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Myocardial infarction (MI) is a common condition responsible for mortality and morbidity

related to ischemic heart failure. Accumulating experimental and translational evidence

support a crucial role for innate immunity in heart failure and adverse heart remodeling

following MI. More recently, the role of adaptive immunity in myocardial ischemia

has been identified, mainly in rodents models of both transient and permanent heart

ischemia. The present review summarizes the experimental evidence regarding the role

of lymphocytes and dendritic cells in myocardial remodeling following coronary artery

occlusion. Th1 and potentially Th17 CD4+ T cell responses promote adverse heart

remodeling, whereas regulatory T cells appear to be protective, modulating macrophage

activity, cardiomyocyte survival, and fibroblast phenotype. The role of CD8+ T cells in

this setting remains unknown. B cells contribute to adverse cardiac remodeling through

the modulation of monocyte trafficking, and potentially the production of tissue-specific

antibodies. Yet, further substantial efforts are still required to confirm experimental data in

human MI before developing new therapeutic strategies targeting the adaptive immune

system in ischemic cardiac diseases.

Keywords: T lymphocytes, B lymphocytes, dendritic cells, antibodies, cardiovascular disease, myocardial

infarction

EPIDEMIOLOGY

Chronic diseases have emerged asmain contributors to global mortality andmorbidity (1). By 2015,
the number of deaths related to cardiovascular disease (CVD) (ischemic heart disease, stroke, and
valvular heart disease) has reached 17.5 million, more than 7 million being attributed to coronary
artery disease and 6 million to stroke. In the future, CVD will be the largest contributor to global
mortality, ahead of infectious diseases and maternal and perinatal conditions (2, 3).

In the context of myocardial infarction (MI), a progressive decrease in early mortality over
time has been described in the United States (4) and Europe (5). This change is explained by
improvements in the management of acute MI patients, including the more frequent coronary
reperfusion using fibrinolysis or primary percutaneous coronary intervention (PCI). As the
number of survivors following MI patients increases, the prevalence of CVD with its associated
complications is also raising (6). Acute myocardial ischemia and reperfusion following primary
PCI are responsible for cardiac tissue damages that lead to deleterious myocardial remodeling and
heart failure. Data from the Framingham Heart Study show that the incidence of heart failure at
Day 30 after MI rose by two-fold from 1970–1979 period to 1990–1999 period whereas mortality
at Day 30 after MI declined (7). Therefore, in association with anti-thrombotic medication
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FIGURE 1 | Role of adaptive immune cells in post-ischemic cardiac

remodeling.

and re-opening of the culprit coronary artery, there is urgent
need to improve our understanding of the pathophysiological
mechanisms that promote adverse ischemic cardiac remodeling
and heart failure. There is accumulating evidence in rodent
models that immune-inflammatory responses are involved in
deleterious cardiac post-ischemic remodeling. This review aims
to summarize clinical and experimental evidence regarding
the role of immune-inflammatory responses in myocardial
remodeling following MI (Figure 1).

INNATE IMMUNITY AND MYOCARDIAL
INFARCTION

MI injury due to atherosclerotic plaque disruption and
thrombosis is the first cause of heart failure (8). Innate immune
responses contribute to the complications of atherosclerosis and
consecutive acute MI. Monocytes/macrophages and neutrophils
are implicated in adverse myocardial remodeling following
MI and might promote heart failure. In human and rodents
models of MI, interruption of coronary blood flow leads to rapid
cardiomyocytes death in the ischemic myocardium. Thereafter,
inflammatory signals allow recruitment of inflammatory
cells, which profoundly alter left ventricle (LV) structure
and function through their impact on extracellular matrix
degradation/deposition, clearance of dead cardiomyocytes and
their debris, and the resolution of inflammation. In mice, large
amount of neutrophils infiltrate the heart tissue within the first
day, followed by a biphasic infiltration of monocyte subsets
Ly6-Chigh and Ly6Clow. Ly6-Chigh monocytes dominate the acute
phase of injury during the first 4 days and contribute to adverse
tissue remodeling, while Ly6Clow monocytes become prevalent
thereafter and, along with resident cardiac macrophages (9), play

a protective role in tissue healing and neovascularization (10).
Similar mechanisms may also operate in humans (11).

