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ABSTRACT
Multiplex bead assays are an extension of the commonly used sandwich ELISA. The
advantage over ELISA is that they make simultaneous evaluation of several analytes
possible. Several commercial assay systems, where the beads are acquired on a standard
flow cytometer, exist. These assay systems comewith their own software tool for analysis
and evaluation of the concentration of the analyzed analytes. However, these tools
are either tied to particular commercial software or impose other limitations to their
licenses, such as the number of events which can be analyzed. In addition, all these
solutions are ‘point and click’ which potentially obscures the steps taken in the analysis.
Here we present beadplexer, an open-source R-package for the reproducible analysis
of multiplex bead assay data. The package makes it possible to automatically identify
bead clusters, and provides functionality to easily fit a standard curve and calculate the
concentrations of the analyzed analytes. beadplexer is available from CRAN and from
https://gitlab.com/ustervbo/beadplexr.

Subjects Immunology, Computational Science
Keywords ELISA, R package, Quality assessment, Data analysis, Multiplex bead assay

INTRODUCTION
The enzyme-linked immunosorbent assay (ELISA) is a commonly used method to
determine the concentration of soluble analytes such as cytokines (Elshal & McCoy, 2006).
The concentration of the analyte is determined from a standard curve, which is created
from standard samples with known concentrations. The ELISA is a single point assay
and query into several analytes can be time consuming or impossible when the sample
is limited. Development in polystyrene bead preparations made it possible to construct
assays that allow for query of several analytes at the same time. Similar to the ELISA, the
analytes of interest are captured by a primary antibody (Fig. 1A). The captured analytes
are subsequently labelled with a secondary antibody which in turn is detected with a
fluorochrome conjugated tertiary antibody. The level of fluorochrome intensity is directly
related to the amount of bound tertiary antibody, and therefore also to the amount of
analyte present in the sample. In a multiplex bead assay, the primary antibody is fixed on a
polystyrene bead, and physical properties such as size and granularity as well as fluorescent
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Figure 1 Overview of assay principle and the package workflow. (A) Schematic overview of the princi-
ple of a LEGENDplex assay. (B) Steps in analysis of a multiplex bead assay with accompanying visualiza-
tions.

Full-size DOI: 10.7717/peerj.5794/fig-1

colors of the beads are used to distinguish the different analytes studied. The data is usually
collected using a standard flow cytometer.

The LEGENDplex system from BioLegend, the CBA system from BD Biosciences,
and the MACSPlex system from Miltenyi Biotec are all bead based multiplex systems
(Morgan et al., 2004; Miltenyi Biotec, 2014; Yu et al., 2015). The systems differ slightly in
terms of physical properties and colors used, and in the number of analytes that can be
simultaneously identified. The Bio-Plex system from Bio-Rad works in a similar manner
as those described here, but requires a dedicated instrument and does not produce files
suitable for analysis with beadplexr. The individual assays that can be analyzed with
beadplexr are described in the following.
LEGENDplex: Beads fall into two large groups based on size and granularity—as related
to the forward light scattering, FSC, and the perpendicular light scatter, SSC. Within each
group, individual analytes are discriminated by the intensity of Allophycocyanin (APC) of
the beads. The concentration of the analyte is related to the intensity of Phycoerythrin (PE).
CBA: All beads have similar size and granularity. The individual analytes are discriminated
by the intensity of APC and APC-Cy7 of the bead. The concentration of the analyte is
related to the intensity of PE.
MACSPlex: All beads have similar size and granularity. The individual analytes are
discriminated by the intensity of PE and Fluorescein isothiocyanate (FITC) of the bead.
The concentration of the analyte is related to the intensity of APC.

All multiplex systems come with their own analysis software. However, these solutions
might come with an added price tag because of binding to a particular piece of software, or
the license is valid only for a number of bead events. In this case, large data files with many
bead events or repeated re-evaluation of the acquired data might result an expiration of
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the license. In addition, the usability and flexibility of the analysis solutions are restricted
and often impractical for experiments with a large number of samples. Currently no open
source alternative exists.

Here the general usage of the beadplexr package for R (R Core Team, 2018) is
introduced. It will be demonstrated how to load the files generated by the flow cytometer,
identify bead populations, draw standard curves and calculate concentration of the
experimental samples.

