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Abstract

We show that probabilistic computable functions, i.e., those func-
tions outputting distributions and computed by probabilistic Turing
machines, can be characterized by a natural generalization of Church
and Kleene’s partial recursive functions. The obtained algebra, follow-
ing Leivant, can be restricted so as to capture the notion of a polytime
sampleable distribution, a key concept in average-case complexity and
cryptography.
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1 Introduction

Models of computation as introduced one after the other in the first half of
the last century, were all designed around the assumption that determinacy
is one of the key properties to be modeled: given an algorithm and an input
to it, the sequence of computation steps leading to the final result is uniquely
determined by the way an algorithm describes the state evolution. The
great majority of the introduced models are equivalent, in that the classes
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of functions (on, say, natural numbers) they are able to compute are the
same [4].

The second half of the 20th century has seen the assumption above
relaxed in many different ways. Nondeterminism, as an example, has been
investigated as a way to abstract the behavior of certain classes of algorithms,
this way facilitating their study without necessarily changing their expressive
power: think about how NFAs [18] make the task of proving closure properties
of regular languages easier.

A relatively recent step in this direction consists in allowing algorithms’
internal state to evolve probabilistically: the next state is not functionally
determined by the current one, but is obtained from it by performing a process
having possibly many outcomes, each with a probability. Probabilistically
evolving computation (probabilistic computation for short) can be a way
to abstract over determinism, but also a way to model situations in which
algorithms have access to a source of randomness4. Indeed, probabilistic
models are nowadays more and more pervasive: not only they are a formidable
tool when dealing with uncertainty and incomplete information, but they
sometimes are a necessity rather than an option, like in computational
cryptography (where, e.g., public key encryption schemes cannot be secure
without being probabilistic [10]). Examples of application areas in which
probabilistic computation has proved to be useful include natural language
processing [15], robotics [22], computer vision [3], and machine learning [16].

But what does the presence of probabilistic choice give us in terms
of expressivity? Are we strictly more expressive than usual, deterministic,
computation? And what about efficiency: is it that probabilistic choice
permits to solve computational problems more efficiently? These questions
have been among the most central in the theory of computation, in particular
in computational complexity, in the last forty years and they have received
several different answers. We postpone to the next section a discussion of
these answers, however we can already summarize two main points emerging
from these results. First, while probability has been proved not to offer
any computational advantage in the absence of resource constraints, it is
not known whether probabilistic classes such as BPP or ZPP are different
from P. Second, all the existing works on this subject follow an approach
that we call reductionist : probabilistic computation is studied by reducing

4Although the physical sources of randomness algorithms have access to usually contain
correlations and biases, they are modeled as sources of perfect randomness, in which bits
are uniformly distributed and independent.
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or comparing it to deterministic computation.

This work goes in a somehow different direction: as already mentioned,
we want to study probabilistic computation directly, without necessarily
reducing it to deterministic computation. In our perspective, the central
assumption is the following: a probabilistic algorithm computes what we
call a probabilistic function, i.e. a function from a discrete set (e.g. natural
numbers or binary strings) to distributions over the same set. What we
want to do is to study the set of those probabilistic functions which can be
computed by algorithms, possibly with resource constraints.

In the first part of this paper we provide a characterization of computable
probabilistic functions by the natural generalization of Kleene’s partial
recursive functions, where among the initial functions there is now a function
corresponding to tossing a fair coin, thus modeling the access to a source
of randomness. In the non-trivial proof of completeness for the obtained
algebra, Kleene’s minimization operator is used in an unusual way, making
the usual proof strategy for Kleene’s Normal Form Theorem (see, e.g., [21])
useless. We later hint at how to recover the latter by replacing minimization
with a more powerful operator. We also mention how probabilistic recursion
theory offers characterizations of concepts like the one of a computable
distribution and of a computable real number.

The second part of this paper is devoted to applying the aforementioned
recursion-theoretical framework to polynomial-time computation. We do
that by following Bellantoni and Cook’s and Leivant’s works [1, 13], in
which polynomial-time deterministic computation is characterized by a re-
stricted form of recursion, called predicative or ramified recursion. Endowing
Leivant’s ramified recurrence with a random base function, in particular, is
shown to provide a characterization of polynomial-time computable distribu-
tions, a key notion in average-case complexity [2].

This is a revised and extended version of an eponymous paper appeared
in the proceedings of the 11th International Colloquium on Theoretical
Aspects of Computing [6].

Related Work. This work is rooted in the classic theory of computation,
and in particular in the definition of partial computable functions as intro-
duced by Church and later studied by Kleene [12]. Relevant related work
includes the many probabilistic computational models introduced so far.
Without trying to be exhaustive we can mention that, starting from the early
fifties, various forms of automata in which probabilistic choice is available
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have been considered (e.g., see [17]). The inception of probabilistic choice
into an universal model of computation, namely Turing machines, is due
to Santos [19, 20], but is (essentially) already there in an earlier work by
De Leeuw and others [7]. Some years later, Gill [8] considered probabilistic
Turing machines with bounded complexity: his work has been the starting
point of a florid research about the interplay between computational com-
plexity and randomness. Among the many side effects of this research one
can of course mention modern cryptography [11], in which algorithms (e.g.
encryption schemes, authentication schemes, and adversaries for them) are
almost invariably assumed to work in probabilistic polynomial time.

The second part of this work is related to the area of implicit computa-
tional complexity, which studies machine-free characterizations of complexity
classes based on mathematical logic and programming language theory, and
which is a relatively young research area. Its birth is traditionally made to
correspond with the beginning of the nineties, when Bellantoni and Cook [1]
and Leivant [13] independently proposed function algebras precisely charac-
terizing (deterministic) polynomial time computable functions. In the last
twenty years, this area has produced many interesting results, and complexity
classes spanning from the logarithmic space computable functions to the
elementary functions have been characterized by, e.g., function algebras, type
systems [14], or fragments of linear logic [9]. Recently, some investigations
on the interplay between implicit complexity and probabilistic computation
have started to appear [5]. There is however an intrinsic difficulty in giving
implicit characterizations of probabilistic classes like BPP or ZPP: these
are semantic classes defined by imposing a polynomial bound on time, but
also appropriate bounds on the probability of error. This makes the task of
enumerating machines computing problems in the classes much harder and,
ultimately, prevents from deriving implicit characterizations of the classes
above. Again, our emphasis here is different: we do not see probabilistic
algorithms as artifacts computing functions of the same kind as the one
deterministic algorithms compute, but we see probabilistic algorithms as
devices outputting distributions.

2 Probabilistic Recursion Theory

In this section we provide a characterization of the functions computed
by a probabilistic Turing machine (PTM) in terms of a function algebra à
la Kleene. We first define probabilistic recursive functions, which are the
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elements of our algebra. Next we define formally the class of probabilistic
functions computed by a PTM. Finally, we show the equivalence of the two
introduced classes. In the following, R[0,1] is the unit interval.

Since PTMs compute probability distributions, the functions that we
consider in our algebra have domain Nk (the set of k-tuples in N) and
codomain N→ R[0,1] (rather than N as in the classic case). The idea is that
if f(x) is a function which returns p ∈ R[0,1] on input x ∈ N, then p is the
probability of getting y ∈ N as the output when feeding f with the input x.
We note that we could extend our codomain from N→ R[0,1] to Nm → R[0,1],
however we use N→ R[0,1] in order to simplify the presentation, at the same
time being consistent with the classic literature on recursion theory.

Definition 1 (Pseudodistributions, Probabilistic Functions) A pseu-
dodistribution on N is a function D : N→ R[0,1] such that

∑
n∈ND(n) ≤ 1.∑

n∈ND(n) is often denoted by
∑D. Let PN be the set of all pseudodis-

tributions on N. A probabilistic function (PF) is a function from Nk to
PN.

In the following we use the expression {np1
1 , . . . , n

pk
k } to denote the pseu-

dodistribution D defined as D(n) =
∑

ni=n pi. Observe that
∑D =

∑k
i=1 pi.