CD4+ T CELLS

Conversely to innate immune responses, the contribution of
lymphocytes to post-MI inflammatory response and repair has
been the subject of very few studies for the last 2 decades. Among
the adaptive immune actors, CD4+ helper T lymphocytes,
which interact with antigens presented on MHC-II molecules
(expressed on antigen-presenting cells) have been the most
regularly investigated (12). CD4+ T cells are usually allocated
into distinct subsets according to their phenotype polarization
and distinct cytokine repertoire. Th1 and Th2 populations were
first described and then, many additional Th subsets, named
according to their cytokine production (Th17 cells, Th9, and
Th22, respectively producing IL-17, IL-9, and Il-22) or function
(regulatory Tregs), were uncovered (13).

CD4+ T Cell Infiltration in Ischemic Heart
Tissue
In the steady state (no myocardial injury), in mouse, flow
cytometry-based absolute number of CD4+ T cells ranges
between 103 and 104 per heart, depending on the digestion and
leukocyte enrichment protocols used (14, 15). After permanent
coronary occlusion, mimicking MI, this level increases by 10-
fold, peaking at day 7 (15). In experimental models of myocardial
ischemia/reperfusion, CD4+ T cell infiltration is lower (two-fold
increase compared to sham operated animals) and peaks earlier at
day 3. Based on histological observations, some authors reported
CD4+ T cell recruitment in the heart even much earlier, during
the first minutes after reperfusion (16). In human autopsies,
infiltrating CD3+ T lymphocytes have been found in ischemic
heart (17). In MI patients during the reperfusion procedure,
a coronary artery gradient in CD4+ T cells count was found
between the arterial and the venous blood, suggesting emigration
of these cells from the arterial blood flow to the ischemic
myocardium (18). Lymphocyte count drop was mainly observed
among CCR7+ CD4+ T cells, suggesting that this chemokine
receptor and its ligands CCL19 and CCL21 (expressed by
endothelial cells) are involved in their recruitment within the
myocardial vasculature (19).

General Role of CD4+ T Cells in
Post-ischemic Cardiac Remodeling
Experimental murine models provide convincing evidence that
CD4+ T cell responses participate in post-MI heart remodeling,
but their roles differ depending on the injury model considered:
ischemia/reperfusion (IR) or permanent occlusion. In reperfused
models, CD4+ T cells have been shown to promote IR-related
cardiac damage. Using anti-CD4 depleting antibody in wild-
type (WT) mice, as well as lymphocyte-deficient Rag1−/− mice
reconstituted with purified CD4+ T cells, Yang et al. first
demonstrated the deleterious role of CD4+ T cells in modulating
infarct size (16). Their recruitment, mainly from the spleen
reservoir, can be prevented by blocking A2A or A2B adenosine
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receptors. Conversely, Hofmann et al. showed in a permanent
artery coronary ligation model in mice that CD4+ T cells
became activated in mediastinal lymph nodes within few days
after MI and were required for collagen deposition, a protective
mechanism against left cavity dilation and rupture (20, 21).

Role of Th1/Th2T Cells in Post-ischemic
Cardiac Remodeling
For a long time, several seminal studies suggested that CD4+
naïve T cells polarize toward either Th1 or Th2 populations
according to specific and mutually exclusive differentiation
programs. IFN-γ and IL-12p70 triggered Th1 commitment, fully
differentiated Th1T cells being characterized by T-bet expression
and IFN-γ production. IL-12p70 drives signal transducer and
activator of transcription (STAT-4) and T-bet. In turn, T-bet
promotes IFN-γ production and IL-12 receptor expression,
while down regulating both IL-4 and IL-5 expression. Th1
CD4+ T cells are involved in immunity against pathogens, but
have also been implicated in auto-immune and inflammatory
diseases such as atherosclerosis (22). Dendritic cells (DCs)
play a major role in Th2 differentiation through cytokine
secretion (IL-6 and IL-13) and membrane-bound costimulation
(OX40-OX40L) (23). Th2 cells regulate B cell-mediated humoral
responses, especially against extracellular pathogens and also
secrete several cytokines including IL-10, IL-4, IL-5, and IL-13.
IL-4 induces in a STAT-6-dependent mechanism the expression
of GATA-3, the Th2 differentiation transcription factor (24),
which upregulates IL-4 and IL-5, and inhibits the production of
IFN-γ. As a consequence, Th2 cells might counteract the Th1
responses.

