
Submitted 8 May 2018
Accepted 20 September 2018
Published 16 November 2018

Corresponding author
Ulrik Stervbo,
ulrik.stervbo-kristensen@charite.de

Academic editor
Camillo Rosano

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.5794

Copyright
2018 Stervbo et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

beadplexr: reproducible and automated
analysis of multiplex bead assays
Ulrik Stervbo1,2, Timm H. Westhoff1 and Nina Babel1,2

1Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the
Ruhr-University Bochum, Herne, Germany

2Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies,
Berlin, Germany

ABSTRACT
Multiplex bead assays are an extension of the commonly used sandwich ELISA. The
advantage over ELISA is that they make simultaneous evaluation of several analytes
possible. Several commercial assay systems, where the beads are acquired on a standard
flow cytometer, exist. These assay systems comewith their own software tool for analysis
and evaluation of the concentration of the analyzed analytes. However, these tools
are either tied to particular commercial software or impose other limitations to their
licenses, such as the number of events which can be analyzed. In addition, all these
solutions are ‘point and click’ which potentially obscures the steps taken in the analysis.
Here we present beadplexer, an open-source R-package for the reproducible analysis
of multiplex bead assay data. The package makes it possible to automatically identify
bead clusters, and provides functionality to easily fit a standard curve and calculate the
concentrations of the analyzed analytes. beadplexer is available from CRAN and from
https://gitlab.com/ustervbo/beadplexr.

Subjects Immunology, Computational Science
Keywords ELISA, R package, Quality assessment, Data analysis, Multiplex bead assay

INTRODUCTION
The enzyme-linked immunosorbent assay (ELISA) is a commonly used method to
determine the concentration of soluble analytes such as cytokines (Elshal & McCoy, 2006).
The concentration of the analyte is determined from a standard curve, which is created
from standard samples with known concentrations. The ELISA is a single point assay
and query into several analytes can be time consuming or impossible when the sample
is limited. Development in polystyrene bead preparations made it possible to construct
assays that allow for query of several analytes at the same time. Similar to the ELISA, the
analytes of interest are captured by a primary antibody (Fig. 1A). The captured analytes
are subsequently labelled with a secondary antibody which in turn is detected with a
fluorochrome conjugated tertiary antibody. The level of fluorochrome intensity is directly
related to the amount of bound tertiary antibody, and therefore also to the amount of
analyte present in the sample. In a multiplex bead assay, the primary antibody is fixed on a
polystyrene bead, and physical properties such as size and granularity as well as fluorescent

How to cite this article Stervbo U, Westhoff TH, Babel N. 2018. beadplexr: reproducible and automated analysis of multiplex bead as-
says. PeerJ 6:e5794 http://doi.org/10.7717/peerj.5794

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201519874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:ulrik.stervbo-kristensen@charite.de
mailto:ulrik.stervbo-kristensen@charite.de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5794
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/ustervbo/beadplexr
http://doi.org/10.7717/peerj.5794

Parse panel information

- Dot-plot
- Histogram

Calculate sample concentration

Identify beads

Fit standard curve

Fit confidence

Load and process FACS-files - Dot-plot
- Pseudo color plot

A B

- Standard curve
- Expected vs. calculated
 standard concentration
- Analyte on standard curve

A1 A3

A2

Mix beads and samples

A1 A3

A2

Incubate with secondary antibody

Incubate with tertiary antibody

A1 A3

A2

Figure 1 Overview of assay principle and the package workflow. (A) Schematic overview of the princi-
ple of a LEGENDplex assay. (B) Steps in analysis of a multiplex bead assay with accompanying visualiza-
tions.

Full-size DOI: 10.7717/peerj.5794/fig-1

colors of the beads are used to distinguish the different analytes studied. The data is usually
collected using a standard flow cytometer.

The LEGENDplex system from BioLegend, the CBA system from BD Biosciences,
and the MACSPlex system from Miltenyi Biotec are all bead based multiplex systems
(Morgan et al., 2004; Miltenyi Biotec, 2014; Yu et al., 2015). The systems differ slightly in
terms of physical properties and colors used, and in the number of analytes that can be
simultaneously identified. The Bio-Plex system from Bio-Rad works in a similar manner
as those described here, but requires a dedicated instrument and does not produce files
suitable for analysis with beadplexr. The individual assays that can be analyzed with
beadplexr are described in the following.
LEGENDplex: Beads fall into two large groups based on size and granularity—as related
to the forward light scattering, FSC, and the perpendicular light scatter, SSC. Within each
group, individual analytes are discriminated by the intensity of Allophycocyanin (APC) of
the beads. The concentration of the analyte is related to the intensity of Phycoerythrin (PE).
CBA: All beads have similar size and granularity. The individual analytes are discriminated
by the intensity of APC and APC-Cy7 of the bead. The concentration of the analyte is
related to the intensity of PE.
MACSPlex: All beads have similar size and granularity. The individual analytes are
discriminated by the intensity of PE and Fluorescein isothiocyanate (FITC) of the bead.
The concentration of the analyte is related to the intensity of APC.