When this does not cause ambiguity, a pseudodistribution is simply called
a distribution. Please notice that probabilistic functions are always total
functions, but their codomain is a set of distributions which do not necessar-
ily sum to 1, but rather to a real number smaller or equal to 1, this way
modeling the probability of divergence. For example, the nowhere-defined
partial function Ω : N⇀ N of classic recursion theory becomes a probabilistic
function which returns the empty distribution ∅ on any input. The first step
towards defining our function algebra consists in giving a set of functions to
start from:

Definition 2 (Basic Probabilistic Functions) The basic probabilistic
functions (BPFs) are defined as follows:

• The zero function z : N→ PN defined as: z(x)(0) = 1 for every x ∈ N;
• The successor function s : N→ PN defined as: s(x)(x+ 1) = 1 for every
x ∈ N;
• The projection function Πn

m : Nn → PN defined as: Πn
m(x1, . . . , xn)(xm) =

1 for every positive n,m ∈ N such that 1 ≤ m ≤ n;
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• The fair coin function r : N→ PN that is defined as:

r(x)(y) =


1/2 if y = x;
1/2 if y = x+ 1;
0 otherwise.

The first three BPFs are essentially the same as the basic functions from
classic recursion theory, while r is the only truly probabilistic BPF: it behaves
like the identity or like the successor, each with probability 1

2 . It is worth
noting that, as we will show in Example 1, this definition of r allow us to
obtain probabilistic choice.

The next step consists in defining how PFs compose. Function composi-
tion of course cannot be used here, because when composing two PFs f and
g the codomain of g does not match with the domain of f . Indeed, g returns
a distribution N→ R[0,1] while f expects a natural number as input. What
we have to do here is the following. Given an input x ∈ N and an output
y ∈ N for the composition f • g, we apply the distribution g(x) to a generic
value z ∈ N. This gives a probability g(x)(z) which is then multiplied by
the probability that the distribution f(z) associates to the value y ∈ N. If
we then consider the sum of the obtained product g(x)(z) · f(z)(y) on all
possible z ∈ N we obtain the probability of f • g returning y when fed with
x. The sum is due to the fact that two different values, say z1, z2 ∈ N, which
provide two different distributions f(z1) and f(z2) must both contribute to
the same probability value f(z1)(y) + f(z2)(y) for a fixed y. In other words,
we are doing nothing more than lifting f to a function from distributions to
distributions, then composing it with g. Formally:

Definition 3 (Composition) We define the composition f • g : N→ PN
of two functions f : N→ PN and g : N→ PN as:

((f • g)(x))(y) =
∑
z∈N

f(z)(y) · g(x)(z).

Please note that function composition as defined above is precisely the same
as convolution from functional analysis. The previous definition can be
generalized to functions taking more than one parameter in the expected
way:

Definition 4 (Generalized Composition) We define the generalized com-
position of functions f : Nn → PN, g1 : Nk → PN, . . . , gn : Nk → PN as the
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function f � (g1, . . . , gn) : Nk → PN defined as follows:

((f � (g1, . . . , gn))(x))(y) =
∑

z1,...,zn∈N
f(z1, . . . , zn)(y) ·

∏
1≤i≤n

gi(x)(zi).

With a slight abuse of notation, we can treat probabilistic functions as
ordinary functions when forming expressions. Suppose, as an example,
that x ∈ N and that f : N3 → PN, g : N → PN, h : N → PN. Then the
expression f(g(x), x, h(x)) stands for the distribution in PN defined as follows:
(f � (g, id , h))(x), where id = Π1

1 is the identity PF.
The way we have defined probabilistic functions and their composition

is reminiscent of, and indeed inspired by, the way one defines the Kleisli
category for the Giry monad, starting from the category of partial functions
on sets. This categorical way of seeing the problem can help a lot in finding
the right definition, but by itself is not adequate to proving the existence of
a correspondence with machines like the one we want to give here.

Primitive recursion is defined as in Kleene’s algebra, provided one uses
composition as previously defined:

Definition 5 (Primitive Recursion) Given functions g : Nk+2 → PN,
and f : Nk → PN, the function h : Nk+1 → PN defined as

h(x, 0) = f(x); h(x, y + 1) = g(y,x, h(x, y));

is said to be defined by primitive recursion from f and g, and is denoted as
rec(f, g).

We now turn our attention to the minimization operator which, as in
the deterministic case, is needed in order to obtain the full expressive power
of (P)TMs. The definition of this operator is in our case delicate and requires
some explanation. Recall that, in the classic case, given a partial function
f : Nk+1 ⇀ N, the minimization operator allows one to define another partial
function, call it µf , which computes from x ∈ Nk the least value of y such
that f(x, y) is equal to 0 (and f(x, z) is defined and different from 0 for
all z < y), if such a value exists (and is undefined otherwise). In our case,
again, we are concerned with distributions, hence we cannot simply consider
the least value on which f returns 0, since functions return 0 with a certain
probability. The idea is then to define the minimization µf as a function
which, given an input x ∈ Nk, returns a distribution associating to each
natural y the probability that the result of f(x, y) is 0 and the result of
f(x, z) is strictly positive for every z < y. Formally:
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Definition 6 (Minimization) Given a PF f : Nk+1 → PN, we define
another PF µf : Nk → PN as follows:

(µf)(x)(y) = f(x, y)(0) ·
(∏

z<y

∑
k>0

f(x, z)(k)

)
.

We are finally able to define the class of functions we are interested in as
follows.

Definition 7 (Probabilistic Recursive Functions) The class PR of
probabilistic recursive functions is the smallest class of probabilistic functions
that contains the BPFs (Definition 2) and is closed under the operations of
general composition (Definition 4), primitive recursion (Definition 5) and
minimization (Definition 6).

Example 1 The following are examples of probabilistic recursive func-
tions:
• The identity function id : N→ PN is defined as follows: for all x, y ∈ N

id(x)(y) =

{
1 if y = x;
0 otherwise.

This definition means that id = Π1
1. Since the latter is a BPF (Definition

2), id is in PR.
• The probabilistic function rand : N→ PN such that, for every x ∈ N,

rand(x)(y) =


1/2 if y = 0;
1/2 if y = 1;
0 otherwise;

can be easily shown to be recursive, since rand = r� z (and we know that
both r and z are BPF). Actually, one can easily see that rand could itself
be taken as the only genuinely probabilistic BPF, i.e., r can be constructed
from rand and the other BPFs by composition and primitive recursion.
• All functions we have proved recursive so far have the property that the

returned distribution is finite and total for any input. Indeed, this is true
for every probabilistic primitive recursive function, since minimization
is the only way to break finiteness and totality. Consider the function
f : N→ PN defined as

f(x)(y) =

{
1

2y−x+1 if y ≥ x;
0 otherwise.
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We define another function h : N→ PN by stipulating that

h(x)(y) =
1

2y+1

for every x, y ∈ N. h is a probabilistic recursive function; indeed, consider
the function k : N2 → PN defined as rand�Π2

1 and build µk. By definition,

(µk)(x)(y) = k(x, y)(0) ·
∏
z<y

∑
q>0

k(x, z)(q). (1)

Then observe that (µk)(x)(y) = 1
2y+1 : by (1), (µk)(x)(y) unfolds into

a product of exactly y + 1 copies of 1
2 , each “coming from the flip of a

distinct coin”. Hence, h = µk. Then we observe that

(add � (µk, id))(x)(y) =
∑
z1,z2

add(z1, z2)(y) · ((µk)(x)(z1) · id(x)(z2)).

But notice that id(x)(z2) = 1 only when z2 = x (and in the other cases
id(x)(z2) = 0), (µ k)(x)(z1) = 1

2z1+1 , and add(z1, z2)(y) = 1 only when
z1 +z2 = y (and in the other cases, add(z1, z2)(y) = 0). This implies that
the term in the sum is different from 0 only when z2 = x and z1 + z2 = y,
namely when z1 = y − z2 = y − x, and in that case its value is 1

2y−x+1 .
Thus, we can claim that f = (add � (µk, id)), and that f is in PR.

It is easy to show that PR includes all partial recursive functions, seen as
probabilistic functions. This can be done by first defining extended recursive
functions as follows.

Definition 8 (Extended Recursive Functions) For every partial recur-
sive function f : Nk ⇀ N we define the extended function pf : Nk → PN as
follows:

pf (x)(y) =

{
1 if y = f(x);
0 otherwise.

Proposition 1 If f is partial recursive function, then pf as defined above
is in PR.