After MI, the Th1/Th2 balance in the heart is skewed
toward a Th1 phenotype, as shown by a 2-fold increase
in IFN-γ producing CD4+ T cells, contrasting with an
almost complete lack of CD4+ T cells that produce IL-4
(15). The prevailing contribution of Th1 subset was also
established in resupplementation experiments. Reconstitution
of immunodeficient Rag1−/− mice with Ifn-γ−/− CD4+ T
cells did not recapitulate the detrimental effects of WT CD4+

T cells transfer in a transient myocardial ischemia model.
Recently, Dectin-2, a receptor expressed on myeloid cells, has
been shown to promote Th1 immune response through the
increase of IL-12p70 production within the infarcted heart.
Th1 polarization is associated with increased cardiomyocyte
apoptosis, imbalanced extracellular matrix turnover and
decreased myofibroblast differentiation leading to cardiac
rupture (25). However, the role of IFN-γ is more complex, as
it may also promote regulatory T cell activation and expansion
(26).

In human, T cell profiling in the context of MI has been
poorly investigated. Some studies have investigated a specific
Th1 subpopulation, called CD4+CD28null, in cardiovascular
diseases such as atherosclerosis and acute coronary syndromes.
CD4+CD28null T cells, which do not exist in mice, expand
in several chronic inflammation diseases, but are almost
undetectable in healthy individuals (27). CD4+CD28null T cells
secrete IFN-γ and TNF-α, as well as cytotoxic mediators

(perforin and granzyme B) and are present in the blood in
the context of acute coronary events during several months
(28).

Role of Th17T Cells in Post-ischemic
Cardiac Remodeling
IL-17A producing Th17 effector cells can be primed in heart-
draining lymph nodes after MI by conventional type 2 DCs
(29). However, their role in the context of MI has not
been fully addressed yet. IL-17A has been shown to increase
myocardial fibrosis in a rodent model of heart failure induced
by infusion of isoproterenol (30). It is also noteworthy that
more than 90% of IL-17A producing cells within the infarcted
myocardium are γδ CD4- T cells (31). IL-17A is involved in late-
stage ventricular remodeling after MI, by promoting sustained
infiltration of neutrophils and macrophages, pro-inflammatory
cytokine production, cardiomyocyte death, and fibrosis.

Regulatory T Cells
CD4+ T subsets with immunosuppressive functions have
also been described, the most important one named natural
regulatory T cells (Tregs). Treg cells are generated in the thymus
during fetal development and the first years of life, while induced
Treg (iTreg) cells can developed later in the periphery from
naïve CD4+ T cells. Treg cells express a specific transcription
factor called FoxP3, for the forkhead/winged helix transcription
factor, crucial for their development, and functions. Treg cells
limit autoimmunity and maintain self-tolerance through the
suppressing of activated effector T-cells, directly or through
inhibition of antigen-presenting cells (32). Few “resident” Treg
cells are present in the healthy myocardium, but they rapidly
infiltrate the myocardium in the context of acute ischemia
in a CCR5-dependent manner (33), peaking after 24 h in a
reperfused model of MI (34) or day 7 in a permanent artery
ligation model (35). Foxp3 mRNA local expression gradually
increases during the first two weeks after MI (15). Almost
all the studies have reported a beneficial role for Tregs in
experimental MI models. Treg depletion using anti-CD25
depleting antibody-mediated or diphteria toxin-induced model
worsens cardiac inflammation, infarct size and left ventricular
dysfunction following MI. By contrast, Treg expansion (using
anti-CD28 antibody administration) improves both survival
and myocardial wound healing. Tregs limit pathogenic CD8+