MATERIALS & METHODS
The beadplexr package includes data from an unpublished ‘‘Human Growth Factor
Panel (13-plex)’’ LEGENDplex (BioLegend) experiment performed in our laboratory.
The dataset consists of eight controls samples and a serum sample from a single healthy
volunteer. All samples were processed in duplicates and per manufacturer’s instructions.
The data was acquired on a CytoFLEX cytometer (Beckman Coulter, Brea, CA, USA). An
example of a flow cytometry data file is also included in the package. We utilize these data
to illustrate the functionality of the package.

The data here were analyzed with R, version 3.5.1, (R Core Team, 2018) and plots created
with ggplot2 (Wickham, 2009) and cowplot (Wilke, 2017). The workflow and examples
presented heremake use of or suggests the followingR-packages: devtools (Wickham, Hester
& Chang, 2018), dplyr (Wickham et al., 2018), hexbin (Carr et al., 2018), magrittr (Bache
& Wickham, 2014), purr (Henry & Wickham, 2018), stringr (Wickham, 2018), and tidyr
(Wickham & Henry, 2018).

RESULTS
Package overview
The released package can be installed from CRAN and the development version from
GitLab:

# Installing the package --------------------------------------------

# From CRAN

install.packages("beadplexr")

# From GitLab using devtools

# install.packages("devtools")

# devtools::install_git("https://gitlab.com/ustervbo/beadplexr")

#

# Or with vignettes built

# devtools::install_git(https://gitlab.com/ustervbo/beadplexr",

# build_vignettes = TRUE)

The package provides several steps to extract the analyte concentration from the raw
data (Fig. 1B). The functions for interacting with the data are flexible, but sensible defaults
make them accessible to the novice R-user. The workflow and examples presented here are
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collected in Script S1, and a more detailed workflow is presented in the package vignette.
The latter can be viewed using the command vignette("legendplex-analysis").

Reading FCS-files
beadplexr works with Flow Cytometry Standard (FCS) files (Seamer et al., 1997), which
is the usual output of a flow cytometer. The function read_fcs() loads the given FCS-file
using the functionality provided by the Bioconductor package flowcore (Ellis et al., 2017)
and performs the following steps:
1. Apply an arcsinh transformation of the bead channels—this natural logarithm based

transformation generally performs well on all flow cytometry data (Finak et al., 2010).
Opposed to the traditionally used log10 scaling of flow cytometry data, the arcsinh can
deal with the negative values produced by some newer digital flow cytometers

2. Remove boundary events of the size (FCS) and granularity (SSC) channels—events
outside the range of the detectors are registered with the maximum value possible.
These events can interfere with the clustering

3. Optionally subset the channels to contain just bead events—similar to removal of
boundary events, this might improve identification of the bead clusters

4. Convert the FCS-data to a data.frame

# Reading fcs-files -------------------------------------------------

library(beadplexr)

# Get the path to the example fcs-file

.file_name <- system.file("extdata",

"K2-C07-A7.fcs",

package = "beadplexr")

# ‘read_fcs()’ requires at least a path and filoe name of the file to

# load, by identifying the required forwars and side scatter and the

# bead property channels, only the required data is returned.

#

# The argument ‘.filter’ takes a named list, where each element is a

# size 2 vector, giving the lower and upper cut-off for the channel

# given in the element name

.data <- read_fcs(

.file_name = .file_name,

.fsc_ssc = c("FSC-A", "SSC-A"),

.bead_channels = c("FL6-H", "FL2-H"),

.filter = list(

"FSC-A" = c(3.75e5L, 5.5e5L),

"SSC-A" = c(4e5L, 1e6L),

"FL6-H" = c(7L, Inf)

)

)
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Figure 2 Visualization of FACS data. Size (FSC) and granularity (SSC) can be used distinguish the two
LEGENDplex bead populations. (A) Common monochrome scatter-plot created with facs_plot(.x =
"FSC-H", .y = "SSC-H", .beads = "Bead group") on the sample ‘K3-C0-1.fcs’. High density re-
gions are obscured in this type of plots. (B) Pseudo-colored scatter -plot created with facs_hexbin(.x
= "FSC-H", .y = "SSC-H", .beads = "Bead group", .bins = 75) on the same sample as in (A).
The number of events in discrete bins is indicated by color. The coloring is according to the standard blue-
green-yellow-red scheme, where blue indicates a low number of events, and red indicates a high number.
The Pseudo-colored scatter -plot requires the R-package hexbin to be installed.