All multiplex systems come with their own analysis software. However, these solutions
might come with an added price tag because of binding to a particular piece of software, or
the license is valid only for a number of bead events. In this case, large data files with many
bead events or repeated re-evaluation of the acquired data might result an expiration of

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 2/18

https://peerj.com
https://doi.org/10.7717/peerj.5794/fig-1
http://dx.doi.org/10.7717/peerj.5794

the license. In addition, the usability and flexibility of the analysis solutions are restricted
and often impractical for experiments with a large number of samples. Currently no open
source alternative exists.

Here the general usage of the beadplexr package for R (R Core Team, 2018) is
introduced. It will be demonstrated how to load the files generated by the flow cytometer,
identify bead populations, draw standard curves and calculate concentration of the
experimental samples.

MATERIALS & METHODS
The beadplexr package includes data from an unpublished ‘‘Human Growth Factor
Panel (13-plex)’’ LEGENDplex (BioLegend) experiment performed in our laboratory.
The dataset consists of eight controls samples and a serum sample from a single healthy
volunteer. All samples were processed in duplicates and per manufacturer’s instructions.
The data was acquired on a CytoFLEX cytometer (Beckman Coulter, Brea, CA, USA). An
example of a flow cytometry data file is also included in the package. We utilize these data
to illustrate the functionality of the package.

The data here were analyzed with R, version 3.5.1, (R Core Team, 2018) and plots created
with ggplot2 (Wickham, 2009) and cowplot (Wilke, 2017). The workflow and examples
presented heremake use of or suggests the followingR-packages: devtools (Wickham, Hester
& Chang, 2018), dplyr (Wickham et al., 2018), hexbin (Carr et al., 2018), magrittr (Bache
& Wickham, 2014), purr (Henry & Wickham, 2018), stringr (Wickham, 2018), and tidyr
(Wickham & Henry, 2018).

RESULTS
Package overview
The released package can be installed from CRAN and the development version from
GitLab:

Installing the package --

From CRAN

install.packages("beadplexr")

From GitLab using devtools

install.packages("devtools")

devtools::install_git("https://gitlab.com/ustervbo/beadplexr")

#

Or with vignettes built

devtools::install_git(https://gitlab.com/ustervbo/beadplexr",

build_vignettes = TRUE)

The package provides several steps to extract the analyte concentration from the raw
data (Fig. 1B). The functions for interacting with the data are flexible, but sensible defaults
make them accessible to the novice R-user. The workflow and examples presented here are

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 3/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

collected in Script S1, and a more detailed workflow is presented in the package vignette.
The latter can be viewed using the command vignette("legendplex-analysis").

Reading FCS-files
beadplexr works with Flow Cytometry Standard (FCS) files (Seamer et al., 1997), which
is the usual output of a flow cytometer. The function read_fcs() loads the given FCS-file
using the functionality provided by the Bioconductor package flowcore (Ellis et al., 2017)
and performs the following steps:
1. Apply an arcsinh transformation of the bead channels—this natural logarithm based

transformation generally performs well on all flow cytometry data (Finak et al., 2010).
Opposed to the traditionally used log10 scaling of flow cytometry data, the arcsinh can
deal with the negative values produced by some newer digital flow cytometers

2. Remove boundary events of the size (FCS) and granularity (SSC) channels—events
outside the range of the detectors are registered with the maximum value possible.
These events can interfere with the clustering

3. Optionally subset the channels to contain just bead events—similar to removal of
boundary events, this might improve identification of the bead clusters

4. Convert the FCS-data to a data.frame

Reading fcs-files ---

library(beadplexr)

Get the path to the example fcs-file

.file_name <- system.file("extdata",

"K2-C07-A7.fcs",

package = "beadplexr")

‘read_fcs()’ requires at least a path and filoe name of the file to

load, by identifying the required forwars and side scatter and the

bead property channels, only the required data is returned.

#

The argument ‘.filter’ takes a named list, where each element is a

size 2 vector, giving the lower and upper cut-off for the channel

given in the element name

.data <- read_fcs(

.file_name = .file_name,

.fsc_ssc = c("FSC-A", "SSC-A"),

.bead_channels = c("FL6-H", "FL2-H"),

.filter = list(

"FSC-A" = c(3.75e5L, 5.5e5L),

"SSC-A" = c(4e5L, 1e6L),

"FL6-H" = c(7L, Inf)

)

)

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 4/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794#supp-1
http://dx.doi.org/10.7717/peerj.5794

4e+05

6e+05

8e+05

1e+06

2e+05 4e+05 6e+05 8e+05

Size (FSC−A)

G
ra

nu
la

rit
y

(S
S

C
−

A
)

A

4e+05

6e+05

8e+05

1e+06

2e+05 4e+05 6e+05 8e+05

Size (FSC−A)

G
ra

nu
la

rit
y

(S
S

C
−

A
)

B

Figure 2 Visualization of FACS data. Size (FSC) and granularity (SSC) can be used distinguish the two
LEGENDplex bead populations. (A) Common monochrome scatter-plot created with facs_plot(.x =
"FSC-H", .y = "SSC-H", .beads = "Bead group") on the sample ‘K3-C0-1.fcs’. High density re-
gions are obscured in this type of plots. (B) Pseudo-colored scatter -plot created with facs_hexbin(.x
= "FSC-H", .y = "SSC-H", .beads = "Bead group", .bins = 75) on the same sample as in (A).
The number of events in discrete bins is indicated by color. The coloring is according to the standard blue-
green-yellow-red scheme, where blue indicates a low number of events, and red indicates a high number.
The Pseudo-colored scatter -plot requires the R-package hexbin to be installed.