and CD4+ T cells recruitment in the heart and shape
the monocyte/macrophage polarization toward a pro-fibrotic
phenotype through upregulation of Osteopontin, Arginase-1 and
CD206. In addition, Treg expansion increased both procollagen
α-1 (I) and procollagen α-1 (III) mRNA expression, as well as
collagen I and collagen III protein levels in the heart tissue
(35). The protective effect of Treg cells was at least partially
related to membrane-bound ectonucleoidase (CD39) expression
(36). At later stages, Tregs also interact with fibroblasts and
promote a matrix-preserving cardiac fibroblast phenotype (34).
Recently, it has been reported that Tregs can limit cardiomyocyte
apoptosis, and can even induce their proliferation through the
release of several soluble factors including IL-10 and IL-33 (37,
38) (Figure 2). In MI patients, no direct evidence is available
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FIGURE 2 | Protective mechanisms of regulatory T cells in post-ischemic cardiac remodeling.

regarding the contribution of Treg cells to myocardial healing.
One study found a decrease in circulating Tregs after MI (39).

Several therapeutic strategies for Tregs expansion are
currently under development. Anti-CD28 superagonistic
antibodies that activate T-cells without TCR ligation (40),
induced polyclonal Treg expansion in vivo and IL-10
overproduction (41). However, despite promising experiments
results, the phase I trial of superagonistic anti-CD28 antibody
in humans was stopped due to unexpected toxicity (42). Other
strategies to promote Tregs, e.g., through anti-CD3 monoclonal
antibody injection (43) or supplementation with low-dose IL-2
(44), may still be of interest. Villalta et al. have reported that
administration of recombinant IL-2/anti-IL-2 mAb complex in
dystrophic mice induced expansion of Treg in vivo, increased
IL-10 tissue level and prevented muscle damage (45). Such
an IL-2-based strategy is currently under investigation in MI
patients (46).

Antigen-Specific CD4+ T Cell Responses
Mechanisms driving CD4+ T helper polarization are mostly
mediated by cytokines produced by antigen-presenting cells
and other surrounding inflammatory actors. However, in the
context of MI, whether lymphocytes are activated through TCR-
mediated antigen recognition or unspecific inflammatory signals,
including alarmin recognition by pattern recognition receptors
(PRRs), remains controversial. In 1998, Maisel et al. reported
that transferring splenocytes from MI rats in naïve healthy
rats induced an autoimmune myocarditis with no evidence
for immune cell infiltration in other organs, suggesting the
development of self-reactive T cell clones against myocardial

antigen afterMI (47). Involvement of TCR engagement for CD4+

T cell activation was further demonstrated by Hofmann et al.
using a model of permanent ligation in Cd4−/−, MhcII−/−, and
OT-II mice. These latter mice have CD4+ T cells bearing a
transgenic TCR for an irrelevant ovalbumin-derived peptide. The
authors found that the 3 genotypes shared the same detrimental
phenotype with impaired scar formation and decreased survival
(21). Using several elegant genetically-modified mouse models,
Van der Borght et al. reported an expansion of Tregs, Th1,
and Th17 CD4+ T subsets in mediastinal lymph nodes through
a TCR-mediated mechanism involving α-myosin heavy chain
presented by conventional type 2 DCs (29). This specific
self-antigen response has also been reported in models of
experimental auto-immune myocarditis (48) and in chronic
Chagas cardiomyopathy (49). Such autoreactive CD4+ T cell
responses against heart derived- self antigens, including α-
Myosin Heavy Chain (α-MyHC), could be explained by a
defective tolerance induction against these antigens during fetal
thymic selection. Lv et al. have reported that α-MyHC expression
was not detectable in human thymus, a critical step to induce
tolerance, and consequently α-MyHC–specific T-cells were found
in the blood from healthy subjects (48).

CD8+ T CELLS

CD8+ T cells play a major role in immunity, directly killing
virally infected or damaged cells. Activation of CD8+ T cells
requires interaction of the TCR receptor with peptide presented
by MHC class I molecules on antigen-presenting cells. CD8+ T
cells are able to lyse target cells through the secretion of perforin
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and granzymes, and to a less extend through the engagement of
membrane bound death-inducing ligands such as Fas-ligand.