Full-size DOI: 10.7717/peerj.5794/fig-2

Because of the variation in detector settings between flow cytometers, it is left to the user
to get the event filtering settings correct for an experiment. However, the event filtering
should remain stable once established. This, of course, requires that there is no change
of cytometer, and that there is no particular drift in the used cytometer. Visualizing the
populations greatly helps in setting the appropriate cut-offs (Fig. 2). It is for this reason
that the ggplot2 based convenience function facs_plot() is included.

Naming the FCS-files
Each sample in a multiplex bead assay must have a unique and meaningful name. A
later step in the workflow separates standard samples from experimental samples. The
standard samples are in addition ordered in a way that calculation of dilution of standard
concentrations is possible. For the dataset included in the package, ‘C’ followed by an
integer denotes the standard (control) samples—as suggested in the LEGENDplex manual
—and ‘S’ followed by an integer denotes the experimental samples. The different parts of
the file name should be separated by a character not used in the IDs; this will make for easy
parsing of the file names.

Identification of analyte MFI
The mean fluorescence intensity (MFI) of each analyte relates directly to the concentration
of the analyte in the sample (Fig. 1A). The first step to calculate the analyte concentration is
to identify the bead populations representing the analytes and calculate the MFIs of these.

beadplexr makes use of structured Panel Information to provide analyte metadata
such as name and start concentration for each standard sample, as well as the name of
the panel, the fold dilution of the standards, and the units of the analytes. The desired
Panel Information is loaded using the load_panel() function by passing the name or
a name pattern to the function. The package itself comes with a set of LEGENDplex
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Panel Information, which are documented in the help files to load_panel. The Panel
Information file itself is in YAML format, and the load_panel() function can also load
a Panel Information file located outside the package. The latter is useful in the cases of
custom panels. The Panel Information is not required, but makes sense if the assay is
repeated across several projects.

# Libraries ----------------------------------------------------------

library(beadplexr)

library(ggplot2)

library(cowplot)

library(dplyr)

library(purrr)

library(tidyr)

library(readr)

library(stringr)

# Load data ---------------------------------------------------------

data(lplex)

# Load one of the panels distributed with the package, see

# ?load_panel() for the included panels

panel_info <- load_panel(.panel_name =

"Human Growth Factor Panel (13-plex)")

Analytes of any assay system are identified using the function identify_analyte(),
which identifies analyte clusters and assign an analyte ID to each cluster. The function
takes a data.frame with events and a character vector giving the name of column(s)
where the analytes can be discriminated. An identifier for each analyte is passed in the
argument .analyte_id, which is simply a character vector giving the ID of the analyte.
identify_analyte() sorts the clusters based on their centers and use this ranking
to assign the analyte IDs. The order of analyte IDs given in .analyte_id is therefore
important and must match the expected order of analytes. An optional argument is .trim
which allows the removal events in the periphery of a cluster. The value of the argument
gives the fraction of the most distant points to be removed. Distance based trimming
is non-trivial since the possible numerical range depends on the detection range of the
flow cytometer.

The function identify_analyte() interfaces several methods for unsupervised
clustering, which are passed in the .method argument. The default clustering method
is clustering large applications (clara) from the package cluster (Maechler et al., 2017).
The method selects a number of subsets of fixed size and applies the partitioning around
medoids (pam)-algorithm to each subset. The objective of the pam-algorithm is to
minimize the dissimilarity between the representative of k clusters and the members of
each cluster (Kaufman & Rousseeuw, 2009). The best resulting set of medoids (cluster
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centers) is that with the lowest average dissimilarity of all points in the original dataset to
the medoids. Though similar to pam in algorithm type, the Base-R included kmeans works
on minimizing the distance to the cluster representative (Zaki & Wagner Meira, 2014).