Proof. The proof goes by induction on the structure of f as a partial
recursive function. The proof for the base cases is immediate. As for the
inductive cases, we have the following ones:



186 U. Dal Lago, S. Zuppiroli, M. Gabbrielli

• f is defined by composition from h, g1, . . . , gn as:

f(x) = h(g1(x), . . . , gn(x)),

where h : Nn ⇀ N and gi : Nk ⇀ N for every 1 ≤ i ≤ n are partial
recursive functions. By definition, we have

pf (x)(y) =

{
1 if y = h(g1(x), . . . , gn(x));
0 otherwise

Also by definition, we have that for every 1 ≤ i ≤ n, it holds that:

pgi(x)(y) =

{
1 if y = gi(x);
0 otherwise;

ph(x)(y) =

{
1 if y = h(x);
0 otherwise.

By induction hypothesis, we observe that pg1 , . . . , pgn , ph ∈PR and

((ph�(pg1 , . . . , pgn))(x))(y)

=
∑

z1,...,zn∈N
ph(z1, . . . , zn)(y) ·

 ∏
1≤i≤n

pgi(x)(zi)


= pf (x)(y).

by using the definitions above. Thus pf = (ph � (pg1 , . . . , pgn)) ∈PR.
• f is defined by primitive recursion so f : Nk × N→ N is defined as:

f(x, 0) = h(x);

f(x, y + 1) = g(y,x, f(x, y));

where g : Nk+2 → N and h : Nk → N are partial recursive functions.
By induction hypothesis, we have that pg, ph ∈ PR. The fact that
rec(pg, ph)(x, y) = pf (x, y) can be proved by an induction on y. Thus pf
is in PR because pf = rec(ph, pg).
• Suppose f : Nk → N is defined by minimization, i.e. f = µg. By

definition of f(x) we have:

pf (x)(z) =

{
1 if z = µy.(g(x, y) = 0);
0 otherwise;
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By hypothesis pg ∈PR. We observe that:

(µpg)(x)(z) = pg(x, z)(0) ·
(∏

n<z

∑
k>0

pg(x, n)(k)

)

= pg(x, z)(0) ·

∏
n<z

∑
k=g(x,n)>0

1


=

{
1 if g(x, z) = 0 and ∀n < z.g(x, z) > 0;
0 otherwise;

=

{
1 if z = µy.(g(x, y) = 0)
0 otherwise;

= pf (x)(z).

Thus pf is in PR because pf = µ pg.
This concludes the proof. 2

2.1 Probabilistic Turing Machines and Computable Func-
tions

In this section we introduce computable probabilistic functions as those
probabilistic functions which can be computed by probabilistic Turing ma-
chines. As previously mentioned, probabilistic computation models have
received a wide interest in computer science already in the fifties [7] and early
sixties [17]. A natural question which arose was then to see what happened
if random elements were allowed in a Turing machine. This question led
to several formalizations of probabilistic Turing machines [7, 19] — which,
essentially, are Turing machines which have the ability to flip coins in order
to make uniform, fair, decisions — and to several results concerning the
computational complexity of problems when solved by PTMs [8].

Following [8], a probabilistic Turing machine (PTM) can be seen as a
Turing machine with two transition functions δ0, δ1. At each computation
step, either δ0 or δ1 can be applied, each with probability 1

2 . Then, in a way
analogous to the deterministic case, we can define a notion of a (initial, final)
configuration for a PTM. In the following, Σb denotes the set of possible
symbols on the tape, including a blank symbol 2; Q denotes the set of states;
Qf ⊆ Q denotes the set of final states and qs ∈ Q denotes the initial state.

Definition 9 (Probabilistic Turing Machine) A probabilistic Turing ma-
chine (PTM) is a Turing machine endowed with two transition functions
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δ0, δ1. At each computation step the transition function δ0 can be applied
with probability 1

2 and the transition δ1 can be applied with probability 1
2 .

Definition 10 (Configuration of a PTM) Let M be a PTM. We define
a PTM configuration as a 4-tuple 〈s, a, t, q〉 ∈ Σ∗b × Σb × Σ∗b × Q such
that:
• The first component, s ∈ Σ∗b , is the portion of the tape lying on the left

of the head.
• The second component, a ∈ Σb, is the symbol the head is reading.
• The third component, t ∈ Σ∗b , is the portion of the tape lying on the right

of the head.
• The fourth component, q ∈ Q is the current state.

Moreover we define the set of all configurations as CM = Σ∗b × Σb × Σ∗b ×Q.

Definition 11 (Initial and Final Configurations of a PTM) Let M be
a PTM. We define the initial configuration of M for the string s as the
configuration 〈ε, a, v, qs〉 ∈ Σ∗b × Σb × Σ∗b × Q such that s = a · v and the
fourth component, qs ∈ Q, is the initial state. We denote it with IN s

M .
Similarly, we define a final configuration of M for s as a configuration
〈s,2, ε, qf 〉 ∈ Σ∗b ×Σb×Σ∗b ×Qf . The set of all such final configurations for
M is denoted by FCsM .

For a function T : N→ N, we say that a PTM M runs in time bounded by T
if for any input x, M halts on input x within T (|x|) steps independently of
the random choices it makes. Thus, M works in polynomial time if it runs
in time bounded by P , where P is any polynomial.

Intuitively, the function computed by a PTM M associates to each
input s ∈ Σ∗ a pseudodistribution which indicates the probability of reaching
a final configuration of M from IN s

M . It is worth noticing that, differently
from the deterministic case, since in a PTM the same configuration can
be obtained along different computation paths, the probability of reaching
a given final configuration is the sum of the probabilities of reaching the
configuration along all computation paths, of which there can be (even
infinitely) many. It is thus convenient to define the function computed by
a PTM through a fixpoint construction, as follows. First, we can define a
partial order on the string distributions.

Definition 12 A string (pseudo)distribution on Σ∗ is a function D : Σ∗ →
R[0,1] such that

∑
s∈Σ∗ D(s) ≤ 1. PΣ∗ denotes the set of all string (pseudo)

distributions on Σ∗.
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Next we can define a partial order on string distributions by a pointwise
extension of the usual order on R:

Definition 13 The relation vPΣ∗⊆ PΣ∗ × PΣ∗ is defined by stipulating that
A vPΣ∗ B if and only if, for all s ∈ Σ∗, A(s) ≤ B(s).

The proof of the following is immediate.

Proposition 2 The structure (PΣ∗ ,vPΣ∗ ) is a poset.

It is time to define the domain CEV:

Definition 14 The set CEV is defined as {f | f : CM → PΣ∗}.

The set CEV will be used as the domain5 of the functional whose least
fixpoint gives the function computed by a PTM. To this aim, inheriting the
structure on PΣ∗ , we can define a partial order on CEV as follows.

Definition 15 The relation vCEV⊆ CEV × CEV is defined for A,B ∈ CEV
as A vCEV B if and only if, for all c ∈ CM , A(c) vPΣ∗ B(c).

The proof of the following is also immediate.

Proposition 3 The structure (CEV,vCEV) is a poset.

Given a poset, the notions of least upper bound, denoted by
⊔

, and of an
ascending chain are defined as usual. Next, the bottom elements of the
posets of our interest can be obtained as follows.

Lemma 1 Let d⊥ : Σ∗ → R[0,1] be defined by stipulating that d⊥(s) = 0 for
all s ∈ Σ∗. Then, d⊥ is the bottom element of the poset (PΣ∗ ,vPΣ∗ ).

Lemma 2 Let b⊥ : CM → PΣ∗ be defined by stipulating that b⊥(c) = d⊥ for
all c ∈ CM . Then, b⊥ is the bottom element of the poset (CEV,vCEV).

Now, it is time to prove that the posets at hand are also ω-complete, that is,
that each ascending chain in the poset has a least upper bound in it.

Proposition 4 The poset (PΣ∗ ,vPΣ∗ ) is a ωCPO.

5Of course CEV is a proper superset of the functions computed by PTMs.
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Proof. We need to prove that for each chain c1 vPΣ∗ c2 vPΣ∗ c3 . . . the
least upper bound

⊔
i ci exists. First note that since

∑
s∈Σ∗ ci(s) ≤ 1, from

definition of vPΣ∗ it follows that, for each s ∈ Σ∗, c1(s) ≤ c2(s) ≤ . . . ≤ 1
holds. This implies that, for each s ∈ Σ∗, the limit limi→∞ ci(s) exists.
Hence, defining cL as the distribution such that cL(s) = limi→∞ ci(s), we
have that cL =

⊔
i ci. Indeed, cL wPΣ∗ ci, and any upper bound of the family

{ci}i∈N is clearly greater or equal to cL. 2

Proposition 5 The poset (CEV,vCEV) is a ωCPO.