The pathogenic role of CD8+ T cells has been identified in
several experimental models of viral myocarditis. Heart tissue
lesions are attenuated in Cd8−/− mice infected with Coxsackie
virus compared to wild-type animals, and reconstitution of
these immunodeficient mice with purified CD8+ T cells worsens
systolic LV dysfunction (50). The mechanisms that drive CD8+

T cells activation and expansion are complex, including CD4+

T cell-dependent mechanism through the release of IFN-γ and
the production of IL-15 by different immune cell subsets (51).
In addition, IL-21 receptor engagement on CD8+ T cells is
also involved in myocardial damage in a murine model of viral
myocarditis (50).

Little is known about the role of CD8+ T cells in acute
ischemia. In a mouse model of stroke, CD8+ T cells have been
shown to be recruited into the brain (52). In the same line, after
ligation of the femoral artery in rodents, CD8+ T lymphocytes
infiltrate the limb, induce CD4+ T cells recruitment in an IL-16-
dependent manner and promote angiogenesis (53). In a model
of MI in rats induced by permanent ligation of descending
left coronary artery, a subset of CD8+ T cells expressing the
angiotensin type 2 receptor (AT2R) infiltrates the peri-infarct
zone and downregulates pro-inflammatory cytokines expression.
These CD8+AT2R+ T cells have no cytotoxic activity, suggesting
a potential cardioprotective role of this subset in the context
of ischemia (53). Conversely, in vitro, CD8+ T cells isolated
from MI rats have cytotoxic activity and directly kill healthy
cardiomyocytes. CD8+ lymphocytes isolated from the same rat
strain (Sprague–Dawley) induced significantly more myocyte
death than lymphocytes isolated from another strain (Wistar),
suggesting MHC class I- and antigen-specific cytotoxic response
(54).

Human data regarding the role of CD8+ T cells in MI
are scarce. In a small cohort of patients admitted for acute
coronary syndrome, an increase in activated CD69+CD8+ T cells
have been described, as well as increased soluble Fas Ligand
and granzyme B levels in the blood at day 7 and 14 day
after myocardial ischemia. A correlation between Granzyme B
plasma levels and left ventricular end-diastolic diameter was
reported, suggesting a role for this serine protease in deleterious
LV remodeling after MI (55). Finally, an observational study
has described an acute reduction in blood CD8+ T cell count
within 1 h after coronary artery reperfusion, probably due to
cell recruitment into the heart ischemic tissue. The drop of
CD8+ T cells is more important in patients that develop
heart microvascular obstruction (18). Overall, further studies
are required to elucidate the role of CD8+ T populations in
myocardial post-ischemic remodeling.

B CELLS

Conventional B-2 cells, the dominant B cell subset in spleen and
lymph nodes, originate from the bone marrow and contribute to
humoral and adaptive immune responses in a T-cell dependent
manner. B-2 cell responses are highly specific but delayed (56).

Conversely, B-1 cells is a minor B cell population present mainly
in the peritoneal/pleural cavities and the spleen (5%), deriving
from splanchno-pleural tissues, and fetal liver (57). B-1 cells are
long-lived cells with reduced antigen affinity in comparison with
B-2 cells. B-1 responses are rapid but poorly specific, secreting
natural IgM antibodies in a T-cell independent manner. The IgM
low affinity antibodies produced by B-1a cells can react with
bacterial pathogens but also with oxidized lipid moieties (58).

More recently, specific B cell subpopulations with regulatory
properties (Breg) were characterized (59). Breg populations
share some functional (IL-10 production) and phenotypical
[CD5+CD1dhigh (60), Tim-1+ (61) characteristics with B-1
cells or Marginal Zone B cells (62)]. A new B-1 cell subset,
innate response activator (IRA) B cells, has been identified (63),
migrating from the peritoneal cavity to the spleen and producing
granulocyte-macrophage colony-stimulating factor.

B Cell Recruitment
B lymphocytes play critical roles in both innate and adaptive
immune responses through antibody-dependent or independent
mechanisms. Novel protective role for B cells in the immune
response against bacterial pathogens has been found (63, 64).
However, the contribution of B lymphocytes to the inflammatory
response secondary to sterile injury, particularly post-ischemic
injury is still poorly defined. In experimental MI in mice,
B220+IgM+ B cells peaked in the heart tissue at day 5 after
the onset of ischemia (65). CD20+ B cells have also been found
in human heart biopsy from MI patients at day 1 and day 6,
following coronary artery occlusion. The mechanisms that drive
B cell recruitment and activation are yet under investigation
but it appears that several myocardial auto-antigens (described
below) recognized by B-cell receptor or, alternatively, pattern
recognition receptors such as TLR-9 are involved (65).