The dbscan method in the fpc package differs from clara and kmeans in that dbscan
identifies clusters based local density (Hennig, 2015). The function requires a neighborhood
size and minimum number of events in each neighborhood to evaluate whether points
can be considered as belonging to a cluster (Zaki & Wagner Meira, 2014). If the bead
populations have different local densities, there is no guarantee that the correct number of
clusters will returned. This problem does not exist for Mclust from the mclust package,
which fits a Gaussian mixture model using the EM-algorithm (Scrucca et al., 2016). This
algorithm iteratively optimizes the individual parameters of k normal distributions (Zaki
& Wagner Meira, 2014). This way the relationship between a cluster and a set of data points
is given by a set of probability scores.

We have found that dbscan() is the best clustering method for the forward-side scatter
population identification. However, it can be difficult to get the parameters event count
and neighborhood size correct. The reason for this difficulty lies in the sensitivity of the
method to the choice of neighborhood size; if it is too large clusters might be merged,
and if it is too small everything might be classified as noise. In our experience, the
clustering function clara() is a great all-rounder although the subsampling performed
by the function can lead to slight differences between each run. Using the same value
for set.seed() at the beginning of each session will alleviate this and make each run
reproducible.

Different flow cytometers perform differently in terms of separation of the individual
bead populations. This is due to factors such as detector settings and age of the cytometer
and its light sources. The consequence is that the populations of interest might be closer
together or further apart. Another consequence might be an increased in the noise of
the detectors of the flow cytometer. Collectively these differences in the data constitution
means that one clustering function might perform better on one dataset while be inferior
on another. As with analysis of all flow cytometric data the optimal solution is a matter
of taste, but the better clustering function is the one that separates the populations well,
without including too much noise.

The function identify_legendplex_analyte() can be applied to each sample
individually in a loop. However, it is more prudent to apply the function to all samples
at the same time because the clustering decision will be identical for each sample. In
addition, clustering on all the samples is 1.4 times faster than clustering on each sample
individually.

# Identify analytes -------------------------------------------------

# The function ‘identify_legendplex_analyte()’ used here is

# convenience around the clustering work horse ‘identify_analyte’. The

# ‘identify_legendplex_analyte()’ identifies the bead populations

# according to size and granularity, and for each of the two
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# populations the individual bead populations are identified

#

# The function requires a named list with analytes from the Panel

# Information, and a list with a list of key-value pairs giving the

# arguments for the bead identification on the forward and side

# scatter, and a list of key-value pairs giving arguments for the bead

# identification in each subpopulation in the APC channel.

#

# The argument .trim gives the fraction of events furthest from the

# centers of the groups that should be removed. The population center

# is found by a Gaussian kernel estimate. In this case we remove 1%

# and 3% of the of the events based on their distance to the group

# center.

#

# The inner lists can be named, but this is not required.

args_ident_analyte <- list(fs = list(.parameter = c("FSC-A", "SSC-A"),

.column_name = "Bead group",

.trim = 0.01),

analyte = list(.parameter = "FL6-H",

.column_name = "Analyte ID",

.trim = 0.03))

# The FCS-data is a list of samples, which we combine before cluster

# identification.

analytes_identified <- lplex %>%

bind_rows(.id = "Sample") %>%

identify_legendplex_analyte(.analytes = panel_info$analytes,

.method_args = args_ident_analyte)

The analyte IDs for the ‘‘Human Growth Factor Panel (13-plex)’’ bead group A are A4,
A5, A6, A7, A8, A10 and for group B the analyte IDs are B2, B3, B4, B5, B6, B7, B9. In
this case, the beads are arranged from low to high, that is the lowest analyte ID has lowest
intensity in the APC channel (Fig. 3).

This initial and crucial step of the analysis has been successfully performed with data
from a CBA experiment (C McGuckin, CTIBIOTECH, Lyon, France, 2017, unpublished
data) and from a MACSPlex experiment (Miltenyi Biotec, Bergisch Gladbach, Germany,
2017, unpublished data) using the function identify_analyte().

With the analytes identified and the bead populations documented, the MFI of each
analyte can finally be calculated. The function calc_analyte_mfi() gives the possibility to
calculate geometric, harmonic, and arithmetic mean of the in intensity of each respective
analyte reporter, such as PE in a LEGENDplex assay. Since the reporter intensities are
usually log-transformed only the geometric mean is relevant, but harmonic and arithmetic
mean are included to accommodate for special cases.
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Figure 3 Bead identification and visualization of LEGENDplex data. Populations identified in the sam-
ple ‘K3-C0-1.fcs’. (A) Identification of the two bead populations ‘A’ and ‘B’ according to size and granu-
larity: The two clusters were identified using .method = clara and noisy data points were excluded by
.trim = 0.01. (B–C) Identification of analytes of the bead population ‘A’ and ‘B’: The 1 dimensional
clusters along the APC channel were identified using .method = clara and noisy data points were ex-
cluded by .trim = 0.03. Noisy data points are assigned the group ‘NA’.