Full-size DOI: 10.7717/peerj.5794/fig-2

Because of the variation in detector settings between flow cytometers, it is left to the user
to get the event filtering settings correct for an experiment. However, the event filtering
should remain stable once established. This, of course, requires that there is no change
of cytometer, and that there is no particular drift in the used cytometer. Visualizing the
populations greatly helps in setting the appropriate cut-offs (Fig. 2). It is for this reason
that the ggplot2 based convenience function facs_plot() is included.

Naming the FCS-files
Each sample in a multiplex bead assay must have a unique and meaningful name. A
later step in the workflow separates standard samples from experimental samples. The
standard samples are in addition ordered in a way that calculation of dilution of standard
concentrations is possible. For the dataset included in the package, ‘C’ followed by an
integer denotes the standard (control) samples—as suggested in the LEGENDplex manual
—and ‘S’ followed by an integer denotes the experimental samples. The different parts of
the file name should be separated by a character not used in the IDs; this will make for easy
parsing of the file names.

Identification of analyte MFI
The mean fluorescence intensity (MFI) of each analyte relates directly to the concentration
of the analyte in the sample (Fig. 1A). The first step to calculate the analyte concentration is
to identify the bead populations representing the analytes and calculate the MFIs of these.

beadplexr makes use of structured Panel Information to provide analyte metadata
such as name and start concentration for each standard sample, as well as the name of
the panel, the fold dilution of the standards, and the units of the analytes. The desired
Panel Information is loaded using the load_panel() function by passing the name or
a name pattern to the function. The package itself comes with a set of LEGENDplex

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 5/18

https://peerj.com
https://doi.org/10.7717/peerj.5794/fig-2
http://dx.doi.org/10.7717/peerj.5794

Panel Information, which are documented in the help files to load_panel. The Panel
Information file itself is in YAML format, and the load_panel() function can also load
a Panel Information file located outside the package. The latter is useful in the cases of
custom panels. The Panel Information is not required, but makes sense if the assay is
repeated across several projects.

Libraries --

library(beadplexr)

library(ggplot2)

library(cowplot)

library(dplyr)

library(purrr)

library(tidyr)

library(readr)

library(stringr)

Load data ---

data(lplex)

Load one of the panels distributed with the package, see

?load_panel() for the included panels

panel_info <- load_panel(.panel_name =

"Human Growth Factor Panel (13-plex)")

Analytes of any assay system are identified using the function identify_analyte(),
which identifies analyte clusters and assign an analyte ID to each cluster. The function
takes a data.frame with events and a character vector giving the name of column(s)
where the analytes can be discriminated. An identifier for each analyte is passed in the
argument .analyte_id, which is simply a character vector giving the ID of the analyte.
identify_analyte() sorts the clusters based on their centers and use this ranking
to assign the analyte IDs. The order of analyte IDs given in .analyte_id is therefore
important and must match the expected order of analytes. An optional argument is .trim
which allows the removal events in the periphery of a cluster. The value of the argument
gives the fraction of the most distant points to be removed. Distance based trimming
is non-trivial since the possible numerical range depends on the detection range of the
flow cytometer.

The function identify_analyte() interfaces several methods for unsupervised
clustering, which are passed in the .method argument. The default clustering method
is clustering large applications (clara) from the package cluster (Maechler et al., 2017).
The method selects a number of subsets of fixed size and applies the partitioning around
medoids (pam)-algorithm to each subset. The objective of the pam-algorithm is to
minimize the dissimilarity between the representative of k clusters and the members of
each cluster (Kaufman & Rousseeuw, 2009). The best resulting set of medoids (cluster

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 6/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

centers) is that with the lowest average dissimilarity of all points in the original dataset to
the medoids. Though similar to pam in algorithm type, the Base-R included kmeans works
on minimizing the distance to the cluster representative (Zaki & Wagner Meira, 2014).

The dbscan method in the fpc package differs from clara and kmeans in that dbscan
identifies clusters based local density (Hennig, 2015). The function requires a neighborhood
size and minimum number of events in each neighborhood to evaluate whether points
can be considered as belonging to a cluster (Zaki & Wagner Meira, 2014). If the bead
populations have different local densities, there is no guarantee that the correct number of
clusters will returned. This problem does not exist for Mclust from the mclust package,
which fits a Gaussian mixture model using the EM-algorithm (Scrucca et al., 2016). This
algorithm iteratively optimizes the individual parameters of k normal distributions (Zaki
& Wagner Meira, 2014). This way the relationship between a cluster and a set of data points
is given by a set of probability scores.