Humoral B Cell Responses
Plasma heart-specific antibodies have been detected in both
rodents and patients with ischemic heart failure (66, 67).
These autoantibodies target proteins from sarcomere (myosin,
actin, and troponin) (67), cardiac receptors (anti-β1-adrenergic
receptors) (68), and damage-associated epitopes (69). A positive
relationship has been reported between anti-myosin antibody
titers and infarct size on one hand, and between (70) anti-myosin
antibody titers and prognosis in MI patients (67) on the other.
Leuschner et al. found that cardiac remodeling was different in
MI patients according to baseline anti-troponin auto-antibodies
levels. A significant LV dilation was observed 6–9 months after
MI in patients with, but not in patients without, detectable
troponin auto-antibodies in the plasma (71).

Autoantibodies (named natural autoantibodies) could also
be detected in healthy subjects before the onset of cardiac
injury. Natural auto-antibodies can recognize damage-associated
molecular patterns, including non-muscle myosin heavy chain
II, and readily accumulate in wounded tissues, including
ischemic heart (69, 72, 73). In experimental models of ischemia-
reperfusion injury, natural IgMs have been shown to activate
the complement cascade promoting inflammation in ischemic
tissues (69, 73). B cell responses appear to be redundant in
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post-ischemic stroke injury, since B cell-deficient (µMT) mice
showed no difference either in infarct size nor in clinical
neurological disorder, as compared with wild type mice (74).
The use of B cell-deficient µMT mice in the context of kidney
ischemia/reperfusion has led to divergent results, with studies
showing either protection (74, 75) or aggravation (76) in mice
lacking B cells. The use of µMT mice should be interpreted with
caution given the associated immune abnormalities in thismodel,
and the fact that all B cell subsets, with potentially opposite
functions, are absent in this strain. More recently, Keppner
et al. used another mouse model to selectively study the role
of (auto-) antibodies during post-ischemic heart context (77).
The authors inducedMI in agammaglobulinemic AID−/−µS−/−

mice that can produce functional B-cells, but cannot synthesize
secretory IgM (µS−/−) or perform immunoglobulin class-
switching (AID−/−). When compared to immunocompetent
animals, agammaglobulinemic mice are characterized by a
significant reduction in infarct size, in left ventricle dilation
and improved cardiac function at day 56 post-MI, suggesting
that antibodies are directly involved in ischemic heart failure
(77). Heart tissue analysis showed less Mmp9 mRNA expression
in the B cell-deficient group. Further studies are required
before providing definitive conclusion regarding the role of
immunoglobulins in post-ischemic cardiac remodeling.

Cellular B Cell Responses
B cells have classically been thought to contribute to the
immune response through antibody production after plasma cells
differentiation. However, several studies in human and in rodents
have found that genetic or pharmacologic B-cell depletion,
in type 1 diabetes or rheumatoid arthritis, can regulate T-
cell-mediated auto-immune diseases independently of antibody
production, which suggests that the cellular functions of B
cells are important in the regulation of the adaptive immunity
(77). B cells secrete several cytokines, including B cell-derived
lymphotoxin-α and TNF-α that control the development of
follicular DCs and the formation of B cell follicles in the spleen.
In MI, our group has identified a critical cellular role for mature
B cells in left ventricular remodeling and function. At the
acute phase of MI, the specific Ccl-7 production by mature B
cells orchestrates monocyte mobilization from the bone marrow
to the blood and in fine their recruitment into the ischemic
heart (65). Specific deletion of CCL-7 production by B cells
limits monocyte/macrophage infiltration in the ischemic heart,
collagen deposition and reduces deleterious LV remodeling. In a
French cohort of patients with MI (FAST-MI), plasma levels of
CCL-7 were predictive of major adverse cardiovascular events,
corroborating the experimental data. These recent results open
promising new therapeutic area of ischemic heart failure using
anti-CD20 depleting antibody in MI patients.