Proof. Analogous to the previous one. 2

We can now define a functional FM on CEV which will be used to define
the function computed by M via a fixpoint construction. Intuitively, the
application of the functional FM describes one computation step. Formally:

Definition 16 Given a PTM M , we define a functional FM : CEV → CEV
as:

FM (f)(C) =

{
{s1} if C ∈ FCsM ;
1
2f(δ0(C)) + 1

2f(δ1(C)) otherwise.

Note that, according to the notation introduced after Definition 1, {s1}
is the distribution which assigns probability 1 to s. The following proposition
is needed in order to apply the usual fixpoint result.

Proposition 6 The functional FM is continuous.

Proof. We prove that FM (
⊔

i∈N fi) =
⊔

i∈N FM (fi), or, saying another way,
that for every configuration C, FM (

⊔
i∈N fi)(C) =

⊔
i∈N(FM (fi))(C). Now,

notice that for every C,

FM (
⊔
i∈N

fi)(C) =

{
{s1} if C ∈ FCsM ;
1
2((
⊔

i∈N fi)(C1)) + 1
2((
⊔

i∈N fi)(C2)) if C → C1, C2;

where C → C1, C2 means that, from the configuration C, the machine with
one computation step evolves to the configurations C1 and C2 and, similarly,
that: ⊔

i∈N
(FM (fi))(C) =

⊔
i∈N

{
{s1} if C ∈ FCsM ;
1
2fi(C1) + 1

2fi(C2) if C → C1, C2.

Now, given any C, we distinguish two cases:
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• If C ∈ FCsM , then

FM (
⊔
i∈N

fi)(C) = {s1} =
⊔
i∈N
{s1} =

⊔
i∈N

(FM (fi))(C).

• If C → C1, C2, then

FM (
⊔
i∈N

fi)(C) =
1

2
((
⊔
i∈N

fi)(C1)) +
1

2
((
⊔
i∈N

fi)(C2))

=
1

2
(
⊔
i∈N

fi(C1)) +
1

2
(
⊔
i∈N

fi(C2))

=
⊔
i∈N

1

2
fi(C1) +

⊔
i∈N

1

2
fi(C2) =

⊔
i∈N

(
1

2
fi(C1) +

1

2
fi(C2))

=
⊔
i∈N

(FM (fi))(C).

This concludes the proof. 2

Theorem 1 The functional FM from Definition 16 has a least fixpoint which
is equal to

⊔
n≥0 F

n
M (b⊥).

Proof. Immediate from the well-known fixpoint theorem for continuous
maps on a ωCPO. 2

Such a least fixpoint is, once composed with a function returning IN s
M

from s, the function computed by the machine M , which is denoted as
IOM : Σ∗ → PΣ∗ . A probabilistic function is computable if it is the function
computed by any PTM M . The set of computable functions is PC .

The fixpoint construction delineated above is an appropriate way to
define what a PTM computes, although working with it can be quite cum-
bersome in proofs. A better, equivalent, definition consists in working with
computation trees, each of which represents all probabilistic computation
paths of a machine M when fed with a given input string x. We define such
a tree as follows. Each node is labelled by a configuration of the machine
and each edge represents a computation step. The root is labelled with
the initial configuration IN x

M and each node labelled with C has either
no child (if C is final) or 2 children (otherwise) labelled with δ0(C) and
δ1(C). Please notice that the same configuration may be duplicated across
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Figure 1: Computation Trees, some Examples

a single level of the tree as well as appear at different levels of the tree;
nevertheless we represent each such appearance by a separate node. In
Figure 1(a), an example computation trees is depicted such that C is the
initial configuration, E and G are final configurations, while D and F are
neither initial nor final. The same computation tree can be represented more
abstractly as in Figure 1(b), or even as in Figure 1(c), where we focus on
one among the nodes labelled with E.

We can naturally associate a real number to each node of a computa-
tion tree, corresponding to the probability that the node is reached in the
computation: it is 1

2n , where n is the height of the node. The probability of
a particular final configuration is the sum of the probabilities of all leaves
labelled with that configuration. We also enumerate nodes in the tree,
top-down and from left to right, by using binary strings in the following
way: the root has associated the number ε. Then if b is the binary string
representing the node N , the left child of N has associated the string b · 0
while the right child has the string b · 1. Note that from this definition it
follows that each binary number associated to a node N indicates a path in
the tree from the root to N . The computation tree whose root is labelled
with IN x

M will be denoted as CTM (x).

It is worth noticing that the notion of computable probabilistic function
we have described subsumes other key notions in probabilistic and real-
number computation. As an example, computable distributions can be
characterized as those distributions on Σ∗ which can be obtained as the
result of a function in PC on a fixed input. Analogously, computable real
numbers from the unit interval [0, 1] can be seen as those elements of R in
the form f(0)(0) for a computable function f ∈PC .
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2.2 Equivalence

In this section we prove that probabilistic recursive functions are the same as
probabilistic computable functions, modulo an appropriate bijection between
strings and natural numbers, which we denote (as its inverse) with (·).

2.2.1 Soundness

In order to prove the equivalence result we first need to show that any
probabilistic recursive function can be computed by a PTM. This result
is not difficult and, analogously to the deterministic case, is proved by
exhibiting PTMs which simulate the basic probabilistic recursive functions
and by showing that PC is closed under composition, primitive recursion,
and minimization. This is done by the following lemmata.

Lemma 3 (Basic Functions and Computability) All basic probabilis-
tic functions are computable.

Proof. For every basic function from Definition 2, we can construct a
probabilistic Turing machine that computes it. More specifically, the proof
is immediate for the BPFs z, s and Πm

n : they are deterministic, thus we
can use the usual Turing machines (seen as a PTMs) for them. As for the
function r it can be simulated by a PTM M which writes 1 or 0 on the tape,
both with probability 1

2 , and then halts. 2

The composition of two computable probabilistic functions is itself com-
putable:

Lemma 4 (Composition and Computability) Given computable f : Nn →
PN and g1 : Nk → PN, . . . , gn : Nk → PN, the function f � (g1, . . . , gn) :
Nk → PN is itself computable.

Proof. We give the proof for the case when n = 1, i.e., the case in which
the function to be proved computable is f • g : Nk → PN (the general case
is analogue, if only a bit more tedious). By hypothesis, f and g are both
computable, and thus there are PTMs which compute them, say N and M
respectively. We define a PTM L, working on 2 tapes6, and which computes
f • g. On the first tape L simulates M by computing the value of g on the

6The equivalence of multi tape PTMs with single tape PTMs can be proved in a way
which is analogous to the classic case.
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T x
M D
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T y
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Figure 2: Computation Tree for Composition

input, while on the second tape L simulates N by computing the result of f
on the result of g. A bit more in detail, the machine L operates as follows
on a input x:
1. it first computes g(x) by simulating M on the first tape;
2. it then copies the content y of the first tape to the second tape;
3. it finally computes the function f(y) by simulating N , and obtaining z.
But is it that L correctly computes f • g? On the one hand, one can observe
that the computation tree CTL(x) has a structure like the one in Figure 2,
where T x

M has the same structure as CTM (x), C corresponds to a final
configuration for M and y, and T y

N has the same structure as CTN (y). Now,
for every D which is final for N and z, the probability of reaching the
corresponding configuration in CTL(x) is clearly∑

y

g(x)(y) · f(y)(z) = ((f • g)(x))(z),

which is the thesis. 2

Lemma 5 (Primitive Recursion and Computability) Given computable
functions g : Nk+2 → PN and f : Nk → PN, the function rec(f, g) : Nk+1 →
PN is itself computable.

Proof. By hypothesis, f and g are both computable, and thus there are
PTMs which compute them, say M and N respectively. We define a PTM L
computing rec(f, g) and working on 5 tapes. The first tape is the input tape,
on the next tape L keeps track of a counter, on the third tape L computes
g, on the fourth tape L computes f , and in the last tape it saves the result.
The machine L operates as follows:
1. it copies to the second tape the value 0 and then it copies to the fourth

tape (an encoding of) the first k elements of the input;
2. it computes f by simulating M on the fourth tape and saves the result

on the last tape;
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Figure 3: Computation Tree for Primitive Recursion

3. it verifies if the second tape contains the k + 1th element of the input
(which is on the first tape). In this case L stops and the last tape contains
the result, otherwise it copies the first k elements of the input from the
first tape to the third tape, then it copies the value on the second tape
to the third tape and then it copies the result present on the last tape to
the third tape;

4. L increments the value on the second tape;
5. it computes g on the third tape and saves the result on the last tape;
6. it goes back to Step 3. above.
One can observe that the computation tree CTL(x, n) has a structure like
the one in Figure 3, where:

• T (x)
M has the same structure as CTM (x);

• C0 corresponds to a final configuration for M and x;

• for every 0 ≤ i ≤ n, T
(i,x,yi)
N has the same structure as CTN (i,x, yi).