Full-size DOI: 10.7717/peerj.5794/fig-3

# Calculate analyte MFI ---------------------------------------------

# The mean fluorescence intensity is calculated for each sample and

# analyte. The function ‘calc_analyte_mfi()’ provides three ways of

# calculating the MFI: geometric, harmonic, and arithmetic mean.

analyte_mfi <- analytes_identified %>%

filter(!is.na(‘Analyte ID’)) %>%

# Call ‘calc_analyte_mfi()’ for each sample

group_by(Sample) %>%

do(calc_analyte_mfi(., .parameter = "FL2-H",

.column_name = "Analyte ID",

.mean_fun = "geometric")) %>%

# Later we will fit the standard curve on a log-log scale, so we

# transform here

mutate(‘FL2-H’ = log10(‘FL2-H’))

CALCULATION OF STANDARD AND EXPERIMENTAL
SAMPLES
The calculation of the concentration of the analytes of the experimental samples requires
two steps:
1. Create a standard curve by fitting a model to the MFI of the standard analytes and their

known concentrations
2. Estimate the concentration of each sample analyte from the fitted model.
The samples in the dataset included in the package can be distinguished by the presence

of ‘C’ or ‘S’, respectively. The sample type indicating letter is then followed by one or
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more integers. Using this naming scheme, it is easy to separate standard samples from
the experimental samples. It is also easy to order the standard samples for concentration
assignment. In this case the naming scheme suggested in the LEGENDplex assay protocol
is followed: 7 indicates the highest concentration of the standard analyte, 1 indicates the
lowest concentration, and 0 indicates blank.

The order of the standard samples is crucial for the function calc_std_conc() to
correctly calculate the concentration of an analyte in each standard sample. The function
requires a vector which gives the order of the standard samples, a start concentration for
the analyte, and a dilution factor. The standard samples are ordered numerically from high
to low and assigned a standard concentration, such that the first sample is given the start
concentration and the second to last sample the lowest concentration, and the very last
sample the concentration 0, as this is assumed to be for background measurement.

The start concentration is stored in the Panel Information for each analyte separately,
as the start concentration might differ from analyte to analyte. The dilution factor is also
given in the Panel Information. It will always be the same for all standard analytes and is
usually 4, meaning that the concentration of each standard analyte is 4 times lower than
the previous concentration. This generally gives a good range of standard concentrations.

# Helper function to extract the sample number -----------------------

#’ Cast sample ID to numeric

#’

#’ @param .s A string with the sample ID pattern to be cast

#’ @param .pattern A string giving the pattern

#’

#’ @return

#’ A numeric

#’

as_numeric_sample_id <- function(.s, .pattern = c("C[0-9]+", "S[0-9]+")){

.pattern <- match.arg(.pattern)

# Extract the pattern defined just above, remove the first element, and

# cast to a numeric

.s %>%

str_extract(.pattern) %>%

str_sub(start = -1L) %>%

as.numeric()

}

# Split in standard and sample -------------------------------------

# We need to fit a standard curve on the standard samples, and use

# this curve to calculate the concentration of the experimental
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# samples. Here we split the data set in two: one with the standard

# samples and one with the experimental samples.

#

# We need to order the standard samples from high to low in order to

# calculate the concentration of the analytes in the standard sample.

# Incorporating the information into the sample name in terms of an

# easily parsable pattern is a good practice.

# All standard samples have the pattern C[number]

standard_data <-

analyte_mfi %>%

ungroup() %>%

filter(str_detect(Sample, "C[0-9]+")) %>%

mutate(‘Sample number’ = as_numeric_sample_id(Sample,

. pattern = "C"))%>%

select(-Sample)

# All non-standards are experimental samples... we could also filter

# on S[number]

experiment_data <- analyte_mfi %>%

ungroup() %>%

filter(!str_detect(Sample, "C[0-9]+")) %>%

mutate(‘Sample number‘ = as_numeric_sample_id(Sample,

. pattern = "S"))%>%

select(-Sample)

