS OF DOCKLESS BIKE-

SHARING STATION 

4.1 Sparse matrix construction 

Based on the practical observation of the usage of dockless 

bike-sharing, it is found that for any station j, the riding of 

shared bicycle is mainly performed between its adjacent stations. 

The number of ride-in and ride-out bicycles between the 

stations that are far away is very small. The user's single riding 

distance statistics are shown in Table 1(GuDong, 2017). 

 

Serial  

number Single ride distance (d) 
The proportion 

of users 

1 d≤3km 41.6% 

2 3<d≤5km 39.4% 

3 5<d≤10km 15.2% 

4 d>10km 3.8% 

Sum 100% 

Table 1. Bike-sharing user single riding distance statistics 

 

According to Table 1, the dockless bike-sharing stations can be 

divided into the following three categories: 

 

(1) Close station.  For any station j, the station that is within 10 

km away from it is a close station.  

 

(2) Peripheral station. For any station j, the station that is more 

than 10 km away from it is a peripheral station. In this paper, 

the ratio of the number of peripheral stations to the total number 

of stations is 0.04 on average.  

 

(3) Unrelated station. In this paper, the stations with no bicycle 

transfer relationship are called unrelated stations, and the 

transition probability is set to 0. 

 

Based on above analysis, a new dockless bike-sharing transition 

probability matrix P is constructed, which is a sparse matrix. 

Set each station have an average number of close and peripheral 

stations are m̂ , then there are about m̂ n non-zero elements 

in P .For medium and large cities, m̂ n , 2m̂ n n . It means 

that the computational complexity of vector-matrix 

multiplication will tend to be ( )O n . Therefore, the vector-matrix 

multiplication based on P is far less than 2( )O n . 

 

This method can be referred to as "sparse matrix construction 

solution method". Using this method, the mutual riding 

relationship between n stations is reduced to m̂ n . In addition, 

it is also necessary to count the initial fleet size of each station 

and the total fleet size of bicycles deployed by the bike-sharing 

company in the city, the total number of statistics to be counted 

is not less than ˆ 1m n n   , which is significantly smaller than 

the traditional total number of statistics 2 1n n  . 

 

4.2 Steady-state solution  

Since the station interoperability is affected due to the 

unreachability of some stations, the transition probability matrix 

should be sparse. The irreducible nature of the transition matrix 

may be changed to reducible. The steady-state condition of the 

bike-sharing is destroyed, and the steady-state probability 

maynot be solved.  At this point, the rank-one updating method 

needs to be performed on the sparse matrix to satisfy the 

irreducible condition. 

 

From the perspective of dockless bike-sharing applications, the 

rank-one updating method first appropriately reduces the 

probability of non-zero elements in the transition probability 

sparse matrix P . Then the sum of the transitional probabilities 

of peripheral stations above 10 km (not exceed 4%) is evenly 

distributed to all stations. Under the premise of the sum of the 

elements of each row of the matrix is one, a new random matrix 

that satisfy the steady-state probability of dockless bike-sharing 

is constructed. To simplify the calculation and minimize the 

effect on the state transition relationship in the transition 

probability sparse matrix P , P can be multiplied by one 

adjustment parameter   (that is P  , 0 1＜ ＜ , and close to 1) 

to decrease the non-zero elements appropriately. Then the sum 

of the elements of each row in the matrix P  is 1 =  . Next, 

each element in P add (1- ) n  separately, and the sum of the 

increments in each row is  1- 1-n n     , so the sum of the 

elements of each row is + 1- =1 （ ） .Therefore, the sum of the 

elements of each row of the matrix remains unchanged. From 

the above, a new transition probability matrix C is constructed. 

The above operation can be expressed as 

 

 
1-

= + TC P ee
n


   (5) 

 
Te is the transpose for the unit column vector e . The rank of the 

matrix formed by  1- Tn ee   is 1, so the above operation is 

called the rank-one updating for P . 