• for every 0 ≤ i < n, Ci+1 corresponds to a final configuration for N and
yi.

Now, for every D which is final for N and z, the probability of reaching such
a configuration in CTL(x, n) can be proved to be equal to (rec(f, g))(x, n)(z),
by induction on n. 2

Lemma 6 (Minimization and Computability) Given a computable func-
tion f : Nk+1 → PN, the function (µf) : Nk → PN is itself computable.

Proof. We proceed as in Lemma 4 and Lemma 5. Since f is computable,
there is a PTM M which computes it. We define a PTM N which works
with 4 tapes, and which computes µf . The first tape is the input tape, in the
second tape N saves a counter that corresponds to the y (in the definition
of minimization) and which is incremented iteratively, on the third tape
it computes the function f and in the last tape it saves the result. The
machine M operates as follows:
1. it writes 0 to the second tape;
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Figure 4: Computation Tree for Minimization

2. it copies to the third tape the input and the value of the second tape as
a tuple;

3. it computes on the third tape the function f and saves the result on the
last tape;

4. it checks whether the last tape contains the value 0; in this case it saves
on the last tape the element in the second tape and it stops, otherwise it
increases the value of the second tape by 1;

5. it returns to the step 2. above.

One can observe that the computation tree CTL(x) has a structure like the
one in Figure 4, where for every y ≥ 0:

• T (x,y)
M has the same structure as CTM (x, y);

• Cy corresponds to a final configuration for M and k, and is actually

linked to the initial configuration of T
(x,y+1)
M only if k is different than 0.

By the usual kind of reasoning, we can prove that the probability of reaching
a given final configuration of C in L is precisely the one given from the
definition of µf . 2

We can finally prove the following theorem, showing that all probabilistic
recursive functions are computable:

Theorem 2 PR ⊆PC

Proof. The fact that f ∈PR implies f ∈PC can be proved by induction
on the structure of the proof that f ∈ PR, where lemmas 3, 4, 5 and 6
each handle an inductive case. 2

2.2.2 Completeness

The most difficult part of the equivalence proof consists in proving that
each probabilistic computable function is actually recursive. Analogously to
the classic case, a good strategy consists in representing configurations as
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natural numbers, then encoding the transition function of the machine at
hand, call it M , as a (recursive) function on N. In the classic case the proof
proceeds by making essential use of the minimization operator to determine
the number of transition steps of M necessary to reach a final configuration
(if such a number exists). This number can then be fed to another function
which simulates M (on an input) a given number of steps, and which is
primitive recursive. In our case, this strategy does not work: the number of
computation steps can be infinite, even when the convergence probability is
1.

Before entering into the technicalities, we need some preliminary def-
initions. First we need to encode the rational numbers Q into N. Let
pair : N× N→ N be any recursive bijection between pairs of natural num-
bers and natural numbers such that pair and its inverse are both computable.
Let then enc be just ppair , i.e. the function enc : N× N→ PN is defined as
follows:

enc(a, b)(q) =

{
1 if q = pair(a, b);
0 otherwise.

The function enc allows us to represent positive rational numbers as pairs
of natural numbers in the obvious way and is probabilistic recursive. It is
now time to define a few notions on computation trees

Definition 17 (Computation Tree and String Probability) The func-
tion PTM : N× N → Q is defined by stipulating that PTM (x, y) is the
probability of observing the string y in the tree CTM (x), namely 1

2|y|
.

Of course, PTM is partial recursive, thus pPTM
is probabilistic recursive.

Since the same configuration C can label more than one node in a compu-
tation tree CTM (x), PTM does not indicate the probability of reaching C,
even when C is the label of the node corresponding to the second argument.
Such a probability can be obtained by summing the probability of all nodes
labelled with the configuration at hand:

Definition 18 (Configuration Probability) Suppose given a PTM M .
If x ∈ N and z ∈ CM , the subset CCM (x, z) of N contains precisely the indices
of nodes of CTM (x) which are labelled by z. The function PCM : N× N→ Q
is defined as follows: PCM (x, z) = Σy∈CCM (x,z)PTM (x, y).

Contrary to PTM , there is nothing guaranteeing that PCM is indeed com-
putable. In the following, indeed, we will not prove completeness through a
proof of computability for PCM , but rather through a long detour.
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Please recall the example computation tree CTM (x) for an hypothetical
PTM M and an input x as in Figure 1(a). As can be easily checked,
PCM (x,C) = 1, while PCM (x,E) = 3

4 . Indeed, notice that there are three
nodes in the tree which are labelled with E, namely those corresponding to
the binary strings 00, 01, and 10.

As we already mentioned, our proof separates the classic part of the
computation performed by the underlying PTM, which essentially computes
the configurations reached by the machine in different paths, from the
probabilistic part, which instead computes the probability values associated
to each computation by using minimization. These two tasks are realized by
two suitable probabilistic recursive functions, which are then composed to
obtain the function computed by the underlying PTM. We start with the
probabilistic part, which is more complicated.

We need to define a function which returns the conditional probabil-
ity of terminating at the node corresponding to the string y in the tree
CTM (x), given that all the nodes z where z < y are labelled with non-final
configurations. This is captured by the following definition:

Definition 19 Given a PTM M , we define PT 0
M : N× N→ Q and PT 1

M :
N× N→ Q as follows:

PT 1
M (x, y) =

{
1 if y is not a leaf of CTM (x);
1− PT 0

M (x, y) otherwise;

PT 0
M (x, y) =

{
0 if y is not a leaf of CTM (x);

PTM (x,y)∏
k<y PT1

M (x,k)
otherwise;

Note that, according to the previous definition, PT 1
M (x, y) is the probability

of not terminating the computation in the node y, while PT 0
M (x, y) represents

the probability of terminating the computation in the node y, both knowing
that the computation has not terminated in any node k preceding y.

Proposition 7 The functions PT 0
M : N× N→ Q and PT 1

M : N× N→ Q
are partial recursive.

Proof. Please observe that PTM is partial recursive and that the definitions
above are mutually recursive, but the underlying order is well-founded. Both
functions are thus intuitively computable, thus partial recursive by the
Church-Turing thesis. 2



Probabilistic Recursion Theory
and Implicit Computational Complexity 199

The reason why the two functions above are useful is because they associate
the distribution {0PT0

M (x,y), 1PT
1
M (x,y)} to each pair of natural numbers (x, y).

In Figure 5, we give the quantities we have just defined for the tree from
Figure 1(a). Each internal node is associated with the same distribution
{00, 11}. Only the leaves are associated with nontrivial distributions. As an

example, the distribution associated to the node 01 is {0 1
3 , 1

2
3 }, because we

have that

PT 0
M (x, 01) =

PTM (x, 01)∏
k<01 PT 1

M (x, k)

=
1

4 · PT 1
M (x, 00) · PT 1

M (x, 1) · PT 1
M (x, 0) · PT 1

M (x, ε)

=
1

4 · PT 1
M (x, 00)

.

As it can be easily verified, PT 1
M (x, 00) = 3

4 . Thus, PT 0
M (x, 01) = 1

3 .

{00, 11}
C
ε

{00, 11}
D
0

{0 1
4 , 1

3
4 }

E
00

{0 1
3 , 1

2
3 }

E
01

{00, 11}
F
1

{0 1
2 , 1

1
2 }

E
10

{01, 10}
G
11

Figure 5: The Conditional Probabilities for the Computation Tree from
Figure 1(a)

We now need to go further, and prove that the probabilistic function
returning, on input (x, y), the distribution {0PT0

M (x,y), 1PT
1
M (x,y)} is recursive.

This is captured by the following definition:
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Definition 20 Given a PTM M , the function PTCM : N× N → PN is
defined as follows

PTCM (x, y)(z) =


PT 0

M (x, y) if z = 0;
PT 1

M (x, y) if z = 1;
0 otherwise.