We have found that dbscan() is the best clustering method for the forward-side scatter
population identification. However, it can be difficult to get the parameters event count
and neighborhood size correct. The reason for this difficulty lies in the sensitivity of the
method to the choice of neighborhood size; if it is too large clusters might be merged,
and if it is too small everything might be classified as noise. In our experience, the
clustering function clara() is a great all-rounder although the subsampling performed
by the function can lead to slight differences between each run. Using the same value
for set.seed() at the beginning of each session will alleviate this and make each run
reproducible.

Different flow cytometers perform differently in terms of separation of the individual
bead populations. This is due to factors such as detector settings and age of the cytometer
and its light sources. The consequence is that the populations of interest might be closer
together or further apart. Another consequence might be an increased in the noise of
the detectors of the flow cytometer. Collectively these differences in the data constitution
means that one clustering function might perform better on one dataset while be inferior
on another. As with analysis of all flow cytometric data the optimal solution is a matter
of taste, but the better clustering function is the one that separates the populations well,
without including too much noise.

The function identify_legendplex_analyte() can be applied to each sample
individually in a loop. However, it is more prudent to apply the function to all samples
at the same time because the clustering decision will be identical for each sample. In
addition, clustering on all the samples is 1.4 times faster than clustering on each sample
individually.

Identify analytes ---

The function ‘identify_legendplex_analyte()’ used here is

convenience around the clustering work horse ‘identify_analyte’. The

‘identify_legendplex_analyte()’ identifies the bead populations

according to size and granularity, and for each of the two

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 7/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

populations the individual bead populations are identified

#

The function requires a named list with analytes from the Panel

Information, and a list with a list of key-value pairs giving the

arguments for the bead identification on the forward and side

scatter, and a list of key-value pairs giving arguments for the bead

identification in each subpopulation in the APC channel.

#

The argument .trim gives the fraction of events furthest from the

centers of the groups that should be removed. The population center

is found by a Gaussian kernel estimate. In this case we remove 1%

and 3% of the of the events based on their distance to the group

center.

#

The inner lists can be named, but this is not required.

args_ident_analyte <- list(fs = list(.parameter = c("FSC-A", "SSC-A"),

.column_name = "Bead group",

.trim = 0.01),

analyte = list(.parameter = "FL6-H",

.column_name = "Analyte ID",

.trim = 0.03))

The FCS-data is a list of samples, which we combine before cluster

identification.

analytes_identified <- lplex %>%

bind_rows(.id = "Sample") %>%

identify_legendplex_analyte(.analytes = panel_info$analytes,

.method_args = args_ident_analyte)

The analyte IDs for the ‘‘Human Growth Factor Panel (13-plex)’’ bead group A are A4,
A5, A6, A7, A8, A10 and for group B the analyte IDs are B2, B3, B4, B5, B6, B7, B9. In
this case, the beads are arranged from low to high, that is the lowest analyte ID has lowest
intensity in the APC channel (Fig. 3).

This initial and crucial step of the analysis has been successfully performed with data
from a CBA experiment (C McGuckin, CTIBIOTECH, Lyon, France, 2017, unpublished
data) and from a MACSPlex experiment (Miltenyi Biotec, Bergisch Gladbach, Germany,
2017, unpublished data) using the function identify_analyte().

With the analytes identified and the bead populations documented, the MFI of each
analyte can finally be calculated. The function calc_analyte_mfi() gives the possibility to
calculate geometric, harmonic, and arithmetic mean of the in intensity of each respective
analyte reporter, such as PE in a LEGENDplex assay. Since the reporter intensities are
usually log-transformed only the geometric mean is relevant, but harmonic and arithmetic
mean are included to accommodate for special cases.

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 8/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

4e+05

6e+05

8e+05

1e+06

2e+05 4e+05 6e+05 8e+05

Size (FSC−A)

G
ra

nu
la

rit
y

(S
S

C
−

A
)

Bead group

A

B

NA

A

0

5

10

8 9 10 11 12

APC fluorescence (FL6−H)

D
en

si
ty

Analyte ID

A4

A5

A6

A7

A8

A10

NA

Group AB

0

3

6

9

8 9 10 11 12 13

APC fluorescence (FL6−H)

D
en

si
ty

Analyte ID

B2

B3

B4

B5

B6

B7

B9

NA

Group BC

Figure 3 Bead identification and visualization of LEGENDplex data. Populations identified in the sam-
ple ‘K3-C0-1.fcs’. (A) Identification of the two bead populations ‘A’ and ‘B’ according to size and granu-
larity: The two clusters were identified using .method = clara and noisy data points were excluded by
.trim = 0.01. (B–C) Identification of analytes of the bead population ‘A’ and ‘B’: The 1 dimensional
clusters along the APC channel were identified using .method = clara and noisy data points were ex-
cluded by .trim = 0.03. Noisy data points are assigned the group ‘NA’.