 

According to Table 1, about 96% of the users have a single 

riding distance within 10 km; thus the in the C can take 0.96, 

and the calculation result of the rank-one updating part 

is n n square matrix. We have 

 

0.04 0.04
             

1 - 0.04
                          
0.04 0.04

            

T T
n n

ee ee
n n

n n
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 
 
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 
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In summary, we know that C is a random prime matrix, which 

satisfies the irreducible, aperiodic and positive-recurrence 

property of dockless bike-sharing Markov chain. The steady 

state condition of the bike-sharing is established. 

 

After the rank-one updating, the probability value of the non-

zero element jkP in the sparse matrix P changes as follows 
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If the number of bike-sharing stations in a city is large (e.g. 

100n  ), then the absolute value of the above formula is 

0.04 jkP P   , and the probability value of non-zero elements 

changes minimally. 

 

In addition, after the rank-one updating, the probability value of 

each zero element is changed to  1- 0.04n n  . If the number 

of bike-sharing stations in the city is 100n  , the corrected 

probability value of each zero element is not more than 0.0004. 

 

The larger the number of bike-sharing stations, the smaller the 

impact of the rank-one updating on P elements. Therefore, 

after the rank-one updating of the sparse matrix P , the 

constructed new transition probability matrix C does not change 

the main state transition relationship (riding relationship) 

between stations. For a bike-sharing operation with a low 

accuracy requirement and a high response speed, the solution 

can be reasonable. 

 

When calculating the steady-state probability of C by power 

method, we have 
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Although the matrix C  is a dense matrix, however, it can be 

known from equation (6) that we actually perform vector-matrix 

operations on the original sparse matrix P  when performing 

power method, and the correlation operation of the dense matrix 

is not performed. The change in the element after the rank-one 

updating was not directly involved in the calculation, the time 

complexity of this algorithm is still ( )O n . 

 

Continue iterating on the )k（ to get 
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Substituting 0.96   into the above formula, 

 

 
) 0)

1 1 2 2

0.96
1

         0.04 (0.96 0.96 0.96 1)

k k k

T k k k k

P

e P P P
n

 

   



      

（ （ （ ）

（ ） （ ）
 (7) 

 

When n is large enough, we have 

 

 ) )0.96k k kP  （ （0 （ ） (8) 

 

4.3 Convergence determination method 

The dockless bike-sharing transition probability matrix P is a 

random matrix, its matrix norm
1 1
max 1

n

ij
i n j

P P
   

   . According to 

the relationship between the spectral radius and matrix norm, 

the spectral radius of the matrix in any complex field is not 

greater than any of its matrix norms, that is   =1P P


  . It is 

also defined that the spectral radius  P  is the largest value of 

the eigenvalues of the matrix P (the absolute value of the 

dominant eigenvalue), then it is known that the absolute value 

of the P dominant eigenvalue is 1 1  . 

 

At the same time, since P is a random matrix, 1Pe e e   , 

that is, 1 is a eigenvalue of P . 

 

From the above, the dominant eigenvalue of the bike-sharing 

transition probability matrix P is 1=1 . For a random prime 

matrix, the dominant eigenvalue is unique (Stewart et al., 1994), 

therefore, without loss of generality, we can make the following 

n-1 eigenvalues have the following relationship 

2 3 n     .Then 2 3 n1       .  

 

Let eigenvalues of the random prime matrix C  be 

 1 2 n  ， ，， , where 1=1 , without loss of generality, we can 

make the following n-1 eigenvalues have the following 

relationship 2 3 n1     ＞ . According to the proof of 

Carl D. Meyer, , 2,3, ,i i i n   , i is the eigenvalues of 

dockless bike-sharing transition probability sparse prime matrix 

P . Then 2 2  . Since 2 1  , 2  . 

 

Based on the random prime matrix C , we calculate the steady-

state probability vector of the bike-sharing by power method, 

and its convergence rate is 2 0
k

  (Langville et al., 2011). 

Since 2 1   , the convergence rate does not exceed 0
k

  . 

If the precision of the )k（ calculation is one digit after the 

decimal point, set =0.1
k

 , since 0＞ , =0.1k , we can take 

the base 10 logarithm on both sides of the equation to 

get   101 logk   . In this paper, we set =0.96 , the number 

of iterations does not exceed   101 log 0.96 56   times. 