# To the standard data we have to add additional information such the

# start concentration of each standard analyte and the dilution

# factor, as well as as the analyte names (analyte IDs by themselves

# do not make much sense).

#

# The concentration of the standard samples is calculated using

# ‘calc_std_conc()’, which take a vector of sample numbers for

# ordering, a start concentration and a dilution factor.

standard_data <- standard_data %>%

left_join(as_data_frame_analyte(panel_info$analytes),

by = "Analyte ID") %>%

rename(‘Analyte name‘ = name) %>%

group_by(‘Analyte ID‘, ‘Analyte name‘) %>%

mutate(

Concentration = calc_std_conc(

‘Sample number‘,

concentration,
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.dilution_factor = panel_info$std_dilution

)

) %>%

# Later we will fit the standard curve on a log-log scale, so we

# transform here

mutate(Concentration = log10(Concentration)) %>%

select(-concentration, -‘Bead group’)

The next step is to fit a standard curve for each analyte. With the standard curve we
can calculate the concentration of the experimental samples (the purpose of the initial
work), we can check the quality of the measurements and the standard curve, and plot
the experimental samples on the standard curve (beadplexr provides easy access to all of
this). The latter is to allow for visual verification that the experimental samples are within
the linear part of the standard curve.

However, in each case we need to ensure that the correct standard curve is used with
the correct experimental data, which means we have to juggle at least three structures: A
data.frame with the standard data, a data.frame with the experimental sample data, and
the models for each analyte (probably a list). It quickly becomes tedious to ensure that
everything is in the correct order—and it is most certainly error prone. To circumvent this,
we can use the nest() and its inverse unnest() functions of the tidyr package. nest()
relies the fact that a data.frame in R is in fact a list, and uses this to pack a data.frame
into a single cell of a data.frame.

# Nest and combine standard and experimental data ---------------------

# Nested data.frames is a great way of combining and working with

# complex data structures.

#

# First we pack all the standard data in to a data.frame with a set of

# data.frames

standard_data <- standard_data %>%

nest(-‘Analyte ID’, .key = "Standard data")

# The the same for all the experimental data

experiment_data <- experiment_data %>%

nest(-‘Analyte ID’, .key = "Experimental data")

# Since both structures are data.frames we can easily combine them

plex_data <- inner_join(standard_data, experiment_data,

by = "Analyte ID")

With everything in a neatly arranged data.frame we can now focus on the actual
task at hand, namely calculation of the standard curve for each analyte. For this we use
the function fit_standard_curve(), which interfaces the drm() function from the drc
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package (Ritz et al., 2015). The drm() function specializes in fitting various biological
response-models, and the drc package provides several response-models, such as the four-
and five-parameter log–logistic model. fit_standard_curve() is designed to be used in
the piped workflow, and takes a data.frame with MFIs and concentrations and returns the
model as a drc object. The four-parameter log–logistic model is widely used in analysis
of ELISA data. Since the five-parameter model yields better fits, because of the increased
flexibility, this is the default function (Gottschalk & Dunn, 2005).

# Calculate standard curves --------------------------------------

# For each of the analytes we calculate the standard curve. Working

# with nested data.frames means that we have to loop over each row to

# calculate the standard curve using the data.frame in "Standard data"

#

# When clustering is performed with mclust, the package mclust is

# loaded in the background (an unfortunate necessity). The mclust

# package also has a function called ‘map’, so an unlucky side effect

# of clustering with mclust, is that we need to be specify which map

# function we use.

plex_data <- plex_data %>%

group_by(‘Analyte ID’) %>%

mutate(‘Model fit’ = purrr::map(‘Standard data’,

fit_standard_curve,

.parameter = "FL2-H"))

We can plot the standard curve using the built in plot_std_curve() function
(Fig. 4A). With the standard curve created we can calculate the concentrations of the
experimental samples using the function calculate_concentration(), which requires a
data.frame with the MFIs in a column, and the fitted model. It can be helpful to apply
calculate_concentration() to the standard samples, as this can be used to verify that the
standard measurements were all fine, and that the estimation of the sample concentrations
therefore is trustworthy.