Full-size DOI: 10.7717/peerj.5794/fig-3

Calculate analyte MFI ---

The mean fluorescence intensity is calculated for each sample and

analyte. The function ‘calc_analyte_mfi()’ provides three ways of

calculating the MFI: geometric, harmonic, and arithmetic mean.

analyte_mfi <- analytes_identified %>%

filter(!is.na(‘Analyte ID’)) %>%

Call ‘calc_analyte_mfi()’ for each sample

group_by(Sample) %>%

do(calc_analyte_mfi(., .parameter = "FL2-H",

.column_name = "Analyte ID",

.mean_fun = "geometric")) %>%

Later we will fit the standard curve on a log-log scale, so we

transform here

mutate(‘FL2-H’ = log10(‘FL2-H’))

CALCULATION OF STANDARD AND EXPERIMENTAL
SAMPLES
The calculation of the concentration of the analytes of the experimental samples requires
two steps:
1. Create a standard curve by fitting a model to the MFI of the standard analytes and their

known concentrations
2. Estimate the concentration of each sample analyte from the fitted model.
The samples in the dataset included in the package can be distinguished by the presence

of ‘C’ or ‘S’, respectively. The sample type indicating letter is then followed by one or

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 9/18

https://peerj.com
https://doi.org/10.7717/peerj.5794/fig-3
http://dx.doi.org/10.7717/peerj.5794

more integers. Using this naming scheme, it is easy to separate standard samples from
the experimental samples. It is also easy to order the standard samples for concentration
assignment. In this case the naming scheme suggested in the LEGENDplex assay protocol
is followed: 7 indicates the highest concentration of the standard analyte, 1 indicates the
lowest concentration, and 0 indicates blank.

The order of the standard samples is crucial for the function calc_std_conc() to
correctly calculate the concentration of an analyte in each standard sample. The function
requires a vector which gives the order of the standard samples, a start concentration for
the analyte, and a dilution factor. The standard samples are ordered numerically from high
to low and assigned a standard concentration, such that the first sample is given the start
concentration and the second to last sample the lowest concentration, and the very last
sample the concentration 0, as this is assumed to be for background measurement.

The start concentration is stored in the Panel Information for each analyte separately,
as the start concentration might differ from analyte to analyte. The dilution factor is also
given in the Panel Information. It will always be the same for all standard analytes and is
usually 4, meaning that the concentration of each standard analyte is 4 times lower than
the previous concentration. This generally gives a good range of standard concentrations.

Helper function to extract the sample number -----------------------

#’ Cast sample ID to numeric

#’

#’ @param .s A string with the sample ID pattern to be cast

#’ @param .pattern A string giving the pattern

#’

#’ @return

#’ A numeric

#’

as_numeric_sample_id <- function(.s, .pattern = c("C[0-9]+", "S[0-9]+")){

.pattern <- match.arg(.pattern)

Extract the pattern defined just above, remove the first element, and

cast to a numeric

.s %>%

str_extract(.pattern) %>%

str_sub(start = -1L) %>%

as.numeric()

}

Split in standard and sample -------------------------------------

We need to fit a standard curve on the standard samples, and use

this curve to calculate the concentration of the experimental

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 10/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

samples. Here we split the data set in two: one with the standard

samples and one with the experimental samples.

#

We need to order the standard samples from high to low in order to

calculate the concentration of the analytes in the standard sample.

Incorporating the information into the sample name in terms of an

easily parsable pattern is a good practice.

All standard samples have the pattern C[number]

standard_data <-

analyte_mfi %>%

ungroup() %>%

filter(str_detect(Sample, "C[0-9]+")) %>%

mutate(‘Sample number’ = as_numeric_sample_id(Sample,

. pattern = "C"))%>%

select(-Sample)

All non-standards are experimental samples... we could also filter

on S[number]

experiment_data <- analyte_mfi %>%

ungroup() %>%

filter(!str_detect(Sample, "C[0-9]+")) %>%

mutate(‘Sample number‘ = as_numeric_sample_id(Sample,

. pattern = "S"))%>%

select(-Sample)

To the standard data we have to add additional information such the

start concentration of each standard analyte and the dilution

factor, as well as as the analyte names (analyte IDs by themselves

do not make much sense).

#

The concentration of the standard samples is calculated using

‘calc_std_conc()’, which take a vector of sample numbers for

ordering, a start concentration and a dilution factor.

standard_data <- standard_data %>%

left_join(as_data_frame_analyte(panel_info$analytes),

by = "Analyte ID") %>%

rename(‘Analyte name‘ = name) %>%

group_by(‘Analyte ID‘, ‘Analyte name‘) %>%

mutate(

Concentration = calc_std_conc(

‘Sample number‘,

concentration,

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 11/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

.dilution_factor = panel_info$std_dilution

)

) %>%

Later we will fit the standard curve on a log-log scale, so we

transform here

mutate(Concentration = log10(Concentration)) %>%

select(-concentration, -‘Bead group’)

The next step is to fit a standard curve for each analyte. With the standard curve we
can calculate the concentration of the experimental samples (the purpose of the initial
work), we can check the quality of the measurements and the standard curve, and plot
the experimental samples on the standard curve (beadplexr provides easy access to all of
this). The latter is to allow for visual verification that the experimental samples are within
the linear part of the standard curve.