 

Combining the iterative process of power method, when 

calculating actually the steady-state probability vector, the 

steady-state can be judged by calculating the absolute value of 

the difference between the corresponding elements of adjacent 

probability vectors. Set 

 

 ( )
1 2= , , ,k

nx x x  

 

 ( 1)
1 2= , , ,k

ny y y   
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When every absolute value of the difference between the 

corresponding elements of the two adjacent vectors are all less 

than a sufficiently small constant , we have 

 

1 1 2 2( - ) ( - ) ( - )n ny x y x y x         ,
1

=
S

  

 

where   S = the total fleet size of  dockless shared bicycles put  

into a  city 

 

At this point, the bike-sharing transfer can be considered to 

have reached steady state. Possibly, for the convenience of 

calculation, set ( 1) ( )

1 1

= =
n

k k
i i

i

y x  



  . When   is small 

enough (may also take 1 S ), it can be considered that two 

adjacent vectors are equal and dockless bike-sharing Markov 

chain reaches steady state. 

 

5. ALGORITHM IMPLEMENTATION 

In practical calculations, )（0  is as the initial probability vector, 

it can take the value  1 ,  1 ,  1n n n . After solving the steady-

state probability vector  by the power method, the total 

number of bicycles S  and  are multiplied to obtain the 

steady-state fleet size vector of dockless bike-sharing stations. If 

the minimum time period of the bike-sharing state transition is 

in units of days, the convergence value of the power method 

iteration can be regarded as the time when the overall stations of 

a city reach the steady state.  

 

This section uses commercial data and simulation data to verify 

the feasibility and practical significance of the algorithm.  

 

The commercial data is provided by Mobike company (Mobike, 

2018b), which is more than 1.31 million lines. After the 

commercial data verification, the technical experts of Mobike 

company believe that the steady-state fleet size of the bike-

sharing solved by this algorithm can be used as the baseline 

reference data in practical operation.  

 

The simulation data is generated randomly by R language, and 

the matrix calculation is performed according to the algorithm 

of this paper to illustrate the feasibility of obtaining the steady-

state fleet size of the station for decision support. 

 

Just demonstrate the calculation process of the algorithm, the 

simulation experiment takes 5 stations as an example. Assuming 

the total size of bike-sharing is 500. The steady-state fleet size 

vector solution process is as follows 

 

1) Building a total transition probability matrix of dockless 

bike-sharing. 

 

0 0.4205 0 0 0.5795

0.2654 0 0 0.3075 0.4271

0 0 0 0.5767 0.4233

0.5280 0.0381 0.4339 0 0

0.8656 0 0.1344 0 0

P

 
 
 
  
 
 
 
 

 

 

2) Rank-one updating for P ,  = + (1- ) TC P n ee  .The 

adjustment parameter  is taken as 0.96. The results are as 

follows 

 

0.008 0.4117 0.008 0.008 0.5643

0.2628 0.008 0.008 0.3032 0.418

0.008 0.008 0.008 0.5617 0.4143

0.5148 0.0446 0.4245 0.008 0.008

0.839 0.008 0.1370 0.008 0.008

C

 
 
 
 
 
 
 
 

 

 

3) Calculating the steady-state probability vector of bike-

sharing stations. On the basis of the rank-one updating, the 

steady-state probability vector is obtained by continuous 

iterations (the total number of iterations is equal to 18) as 

follows 

 

 0.3508 0.1534 0.09 0.1031 0.3027   

 

4) Calculating the fleet size vector of dockless bike-sharing 

stations under the steady-state conditions. The steady-state fleet 

size vector of the bike-sharing is equal to the total size of the 

bicycles multiplied by the steady-state probability vector. 

 

 * 175 77 45 52 151S    

 

In order to further verify the feasibility of the proposed 

algorithm, under the different total size of shared bicycles and 

the number of bike-sharing stations, this paper calculates and 

compares the steady-state fleet size of bike-sharing station and 

the convergence time, respectively. In the simulation, the 

number of stations is set to 300, 500, 700, 900, and 1100, 

respectively. The total fleet size of bike-sharing is set to 1×105, 

2×105, 3×105 and 4×105, respectively. The adjustment parameter 

 is taken as 0.96. The steady-state probability is calculated 

1000 times for a total of 20 simulation scenarios for the bike-

sharing station and the total fleet size. The steady-state fleet size 

vector is not displayed because its dimension is too large. The 

average convergence time is calculated, see Table 2 for details. 