After calculating the concentrations we can plot the known standard concentrations ver-
sus the estimated standard concentrations using the function plot_target_est_conc()

(Fig. 4B) and visualize where the samples fall on the standard curve with plot_estimate()
(Fig. 4C).

# Calculate experimental sample concentrations --------------------

# Using the standard curve just calculated, we can back-calculate the

# concentration of the standard concentrations, and more importantly

# the concentration of the experimental samples

plex_data <- plex_data %>%
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Figure 4 Visualization of standard and test samples for Angiopoietin-2. The dataset included in
beadplexr is from a 13-plex assay. Here we use Angiopoietin-2 to illustrate the visualizations. (A) A log–
log plot of the standard curve of Angiopoietin-2. Each point is a single measurement (each in duplicate).
The standard concentration is diluted in steps of four fold dilution from 50,000.0 to 12.21 pg/ml. The
intensity of the analyte is measured in the PE channel. The full line indicates the best fit, and gray the
confidence interval. (B) Correlation between the standard concentration (x-axis) and the calculated
concentration of the standard samples (y-axis). The back calculation is done using the fit in (A) and the
MFI of the samples. (C) Using the fit in (A) the concentration of an experimental sample is calculated.
Visual inspection of the position of the experimental samples on the standard curve can reveal samples
that are close to the upper or lower bound of the standard curve.

Full-size DOI: 10.7717/peerj.5794/fig-4

mutate(‘Standard data’ =

purrr::map2(‘Standard data’, ‘Model fit’,

calculate_concentration,

.parameter = "FL2-H")) %>%

mutate(‘Experimental data’ =

purrr::map2(‘Experimental data’, ‘Model fit’,

calculate_concentration, .parameter = "FL2-H"))

# Add concentration plots -------------------------------------

# We can also loop over each row and add plots to the data.frame

plex_data <- plex_data %>%

mutate(‘Std curve’ =

purrr::pmap(list(.data = ‘Standard data’,

.model = ‘Model fit’,

.title = ‘Analyte name’),

plot_std_curve, .parameter = "FL2-H")) %>%

mutate(‘Std conc’ =

purrr::map(‘Standard data’,

plot_target_est_conc)) %>%

mutate(‘Est curve’ =

purrr::pmap(list(‘Experimental data’,

‘Standard data’,
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‘Model fit’,

‘Analyte name),

plot_estimate, .parameter = "FL2-H"))

Lastly we fulfill the purpose of all the previous actions and extract the concentration of
each analyte for each sample.

# Extract analyte concentration -----------------------------------

plex_data %>%

unnest(‘Experimental data’) %>%

# Make the names a little more telling and transform them back to

# useful concentrations

rename(‘Concentration (pg/ml)’ = Calc.conc,

‘Concentration error‘ = ‘Calc.conc error’) %>%

mutate(‘Concentration (pg/ml)’ = 10^ ‘Concentration (pg/ml)’,

‘Concentration error‘ = 10^ ‘Concentration error’)

DISCUSSION
Multiplex bead assays make simultaneous evaluation of several analytes possible. Because of
this, they are an attractive alternative to the commonly used sandwich ELISA. Commercial
systems are available for acquisition on a standard flow cytometer, but these commercial
systems make use of their own proprietary software for the data analysis. This can impose
different limitations to the analysis. The R-package beadplexr, released under the MIT
license, is meant as an open-source alternative to these commercial systems. The package
is available from CRAN and from https://gitlab.com/ustervbo/beadplexr.

A critical step in the analysis multiplex bead assays is the identification of bead
populations corresponding to each analyte. A single function in beadplexr acts as an
interface to several common, and tested, clustering functions, making it easy to find the
best suited clustering function. Future versions of the package will see improvements in
this part, with inclusion of other clustering methods and perhaps a heuristic for automatic
method selection.

Flow cytometry data are inherently noisy. beadplexr only provides a rudimentary
function for removing points with no neighbors and lets the clustering functions determine
which events are considered noisy though the .trim argument. However, a very noisy data
set might make it difficult for an optimal identification of the bead clusters in the first
place. De-noising multidimensional data is not trivial, but work is planned in this direction
for a future release.

CONCLUSION
The R-package beadplexr provides a frame work for easy and reproducible analysis of
multiplex bead assays for the experienced and the novice user alike.
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