However, in each case we need to ensure that the correct standard curve is used with
the correct experimental data, which means we have to juggle at least three structures: A
data.frame with the standard data, a data.frame with the experimental sample data, and
the models for each analyte (probably a list). It quickly becomes tedious to ensure that
everything is in the correct order—and it is most certainly error prone. To circumvent this,
we can use the nest() and its inverse unnest() functions of the tidyr package. nest()
relies the fact that a data.frame in R is in fact a list, and uses this to pack a data.frame
into a single cell of a data.frame.

Nest and combine standard and experimental data ---------------------

Nested data.frames is a great way of combining and working with

complex data structures.

#

First we pack all the standard data in to a data.frame with a set of

data.frames

standard_data <- standard_data %>%

nest(-‘Analyte ID’, .key = "Standard data")

The the same for all the experimental data

experiment_data <- experiment_data %>%

nest(-‘Analyte ID’, .key = "Experimental data")

Since both structures are data.frames we can easily combine them

plex_data <- inner_join(standard_data, experiment_data,

by = "Analyte ID")

With everything in a neatly arranged data.frame we can now focus on the actual
task at hand, namely calculation of the standard curve for each analyte. For this we use
the function fit_standard_curve(), which interfaces the drm() function from the drc

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 12/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

package (Ritz et al., 2015). The drm() function specializes in fitting various biological
response-models, and the drc package provides several response-models, such as the four-
and five-parameter log–logistic model. fit_standard_curve() is designed to be used in
the piped workflow, and takes a data.frame with MFIs and concentrations and returns the
model as a drc object. The four-parameter log–logistic model is widely used in analysis
of ELISA data. Since the five-parameter model yields better fits, because of the increased
flexibility, this is the default function (Gottschalk & Dunn, 2005).

Calculate standard curves --------------------------------------

For each of the analytes we calculate the standard curve. Working

with nested data.frames means that we have to loop over each row to

calculate the standard curve using the data.frame in "Standard data"

#

When clustering is performed with mclust, the package mclust is

loaded in the background (an unfortunate necessity). The mclust

package also has a function called ‘map’, so an unlucky side effect

of clustering with mclust, is that we need to be specify which map

function we use.

plex_data <- plex_data %>%

group_by(‘Analyte ID’) %>%

mutate(‘Model fit’ = purrr::map(‘Standard data’,

fit_standard_curve,

.parameter = "FL2-H"))

We can plot the standard curve using the built in plot_std_curve() function
(Fig. 4A). With the standard curve created we can calculate the concentrations of the
experimental samples using the function calculate_concentration(), which requires a
data.frame with the MFIs in a column, and the fitted model. It can be helpful to apply
calculate_concentration() to the standard samples, as this can be used to verify that the
standard measurements were all fine, and that the estimation of the sample concentrations
therefore is trustworthy.

After calculating the concentrations we can plot the known standard concentrations ver-
sus the estimated standard concentrations using the function plot_target_est_conc()

(Fig. 4B) and visualize where the samples fall on the standard curve with plot_estimate()
(Fig. 4C).

Calculate experimental sample concentrations --------------------

Using the standard curve just calculated, we can back-calculate the

concentration of the standard concentrations, and more importantly

the concentration of the experimental samples

plex_data <- plex_data %>%

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 13/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5794

0.85

0.90

0.95

1.00

1.05

1.10

1 2 3 4

Standard concentration (log10[pg/ml])

P
E

 (
F

L2
−

H
; l

og
10

[M
F

I])

A
R2: 0.989
 Slope: 1.01
 p: 3.51e−13

1

2

3

4

5

1 2 3 4

Standard concentration (log10[pg/ml])

C
al

cu
la

te
d

co
nc

en
tr

at
io

n
(lo

g1
0[

pg
/m

l])

B

0.85

0.90

0.95

1.00

1.05

1.10

1 2 3 4

Standard concentration (log10[pg/ml])

P
E

 (
F

L2
−

H
; l

og
10

[M
F

I])

C

Figure 4 Visualization of standard and test samples for Angiopoietin-2. The dataset included in
beadplexr is from a 13-plex assay. Here we use Angiopoietin-2 to illustrate the visualizations. (A) A log–
log plot of the standard curve of Angiopoietin-2. Each point is a single measurement (each in duplicate).
The standard concentration is diluted in steps of four fold dilution from 50,000.0 to 12.21 pg/ml. The
intensity of the analyte is measured in the PE channel. The full line indicates the best fit, and gray the
confidence interval. (B) Correlation between the standard concentration (x-axis) and the calculated
concentration of the standard samples (y-axis). The back calculation is done using the fit in (A) and the
MFI of the samples. (C) Using the fit in (A) the concentration of an experimental sample is calculated.
Visual inspection of the position of the experimental samples on the standard curve can reveal samples
that are close to the upper or lower bound of the standard curve.