 

Transition probability 

matrix order 

Total fleet size 

1×105 2×105 3×105 4×105 

300 6.3 7 7 7 

500 6 6 6 6.7 

700 6 6 6 6 

900 5.5 6 6 6 

1100 5 6 6 6 

Table 2. The average convergence time of simulation data 

steady-state probability solution  

 

When the number of bicycle stations in the city is constant, the 

experimental results show that the convergence time increases 

with the increase of the total fleet size of the bike-sharing. That 

means, when the number of stations is constant, the larger the 

total size of bike-sharing, the longer to the steady-state. When 

the total fleet size of bike-sharing is constant, the more number 

of stations, the less convergence time. That means, when the 

total size of bike-sharing is constant, the more the number of 

stations in the city, the shorter to the steady-state. 

 

The simulation proves that the proposed algorithm is effective 

and can provide strategic support for bicycle operation. 

 

In practical applications, the decision of fleet size for each bike-

sharing station can refer to the calculation results under steady-

state conditions, and resolve the rebalancing by considering 

factors such as station area.  
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If the calculated steady-state fleet size of bike-sharing station is 

greater than the maximum allowable number of bicycles in the 

area, then set j be such station.  

 

(1) If jjP is too large (e.g., 5%jjp  ), which indicates that 

station j has more idle bicycles, so the idle bicycles need to be 

removed.  

 

(2) If jjP is within the normal range of values (e.g., 5%jjp  ), 

which indicates that the bike-sharing steady-state fleet size of 

such bike-sharing stations exceeds the bearing capacity of the 

station area, and the number of bicycles in the station needs to 

be dynamically optimized. There are two cases: 

 

1) The station has the characteristics that the bike-sharing 

number of riding in is greater than the number of riding out (For 

example, the station near the subway station in the residential 

area at the morning peak). With the number of bicycles 

gradually increase, the bike-sharing company should remove the 

bicycles in time to prevent the occupation of space for 

pedestrians or vehicles. 

 

2) The station has the characteristics that the bike-sharing 

number of riding in is less than the number of riding out (For 

example, the station near the subway station in the office area at 

the morning peak). With the number of bicycles gradually 

decrease, the bike-sharing company should continue to 

supplement the number of bicycles. 

 

It should be emphasized that if the shared bicycles are generally 

idle, it means that the total number of bicycles in the city 

exceeds the actual demand, which requires overall compression. 

It is advisable to control the average value of jjP within 5% by 

removing the idle bicycle of the station. 

 

This paper does not further analyse the problem of shared 

bicycle rebalancing, and only makes a few suggestions. In order 

to reduce the cost of the rebalancing, we should pay attention to 

the management of user behaviours. For users who park 

bicycles in disorder, they would be discouraged online. If the 

user does not comply with the dissuasion, online penalties can 

be imposed, such as increasing the rental fee to reduce the 

disorder; Users who actively use the disorderly parked bicycles, 

and pick up the bicycles from the congested stations or return 

them to the bicycles-deficient stations would be rewarded 

online. On this basis, the shared bicycle company uses static or 

dynamic bicycle repositioning problem algorithms to achieve 

reasonable rebalancing of bicycles. 

 

6. ALGORITHM IMPROVEMENT 

Through the practical application of dockless bike-sharing, it is 

not difficult to find the following characteristics: On the 

workdays, the use of dockless bike-sharing is tightly coupled 

with different time periods every day, that is, it is used 

frequently during peak hours and afternoons, stable use at noon, 

and less used at night. Therefore, the working day time is 

divided as shown in Table 3. 

 

State cycle Time period 

1T   7 :00 9:00  

2T   9:00-11:00  

3T   11:00 13:00  

4T   13:00-17 :00  

5T   17 :00 19:00  

6T   19:00 22:00  

7T   to the next morning22:00  7 :00  

Table 3. Bicycle Station State Change Cycle (24 hours) 

 

The 24 hours in Table 3 is a cycle of changes in the state of the 

bike-sharing stations. For bike-sharing companies, the change 

of the fleet size of bike-sharing station in different time periods 

can provide an important basis for the formulation of the 

rebalancing strategy. Therefore, it is necessary to further 

improve the sparse matrix solution algorithm. 