The function PTCM is really the core of our encoding. On the one hand, we
will show that it is indeed recursive. On the other, minimizing it is going to
provide us exactly with the function we need to reach our final goal, namely
proving that the probabilistic function computed by M is itself recursive.
But how should we proceed if we want to prove PTCM to be recursive?
The idea is to compose pPT1

M
with a function that turns its input into the

probability of returning 1. This is precisely what the following function does:

Definition 21 The function I2P : Q→ PN is defined as follows

I2P(x)(y) =


x if (0 ≤ x ≤ 1) ∧ (y = 1);
1− x if (0 ≤ x ≤ 1) ∧ (y = 0);
0 otherwise.

Please observe how the input to I2P is the set of rational numbers, as usual
encoded by pairs of natural numbers. Previous definitions allow us to treat
(rational numbers representing) probabilities in our algebra of functions.
Indeed:

Proposition 8 The probabilistic function I2P is recursive.

Proof. We first observe that h : N → PN defined as h(x)(y) = 1
2y+1 is

a probabilistic recursive function, because h = µ (rand � Π2
1). Next we

observe that every q ∈ Q ∩ [0, 1] can be represented in binary notation as:

q =
∑

i∈N
cqi

2i+1 where cqi ∈ {0, 1} (i.e., cqi is the i-th element of the binary
representation of q). Moreover, a function computing such a cqi from q and i
is partial recursive. Hence we can define b : N× N→ PN as follows

b(q, i)(y) =

{
1 if y = cqi ;
0 otherwise;

and conclude that b is indeed a probabilistic recursive function (because PR
includes all the partial recursive functions, seen as probabilistic functions).
Observe that:

b(q, i)(y) =

{
cqi if y = 1;
1− cqi if y = 0.
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From the definition of composition, it follows that

(b� (id, h))(q)(y) =
∑
x1,x2

b(x1, x2)(y) · id(q)(x1) · h(q)(x2)

=
∑
x2

b(q, x2)(y) · h(q)(x2)

=
∑
x2

b(q, x2)(y) · 1

2x2+1

=


∑

x2

cqx2

2x2+1 if y = 1∑
x2

1−cqx2

2x2+1 if y = 0

0 otherwise

=


q if y = 1
1− q if y = 0
0 otherwise

This shows that I2P = b � (id, h), and hence that I2P is probabilistic
recursive. 2

The following is an easy corollary of what we have obtained so far:

Proposition 9 The probabilistic function PTCM is recursive.

Proof. Just observe that PTCM = I2P � pPT1
M

. 2

The probabilistic recursive function obtained as the minimization of PTCM

allows to compute a probabilistic function that, given x, returns y with
probability PTM (x, y) if y is a leaf (and otherwise the probability is just 0).

Definition 22 The function CFM : N→ PN is defined as follows

CFM (x)(y) =

{
PTM (x, y) if y corresponds to a leaf;
0 otherwise.

Proposition 10 The probabilistic function CFM is recursive.

Proof. The probabilistic function CFM is just the function obtained by
minimizing PTCM , which we already know to be recursive. Indeed, if y
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corresponds to a leaf, then:

(µPTCM )(x)(y) = PTCM (x, y)(0) ·
∏
z<y

∑
k>0

PTCM (x, z)(k)

= PTCM (x, y)(0) ·
∏
z<y

PTCM (x, z)(1)

= PT 0
M (x, y) ·

∏
z<y

PT 1
M (x, z)

=
PTM (x, y)∏
z<y PT 1

M (x, z)
·
∏
z<y

PT 1
M (x, z) = PTM (x, y).

If, however, y does not correspond to a leaf, then:

(µPTCM )(x)(y) = PTCM (x, y)(0) ·
∏
z<y

∑
k>0

PTCM (x, z)(k)

= PT 0
M (x, y)(0) ·

∏
z<y

∑
k>0

PTCM (x, z)(k) = 0.

This concludes the proof. 2

We are almost ready to wrap up our result, but before proceeding further,
we need to define the function SPM : N× N→ N that, given in input a pair
(x, y) returns the (encoding) of the string found in the configuration labeling
the node y in CTM (x). SPM is of course recursive. We can now prove the
desired result:

Theorem 3 PC ⊆PR.

Proof. It suffices to note that, given any PTM M , the function computed by
M is nothing more than pSPM

�(id , CFM ). Indeed, one can easily realize that
a way to simulate M consists in generating, from x, all strings corresponding
to the leaves of CTM (x), each with an appropriate probability. This is
indeed what CFM does. What remains to be done is simulating pSPM

along
paths leading to final configurations. 2

We are finally ready to prove the main result of this Section:

Corollary 1 PR = PC

Proof. Immediate from Theorem 2 and Theorem 3. 2
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The way we prove Corollary 1 implies that we cannot deduce Kleene’s Normal
Form Theorem from it: minimization has been used many times, some of
them “deep inside” the construction. A way to recover Kleene’s Theorem
consists in replacing minimization with a more powerful operator, essentially
corresponding to computing the fixpoint of a given probabilistic function.

3 Characterizing Probabilistic Complexity by Tier-
ing

In this section we provide a characterization of the probabilistic functions
which can be computed in polynomial time by an algebra of functions acting
on word algebras. More precisely, we define a type system inspired by
Leivant’s notion of tiering [13], which permits to rule out functions having
a too-high complexity, thus allowing to isolate the class of predicatively
recursive probabilistic functions. Our main result in this section is that the
class PPC of probabilistic functions which can be computed by a PTM
in polynomial time equals the class of predicatively recursive probabilistic
functions.

The constructions from Section 2 can be easily generalized to a function
algebra on strings in a given alphabet Σ, which themselves can be seen a
word algebra W. Base functions include a function computing the empty
string, called e, and concatenation with any character a ∈ Σ, called ca.
Projections remain of course available, while the only truly random function
is one that concatenate a random symbol from Σ to a given string, called
again ra. Composition and primitive recursion are available, although the
latter takes the form of recursion on notation. We do not need minimization:
the distribution a polytime computable probabilistic function returns (on
any input) is always finite, and primitive recursion is powerful enough for
our purposes.

Now we give a formal definition of our functions starting from the sets
of domain and codomain of our functions.

Definition 23 (String Distribution) A (pseudo)distribution on W is a
function D : W→ R[0,1] such that

∑
w∈WD(w) = 1. The set PW is defined

as the set of all (pseudo)distributions on W.

The functions in our algebra have domain Wk and codomain PW. The
idea, as usual, is that f(v)(w) = p means that w is the output obtained
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from the input v with probability p. Base functions are defined as follows:

e(v)(w) =

{
1 if w = ε;
0 otherwise;

ca(v)(w) =

{
1 if w = a · v;
0 otherwise.

Note that, for every v ∈W, the length of the word obtained after the appli-
cation of one of the constructors ca is |v|+ 1 with probability 1. Projections
Πn

m : Wn → PW are defined as follows:

Πn
m(v)(w) =

{
1 if w = vm;
0 otherwise.

As previously mentioned, the only truly random functions in our algebra are
probabilistic functions in the form ra : W→ PW, which concatenate a to the
input string (with probability 1

2), or leave it unchanged (with probability 1
2).

Formally,

ra(v)(w) =


1/2 if w = a · v;
1/2 if w = v;
0 otherwise.

Next we recall the concept of composition and recurrence introduced in
Definition 4 and Definition 5 and we instantiate them to the case of our
algebra. We first introduce the generalized composition of functions f : Wn →
PW, g1, . . . , gn : Wk → PW as the function f � (g1, . . . , gn) : Wk → PW
defined as follows:

((f � (g1, . . . , gn))(v))(w) =
∑

z1,...,zn∈W

f(z1, . . . , zn)(w) ·
∏

1≤i≤n
gi(x)(zi)

 .

Recurrence over W takes the following form:

f(ε,v) = gε(v);

f(a · w,v) = ga(w,v, f(w,v));

where f : Wm+1 → PW, ga : Wm+2 → PW, for all a ∈ Σ and gε : Wk → PW.
Analogously to what we have done in Section 2 we write f = rec(gε, {ga}a∈Σ)
in this case. The following construction is redundant in presence of primitive
recursion, but becomes essential when predicatively restricting it.
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Definition 24 (Case Distinction) If gε : Wk → PW and for every a ∈ Σ,
ga : Wk+1 → PW, the function h : Wk+1 → PW such that h(ε,v) = gε(v)
and h(a · w,v) = ga(w,v) is said to be defined by case distinction from gε
and {ga}a∈Σ and is denoted as case(gε, {ga}a∈Σ).