Full-size DOI: 10.7717/peerj.5794/fig-4

mutate(‘Standard data’ =

purrr::map2(‘Standard data’, ‘Model fit’,

calculate_concentration,

.parameter = "FL2-H")) %>%

mutate(‘Experimental data’ =

purrr::map2(‘Experimental data’, ‘Model fit’,

calculate_concentration, .parameter = "FL2-H"))

Add concentration plots -------------------------------------

We can also loop over each row and add plots to the data.frame

plex_data <- plex_data %>%

mutate(‘Std curve’ =

purrr::pmap(list(.data = ‘Standard data’,

.model = ‘Model fit’,

.title = ‘Analyte name’),

plot_std_curve, .parameter = "FL2-H")) %>%

mutate(‘Std conc’ =

purrr::map(‘Standard data’,

plot_target_est_conc)) %>%

mutate(‘Est curve’ =

purrr::pmap(list(‘Experimental data’,

‘Standard data’,

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 14/18

https://peerj.com
https://doi.org/10.7717/peerj.5794/fig-4
http://dx.doi.org/10.7717/peerj.5794

‘Model fit’,

‘Analyte name),

plot_estimate, .parameter = "FL2-H"))

Lastly we fulfill the purpose of all the previous actions and extract the concentration of
each analyte for each sample.

Extract analyte concentration -----------------------------------

plex_data %>%

unnest(‘Experimental data’) %>%

Make the names a little more telling and transform them back to

useful concentrations

rename(‘Concentration (pg/ml)’ = Calc.conc,

‘Concentration error‘ = ‘Calc.conc error’) %>%

mutate(‘Concentration (pg/ml)’ = 10^ ‘Concentration (pg/ml)’,

‘Concentration error‘ = 10^ ‘Concentration error’)

DISCUSSION
Multiplex bead assays make simultaneous evaluation of several analytes possible. Because of
this, they are an attractive alternative to the commonly used sandwich ELISA. Commercial
systems are available for acquisition on a standard flow cytometer, but these commercial
systems make use of their own proprietary software for the data analysis. This can impose
different limitations to the analysis. The R-package beadplexr, released under the MIT
license, is meant as an open-source alternative to these commercial systems. The package
is available from CRAN and from https://gitlab.com/ustervbo/beadplexr.

A critical step in the analysis multiplex bead assays is the identification of bead
populations corresponding to each analyte. A single function in beadplexr acts as an
interface to several common, and tested, clustering functions, making it easy to find the
best suited clustering function. Future versions of the package will see improvements in
this part, with inclusion of other clustering methods and perhaps a heuristic for automatic
method selection.

Flow cytometry data are inherently noisy. beadplexr only provides a rudimentary
function for removing points with no neighbors and lets the clustering functions determine
which events are considered noisy though the .trim argument. However, a very noisy data
set might make it difficult for an optimal identification of the bead clusters in the first
place. De-noising multidimensional data is not trivial, but work is planned in this direction
for a future release.

CONCLUSION
The R-package beadplexr provides a frame work for easy and reproducible analysis of
multiplex bead assays for the experienced and the novice user alike.

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 15/18

https://peerj.com
https://gitlab.com/ustervbo/beadplexr
http://dx.doi.org/10.7717/peerj.5794

ACKNOWLEDGEMENTS
The authors wish to thankMiltenyi Biotec, Bergisch Gladbach, Germany and CMcGuckin,
CTIBIOTECH, Lyon, France for the example data to test the package. We further
acknowledge the support from the German Research Foundation (DFG) and the Open
Access Publication Fund of Charité—Universitätsmedizin Berlin.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by BMBF grant e:KID. We received support from the German
Research Foundation (DFG) and the Open Access Publication Fund of Charité –
Universitätsmedizin Berlin. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
BMBF.
German Research Foundation (DFG).
Charité—Universitätsmedizin Berlin.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Ulrik Stervbo conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

• Timm H. Westhoff and Nina Babel conceived and designed the experiments, authored
or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code and data is available from GitLab:
https://gitlab.com/ustervbo/beadplexr and from CRAN: https://CRAN.R-project.org/

package=beadplexr.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.5794#supplemental-information.

REFERENCES
Bache SM,WickhamH. 2014.magrittr: a forward-pipe operator for R. Vienna: The R

Foundation. Available at https://CRAN.R-project.org/package=magrittr .

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 16/18

https://peerj.com
https://gitlab.com/ustervbo/beadplexr
https://CRAN.R-project.org/package=beadplexr
https://CRAN.R-project.org/package=beadplexr
http://dx.doi.org/10.7717/peerj.5794#supplemental-information
http://dx.doi.org/10.7717/peerj.5794#supplemental-information
https://CRAN.R-project.org/package=magrittr
http://dx.doi.org/10.7717/peerj.5794

Carr D, Lewin-Koh N, Maechler M, Sarkar D. 2018. hexbin: hexagonal binning routines.
Vienna: The R Foundation. Available at https://CRAN.R-project.org/package=hexbin.

Ellis B, Haaland P, Hahne F, Meur NL, Gopalakrishnan N, Spidlen J, JiangM. 2017.
flowCore: flowCore: basic structures for flow cytometry data. Vienna: The R Founda-
tion. Available at https:// bioconductor.org/packages/ release/bioc/html/ flowCore.html .

Elshal MF, McCoy JP. 2006.Multiplex bead array assays: performance evaluation and
comparison of sensitivity to ELISA.Methods 38:317–323
DOI 10.1016/j.ymeth.2005.11.010.