 

According to the analysis of Section 2, we can see that the 

change of bicycle state in the six time periods all meet the basic 

requirements of discrete-time Markov chain applications. 

Therefore, the algorithm can be further refined to dynamically 

calculate the transition probability matrix of each major time 

period of the day, and then calculate the steady state fleet size of 

each bike-sharing station in each time period. 

 

The initial fleet size of bike-sharing of station j at different time 

periods in a day is , (1,7)
iTS i , respectively. Set the initial fleet 

size of the bike-sharing of station j in each time period of the 

k+1th day is ( 1) , (1,7)
i

k
TS i  . In the i-th time period, the number 

of rides out of the station j is ( 1)G k

Ti

 and the number of rides in 

is ( 1)k

Ti
I  . Then 

 
( 1) ( 1) ( 1) ( 1)

( 1)
= G , 1k k k k

Ti T T Ti i i
S S I i   


    

 
( 1) ( ) ( ) ( )

6 7 7
= G , 1k k k k

Ti T T T
S S I i     

 

Known the initial value 
iTS of bike-sharing for a certain time 

period in the station j, and the number of shared bicycles 

G
Ti

from the station j to the station k, then the bike-sharing 

transition probability of the station j to station k in this time 

period is G
i i iT jk T TP S  , 

1

0

=1- ,
i i

n

T jj T jk
k

P p k j


 


  . G
Ti

 and iTS  

is the statistical average of the relevant data for this time period 

in consecutive days.  

 

Set the transition probability sparse matrix at different time 

period in a day is iP , 1,7i（ ）, according to above, substituting 

iT jkP   and 
iT jjP   into iP , the transition probability matrix of 

bike-sharing stations at iT  time period in a day is constructed .  

 

Since iP is a random matrix, so the 
7

1
i

i

P


   is also a random 

matrix. Set 
7

1

= i
i

Q P


  ( Q  can be referred to as bike-sharing total 

transition probability matrix). The rank-one updating method is 

first performed on the matrix Q , we get Q . Based on Q , the 

steady-state probability vector and convergence time of the 

bike-sharing stations are obtained by power method. After 

reaching the steady state, the fleet size of each bike-sharing 

station in each time period of the day can be calculated 

separately. 

 

The steady-state fleet size vector of bike-sharing stations at 

morning peak in a day is equal to the total size of the bicycles 

multiplied by the steady-state probability vector. 
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1T *S S   (9) 

 

The steady-state fleet size vector for bike-sharing stations in the 

other time period in the same day is solved as follows 

 

    
-1 i-2 1

1

1 2 1
1

=
i i

i

T T i T i i T j
j

S S P S P P S P


  



        
 

 (10) 

 

where  
iTS = the fleet size vector of bike-sharing stations at 

iT  time period in a day  

iP = the transition probability matrix of bike-sharing 

stations at iT  time period in a day  

 

7. CONCLUSION 

In order to solve the problem of the fleet size and rebalancing of 

dockless bike-sharing stations, this paper improves the 

traditional Markov chain steady-state probability solving 

method, and proposes the “sparse matrix construction solution 

method”. The method constructs the transition probability 

sparse matrix combined with the practical application of 

dockless bike-sharing. Based on the analysis of reducible 

problems of the sparse matrix, the random prime matrix of 

transition probability is constructed to satisfy the requirements 

of steady-state fleet size vector calculation by rank-one updating 

method, and the convergence speed of the method is analysed. 

Thus, this paper further analyses the method of constructing the 

transition probability matrix in multiple time periods in one day, 

which makes the algorithm to solve the steady-state probability 

vector in different time periods in a day. Finally, the algorithm 

is verified with the practical and simulation data.  

 

This algorithm takes into account the accuracy and speed of 

calculation, and the result of the steady-state fleet size of bike-

sharing station can be used as a baseline reference data to 

dynamically optimize the fleet size of bike-sharing station 

operated by bike-sharing companies. 
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