In the following we will need also the following definition of simultaneous
recursion:

Definition 25 (Simultaneous Recursion) We say that the functions f =
(f1, . . . , fn) are defined by simultaneous primitive recursion over a word
algebra W from the functions gjε : Wm →W and gja : Wn+m+1 →W (where
j ∈ {1, . . . , n} and a ∈ Σ) if the following holds for every j and for every a:

f j(ε,w) = gjε(w);

f j(a · v,w) = gja(v,w, f1(v,w), . . . , fn(v,w)).

A function f j as defined above will be indicated with simrecj({gjε}j , {gja}j,a).

Example 2 The previous definition allows us to define, for instance, two
functions f1 and f2 over a word algebra with Σ = {a, b}, as follows:

f j(ε,v) = gjε(v) ∀j ∈ {1, 2};
f j(a · w,v) = gja(w,v, f1(w,v), f2(w,v)) ∀j ∈ {1, 2};
f j(b · w,v) = gjb(w,v, f

1(w,v), f2(w,v)) ∀j ∈ {1, 2}.

3.1 Tiering as a Typing System

Now we define our type system which will then be used to introduce the
definition of the class of predicatively probabilistic functions and therefore
to obtain our complexity result. The type system is inspired by the tiering
approach due to Leivant [13]. The idea behind tiering consists in working
with denumerably many copies of the underlying algebra W, each indexed
by a natural number n ∈ N and denoted by Wn. Type judgments take the
form f .Wn1 × . . . ×Wnk

→ Wm, where f : Wk → W. In the following,
with slight abuse of notation, W stands for any expression in the form
Wi1 × · · · ×Wij . Typing rules are given in Figure 6. The idea here is that,
when generating functions by primitive recursion, one goes from a level (tier)
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e .Wk →Wk ca .Wk →Wk ra .Wk →Wk Πn
m .Ws1 × · · · ×Wsn →Wsm

{gi .Ws1 × · · · ×Wsr →Wmi}1≤i≤l f .Wm1 × · · · ×Wml →Wk

f � (g1, . . . , gl) .Ws1 × · · · ×Wsr →Wk

gε .W→Wl

{ga .Wk ×W→Wl}a∈Σ

case(gε, {ga}a∈Σ) .Wk ×W→Wl

gε .W→Wk m > k
{ga .Wm ×W ×Wk →Wk}a∈Σ

rec(gε, {ga}a∈Σ) .Wm ×W→Wk

Figure 6: Tiering as a Typing System

m for the domain to a strictly lower level k for the result. This predicative
constraint ensures that recursion does not cause any complexity explosion.

Those probabilistic functions f : Wk → PW such that f can be given a
type through the rules in Figure 6 are said to be predicatively recursive. More
precisely, the class PT of all predicatively recursive functions is defined as
follows.

Definition 26 The class PT of predicatively recursive (probabilistic)
functions is the smallest class of functions that contains the basic functions
and is closed under the operations of general composition, primitive recursion,
case distinction (Definition 24) and such that each function can be given a
type through the rules in Figure 6.

Next we give the definition of the class of simultaneously predicative recursive
functions S T .

Definition 27 The class S T of simultaneously predicative recursive (prob-
abilistic) functions is the smallest class of probabilistic functions that contains
the basic functions and is closed under the operations of general composition,
simultaneous recursion (Definition 25), case distinction (Definition 24) and
such that each function can be given a type through the rules in Figure 6,
plus the rule below:

{gjε .W→Wk}j m > k

{gja .Wn
k ×Wm ×W→Wk}j,a

simrecj({gjε}j , {gja}j,a) .Wm ×W→Wk
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3.2 Simultaneous Primitive Recursion and Predicative Re-
cursion

By closely following Leivant [13], we can show that simultaneous primitive
recursion can be encoded into predicative recursion. Since the proof of this
result is precisely the one given by Leivant ([13] Section 4.2), we only sketch
the main ingredients of it here.

According to Definition 25, if, e.g., two functions f0, f1 over a word
algebra with Σ = {a, b}, are defined by simultaneous recursion, then we have
that

f0(ε,x) = g0
ε(x);

f0(a · w,x) = g0
a(w,x, f0(w,x), f1(w,x));

f0(b · w,x) = g0
b (w,x, f0(w,x), f1(w,x));

f1(ε,x) = g1
ε(x);

f1(a · w,x) = g1
a(w,x, f0(w,x), f1(w,x));

f1(b · w,x) = g1
b (w,x, f0(w,x), f1(w,x)).

The two functions f0 and f1 can indeed be computed by one function f̃
once a pairing operator 〈·, ·〉 is available:

f̃(ε,x) = 〈g0
ε(x), g1

ε(x)〉;
f̃(a · w,x) = 〈g0

a(w,x, f̃(w,x)), g1
a(w,x, f̃(w,x))〉;

f̃(b · w,x) = 〈g0
b (w,x, f̃(w,x)), g1

b (w,x, f̃(w,x))〉.
The pairing function 〈·, ·〉 is of course primitive recursive, and the same
holds for the corresponding projection function. But can we give all these
functions a “balanced” type, a type in which the tier of the argument(s)
is the same as the tier of the output? (This is of course necessary if one
wants to encode simultaneous primitive recursion the way suggested by the
equations above.) A positive answer can indeed be given provided pairing
and projections take an additional parameter (of an higher tier) big enough
to “drive” the recursion necessary for computing pairing and projections.
More details can be found in [13].

3.3 Register Machines vs. Turing Machines

Register machines are abstract computational models which, when properly
defined, are Turing powerful. Here we extend the classical definition of a
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register machine to the probabilistic case. Again, the way register machines
are defined closely follows Leivant’s proof [13].

Definition 28 (Probabilistic Register Machine) A probabilistic regis-
ter machine (PRM) consists of a finite set of registers Π = {π1, . . . , πr} and
a sequence of instructions, called a program. Each register πi can store a
string in W, and each instruction in the program is indexed by a natural
number and takes one of the following six forms

ε(πd); ca(πs)(πd); ra(πs)(πd); p(πs)(πd); jε(πs)(m); ja(πs)(m);

where πs, πd are registers and m is an instruction index.

The semantic of previous instructions can be described as follows. We assume
that the index of the current instruction is n.

• The instruction e(πd) stores in the register πd the empty string and then
transfers the control to the next instruction.
• The instruction ca(πs)(πd) stores in the register πd the term a · w, where
w is the string contained in the register πs. It then transfers the control
to the next instruction.
• The instruction p(πs)(πd) is the predecessor instruction, which stores in

the register πd the string resulting from erasing the leftmost character
from the string contained in πs, if any. The control is then transferred to
the next instruction.
• If w is the string contained in πs, the instruction ra(πs)(πd) stores in the

register πd either the string w (with probability 1
2) or the string a · w

(with probability 1
2).

• The instruction jε(πs)(m) transfers the control to the m-th instruction if
πs contains the empty string, and goes to the next instruction otherwise.
• The instruction ja(πs)(m) transfers the control to the m-th instruction if
πs contains a string whose leftmost character is a, and goes to the next
instruction otherwise.

We can now describe more precisely the semantics of a PRM in terms of
configurations.

Definition 29 (Configuration of a PRM) Let R be a PRM as in Defini-
tion 28, and let Σ be the underlying alphabet. We define a PRM configuration
as a tuple 〈v1, . . . , vr, n〉 where:

• each vi ∈ Σ∗ is the value of the register πi;
• n ∈ N is the index of the next instruction to be executed.
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We denote the set of all configurations as CRR. If n = 1 we have an initial
configuration for a k-tuple of strings s, which is indicated with INRs

R. If
n = m+ 1 (where m is the largest index of an instruction in the program),
we have a final configuration, called FCRs

R, where s is the string stored in
π1.

First we observe that the meaning of a PRM program R can be defined
by way of two functions δ0 and δ1: if the next instruction to be executed
is ra, then δ0(C) is potentially different than δ1(C), otherwise the two are
equal. In other words, we can consider two functions δ0 : CRR → CRR and
δ1 : CRR → CRR which, given a configuration in input:
• both produce in output the (unique) configuration resulting from the

application of the next instruction, if different than ra;
• produce the two configurations resulting from the two branches of the

next instruction, if it is ra.
Similarly to what we have done for PTMs (see Section 2), we can define a
(complete) partial order with carrier CEVR (which is the set of all functions
from CRR to PΣ∗). And hence, we can define a functional FRR on CEVR
which will be used to define the function computed by R via a fixpoint
construction. Intuitively, the application of the functional FRR describes
one computation step. More formally:

Definition 30 Given a PRM R, we define a functional FRR : CEVR →
CEVR as:

FRR(f)(C) =

{
{s1} if C ∈ FCRs

M ;
1
2f(δ0(C)) + 1

2f(δ1(C)) otherwise.