Finak G, Perez J-M,Weng A, Gottardo R. 2010. Optimizing transformations for
automated, high throughput analysis of flow cytometry data. BMC Bioinformatics
11:546 DOI 10.1186/1471-2105-11-546.

Gottschalk PG, Dunn JR. 2005. The five-parameter logistic: a characterization and
comparison with the four-parameter logistic. Analytical Biochemistry 343:54–65
DOI 10.1016/j.ab.2005.04.035.

Hennig C. 2015. fpc: Flexible Procedures for Clustering. Vienna: The R Foundation.
Available at http://CRAN.R-project.org/package=fpc .

Henry L,WickhamH. 2018. purrr: functional programming tools. Vienna: The R
Foundation. Available at https://CRAN.R-project.org/package=purrr .

Kaufman L, Rousseeuw PJ. 2009. Finding groups in data: an introduction to cluster
analysis. Hoboken: John Wiley & Sons.

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. 2017. cluster: cluster analysis
basics and extensions. Vienna: The R Foundation.

Miltenyi Biotec. 2014.Data acquisition and analysis without the MACSQuant R©

analyzer—general instructions for MACSPlex cytokine kits. Germany: Miltenyi Biotec.
Morgan E, Varro R, Sepulveda H, Ember JA, Apgar J, Wilson J, Lowe L, Chen R,

Shivraj L, Agadir A, Campos R, Ernst D, Gaur A. 2004. Cytometric bead array: a
multiplexed assay platform with applications in various areas of biology. Clinical
Immunology 110:252–266 DOI 10.1016/j.clim.2003.11.017.

R Core Team. 2018. R: a language and environment for statistical computing. Vienna:
The R Foundation. Available at http://www.R-project.org/ .

Ritz C, Baty F, Streibig JC, Gerhard D. 2015. Dose-response analysis using R. PLOS ONE
10:e0146021 DOI 10.1371/journal.pone.0146021.

Scrucca L, FopM,Murphy TB, Raftery AE. 2016.mclust 5: clustering, classification and
density estimation using Gaussian finite mixture models. The R Journal 8:289–317.

Seamer LC, Bagwell CB, Barden L, Redelman D, Salzman GC,Wood JCS, Murphy RF.
1997. Proposed new data file standard for flow cytometry, version FCS 3.0. Cytome-
try 28:118–122
DOI 10.1002/(SICI)1097-0320(19970601)28:2<118::AID-CYTO3>3.0.CO;2-B.

WickhamH. 2009. ggplot2: elegant graphics for data analysis. New York: Springer.
WickhamH. 2018. stringr: simple, consistent wrappers for common string operations.

Vienna: The R Foundation. Available at https://CRAN.R-project.org/package=stringr .

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 17/18

https://peerj.com
https://CRAN.R-project.org/package=hexbin
https://bioconductor.org/packages/release/bioc/html/flowCore.html
http://dx.doi.org/10.1016/j.ymeth.2005.11.010
http://dx.doi.org/10.1186/1471-2105-11-546
http://dx.doi.org/10.1016/j.ab.2005.04.035
http://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=purrr
http://dx.doi.org/10.1016/j.clim.2003.11.017
http://www.R-project.org/
http://dx.doi.org/10.1371/journal.pone.0146021
http://dx.doi.org/10.1002/(SICI)1097-0320(19970601)28:2\lt 118::AID-CYTO3\gt 3.0.CO;2-B
https://CRAN.R-project.org/package=stringr
http://dx.doi.org/10.7717/peerj.5794

WickhamH, François R, Henry L, Müller K. 2018. dplyr: a grammar of data manipula-
tion. Vienna: The R Foundation. Available at https://CRAN.R-project.org/package=
dplyr .

WickhamH, Henry L. 2018. tidyr: easily tidy data with ‘‘spread()’’ and ‘‘gather()’’
functions. Vienna: The R Foundation. Available at https://CRAN.R-project.org/
package=tidyr .

WickhamH, Hester J, ChangW. 2018. devtools: tools to make developing R packages
easier. Vienna: The R Foundation. Available at https://CRAN.R-project.org/package=
devtools.

Wilke CO. 2017. cowplot: streamlined plot theme and plot annotations for ggplot2.
Vienna: The R Foundation. Available at https://CRAN.R-project.org/package=
cowplot .

Yu Y,Wang C, Clare S, Wang J, Lee S-C, Brandt C, Burke S, Lu L, He D, Jenkins NA,
Copeland NG, Dougan G, Liu P. 2015. The transcription factor Bcl11b is specifically
expressed in group 2 innate lymphoid cells and is essential for their development.
The Journal of Experimental Medicine 212:865–874 DOI 10.1084/jem.20142318.

Zaki MJ, Wagner Meira J. 2014.Data mining and analysis: fundamental concepts and algo-
rithms. Cambridge: Cambridge University Press DOI 10.1017/CBO9780511810114.

Stervbo et al. (2018), PeerJ, DOI 10.7717/peerj.5794 18/18

https://peerj.com
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot
http://dx.doi.org/10.1084/jem.20142318
http://dx.doi.org/10.1017/CBO9780511810114
http://dx.doi.org/10.7717/peerj.5794