DENDRITIC CELLS

Ontogeny and Subsets
DCs are potent key immunoregulators that orchestrate various
types of inflammatory cells (78). DCs originate from CD34+

precursors of the myeloid lineage in the bone marrow (79) and

after a circulating phase, they populate tissues close to epithelial
area, where they act as sentinels of infection or injury. Different
DC sublineages have been characterized in mice and humans (80,
81). Three major precursors of blood DCs have been described:
Fms-like tyrosine kinase 3 (Flt3)+ pre-classical DCs (cDCs),
colony-stimulating factor 1 receptor (CSF1R)+ monocytes, and
Flt3+ plasmacytoid DCs (pDCs) (82). Monocytes can also
becomeCD11b+ DCs, expressingDC associated antigens and the
capacity to activate T cells (83).

After microbial infection or sterile injury, circulating
monocytes and DC precursors from the bone marrow and
the spleen reservoir differentiate into mature DCs and can
modulate the immune system at the inflammatory site, such
as priming of antigen-specific immune responses, induction
of tolerance, and chronic inflammation (84). In the context
of MI, DCs internalize locally released cardiomyocyte-derived
antigens and migrate into mediastinal lymph nodes, where
they present the antigen-derived peptides on both MHC class I
and MHC class II molecules, after lysosomal degradation (85).
CD4+ T cell priming requires TCR ligation by the cognate
peptide–MHC complex, and membrane-bound costimulatory
molecules, including CD28 and CD40 (86). Meanwhile, T cells
are activated by locally released cytokines toward a Th1, Th2, or
Th17 profile, and migrate to the inflamed tissue. Several subsets
of DCs, expressing CD11c (87), Cd11b or CD103 (88), infiltrate
the infarcted heart in experimental MI (87), and express markers
of activation, including CD40 (88). GM-CSF, locally produced
by endothelial cells, or resident and infiltrating leucocyte subsets,
is involved in DC recruitment (89). The number of mature DCs
in the infarcted heart correlates with LV dysfunction in rats with
MI (89). However, the causative effect of infiltrating DCs subsets
on LV remodeling and their origin in the post-infarction healing
process remain unclear. Using transgenic mice expressing
diphtheria toxin receptor on CD11c+ DCs, it has been shown
that DC depletion enhances inflammatory cytokine response,
myeloid cell recruitment and M1 macrophage polarization
within the ischemic tissue (90). DC depletion also worsens
both mortality and LV deleterious remodeling. DC depletion
strongly affects heart healing, with increased myocardial MMP9
(early) and MMP2 (late) activity, on one hand, and more
pronounced collagen accumulation in the peri-infarct area,
on the other hand. These results suggest that CD11c+ DCs
play a local protective role in post-infarction inflammation,
mainly through a regulation of neutrophil and monocyte
recruitment and activation (90). More recently, the distinct roles
of plasmacytoid (pDC) and conventional DCs (cDC) in MI
have been investigated in mice. pDC depletion using transgenic
mice with BDCA2 diphtheria toxin receptor had no impact on
cardiac function, whereas depletion of cDC expressing Zbtb46
reduced infarct size and improved systolic cardiac function. cDC
depletion was also associated with a reduction of both CD3+ T
cells and IFN-γ mRNA in the ischemic tissue suggesting that
cDC promoted Th1 local responses (88). Conversely, a subset
of DC limiting antigen-specific T-cell expansion through nitric
oxide synthase 2-dependent nitric oxide production has been
reported in a model of autoimmune myocarditis (91). Further
studies are required to address the importance of the different
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DC subsets in heart ischemia and their relevance to human
disease.

CONCLUSION

A large number of evidence has shown that adaptive immunity
is involved in post-ischemic cardiac remodeling in murine
models of MI. Future work should aim at characterizing the
immune pathways in patients with MI to confirm whether
comparable alterations of immune functions contribute
to post-ischemic heart dilation and dysfunction. Novel
therapeutic strategies aimed at reducing ischemic heart
failure development should target the adaptive immune
system by either stimulating protective immune functions,

including expansion of Tregs, or attenuating the activity of
immune pathogenic effectors, including that of Th1, B-2
cells.
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