Using similar arguments to those in the proofs of Proposition 6 and Theorem
1, we can show that the least fixpoint of FRR actually exists. Such a
least fixpoint, once composed with a function returning INRs

R from s,
is the function computed by the register machine R and is denoted by
IOR : Σ∗ → PΣ∗ . The next Lemma shows the relations between PTMs and
PRMs.

Lemma 7 PTMs are linear time reducible to PRMs, and PRMs over W
are polytime reducible to PTMs.

Proof. A single tape PTM M can be simulated by a PRM RM that has tree
registers. A configuration 〈w, a, v, s〉 of M can be coded by the configuration
〈wr, a, v, s〉 where wr denotes the reverse of the string w. Each move of M is
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simulated by at most 2 moves of RM . In order to simulate the probabilistic
part given by the functions δ0 and δ1 we use the instructions e, ra and j, plus
a dedicated register πcoin , in the natural way. Conversely, a PRM R over W
with m registers is simulated by a PTM MR with m tapes. Some moves of
R may require copying the contents of one register to another for which M
may need as many steps to complete as the maximum of the current lengths
of the corresponding tapes. Thus if R runs in time O(nk), then MR runs in
time O(n2k). We can then conclude by remembering that Turing machines
with multiple tapes can be simulated by single-tape Turing machine with a
polynomial slowdown. 2

3.4 Polytime Soundness

In this section we prove that any function definable by predicative recurrence
can be computed in polynomial time by a PTM. In view of Lemma 7, in
order to obtain this result it suffices to show that predicative recurrence can
be simulated by a probabilistic register machines working in polynomial time
(dubbed PPRM in the following). This result is not difficult and is proved
below by exhibiting a PPRM which computes any function f such that
f .W→Wm. In the following we denote by PPR the class of functions
computed by PPRMs.

The length |v| of a string is simply the number of characters in it. Given
a string distribution D ∈ PΣ, its length |D| is simply the maximal length
of strings in the support of D. Moreover, if v = (v1, . . . , vn) ∈ Wn and
W = Wm1 × . . . ×Wmn , then |v|k = maxmi=k |vi|. Analogously for |v|<k

and |v|>k. The following is again from [13]:

Lemma 8 (Max-Plus) If h . W → Wm, then there is a polynomial qh :
N→ N such that for every v, it holds that |h(v)| ≤ |v|m + qh(|v|>m)

Proof. This is an induction on the structure of a derivation for h.W→Wm.
2

Proposition 11 If h .W→Wm, then there is a PPRM Rh that computes
h.

Proof. The proof is by induction on the structure of a derivation for h.W→
Wm:
• We first of all need to show that for every basic function, we can construct

a PPRM that computes such a function. The proof is immediate for the
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functions e, ca, and ra, all of which can be easily computed by eponymous
register machine instructions. The projections Πn

m(v)(w) can be simulated
by the instruction ca, followed by p.
• Assume that h is defined by composition, namely that h = f � (g1, . . . , gn) :
Wk → PW. We give an intuitive proof by exhibiting a PPRM, called Rh,
which computes h in polynomial time. Rh operates by usingRf , Rg1 , . . . , Rgn

(all of which exist by induction hypothesis), as subroutines in the natural
way. The fact that this process takes polynomial time is a consequence of
the fact that the machines Rf , Rg1 , . . . , Rgn are themselves polytime, and
that the Rf is called on inputs of polynomial length, itself a consequence
of Lemma 8 above.
• Assume now that h is defined by case distinction, namely that h =

case(gε, {ga}a∈Σ). In this case the PPRM Rh which computes h can be
defined as a machine which analyze one of its inputs, deciding based on
its value (by way of instructions jε and ja) which ones among Rgε , Rga

(where a ∈ Σ) to call to analyze the rest of the input. Please notice that
the machines above exist and work in polynomial time by the induction
hypothesis.
• Finally, assume that h is defined by primitive recursion, namely that
h = rec(gε, {ga}a∈Σ,). In this case the PPRM Rh which computes h
can be defined as a machine which iteratively calls as subroutines the
machines Rgε , Rga (where a ∈ Σ), which exist and work in polynomial
time, based on the value of one its inputs. The machines above are clearly
called a number of times linear in the size of one of the inputs, while
the fact that each calls takes itself polynomial time is a consequence of
Lemma 8.

This concludes the proof. 2

3.5 Polytime Completeness

There is a relatively easy (although not elegant) way to prove polytime
completeness of probabilistic ramified recurrence, namely going through the
same result for deterministic ramified recurrence [13]. The argument goes as
follows:

• First of all, it is easy to prove that for every k and for every n the function
fk,n outputting a sequence of random bits of length |s|k + n (where s is
the input) is a ramified probabilistic function.
• Then, one can observe that for every polynomial time computable function
g : Σ∗ → Σ∗, it holds that pg .Wn → Wm for some n and m, this as a
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consequence of Leivant’s result [13].
• Finally, one can observe that any polytime probabilistic function can

be seen as a deterministic polytime function taking an additional input
consisting of a “long enough” sequence of random bits.

Polytime completeness is an easy corollary of the three observations above.
More precisely, we now present some lemmas that allow us to prove com-
pleteness.

Lemma 9 (Polytime Random Sequences) For every k and for every
n, let fk,n be the probabilistic function outputting a sequence of random bits
of length |s|k + n (where s is the input). Then fk,n .Wm → Wl holds for
some natural numbers m and l.

Proof. Let q be the deterministic function on W which outputs 0|s|
k+n,

where s is the input. Clearly, q is computable in polynomial time. As
a consequence, pq can be typed in Leivant’s system. Let randext be the
probabilistic function which, on input s, outputs either 0 · s or 1 · s, each
with probability 1

2 . randext can be typed with Wm →Wm for every m (it
can be defined from r0 and r1 and other base functions by case distinction).
What we need to obtain fk,n, then, is just to compose a function obtained
by primitive recursion from randext , and pq. 2

The next Lemma is again due to Leivant [13].

Lemma 10 (Polytime Functions and Predicative Functions) For ev-
ery deterministic polynomial time computable function g : Σ∗ → Σ∗ it holds
that pg .Wn →Wm for some n and m.

Then we have the following.

Theorem 4 PPR ⊆PT .

Proof. Consider any probabilistic polytime Turing machine M . From the
discussion at the beginning of this section, it is clear that the probabilistic
function computed by M is pf � ppair � (id , fk,n). where f is a polytime
computable deterministic function, pair is a deterministic function encoding
two strings into one, and fk,n is the function from Lemma 9. Since the three
functions can be given a type, their composition itself can. 2

We are finally ready to prove the main result of this section:
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Corollary 2 PPR = PT .

Proof. Immediate from Theorem 4 and Proposition 11. 2

A more direct way to prove polytime completeness consists in showing how
single-tape PTMs can be encoded into predicative recurrence. This can be
done relatively easily by exploiting simultaneous recursion, but we leave this
for future work.

4 Conclusions

In this paper, we make a first step in the direction of characterizing probabilis-
tic computation in itself, from a recursion-theoretical perspective, without
reducing it to deterministic computation. The significance of this study
is genuinely foundational: working with probabilistic functions allows us
to better understand the nature of probabilistic computation, but also to
study the implicit complexity of a generalization of Leivant’s predicative
recurrence, all in a unified framework.

More specifically, we give a characterization of computable probabilistic
functions by a natural generalization of Kleene’s partial recursive functions.
We then prove the equi-expressivity of the obtained algebra and the class of
functions computed by PTMs. In the second part of the paper, we investigate
the relations existing between our recursion-theoretical framework and sub-
recursive classes, in the spirit of ICC. More precisely, endowing predicative
recurrence with a random base function is proved to lead to a characterization
of polynomial-time computable probabilistic functions.

An interesting direction for future work could be the extension of our
recursion-theoretic framework to quantum computation. In this case one
should consider transformations on Hilbert spaces as the basic elements
of the computation domain. The main difficulty towards obtaining a com-
pleteness result for the resulting algebra and proving the equivalence with
quantum Turing machines seems to be the definition of suitable recursion
and minimization operators, given that qubits (the quantum analogues of
classical bits) cannot be copied nor erased.
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