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Abstract. This paper considers questions related to the adop-
tion of stochastic methods in hydrogeology. It looks at fac-
tors affecting the adoption of stochastic methods including
environmental regulations, financial incentives, higher edu-
cation, and the collective feedback loop involving these fac-
tors. We begin by evaluating two previous paper series ap-
pearing in the stochastic hydrogeology literature, one in 2004
and one in 2016, and identifying the current thinking on
the topic, including the perceived data needs of stochastic
methods, the attitude in regulations and the court system re-
garding stochastic methods, education of the workforce, and
the availability of software tools needed for implementing
stochastic methods in practice. Comparing the state of adop-
tion in hydrogeology to petroleum reservoir engineering al-
lowed us to identify quantitative metrics on which to base our
analysis. For impediments to the adoption of stochastic hy-
drology, we identified external factors as well as self-inflicted
wounds. What emerges is a picture much broader than cur-
rent views. Financial incentives and regulations play a major
role in stalling adoption. Stochastic hydrology’s blind spot
is in confusing between uncertainty with risk and ignoring
uncertainty. We show that stochastic hydrogeology comfort-
ably focused on risk while ignoring uncertainty, to its own
detriment and to the detriment of its potential clients. The
imbalance between the treatment on risk on one hand and
uncertainty on the other is shown to be common to multiple
disciplines in hydrology that interface with risk and uncer-
tainty.

1 Introduction

A key element in the discussion on adoption of stochastic
hydrogeology (SH), or the lack of it, is the apparent discon-
nect between theory and practice. The root causes for the
perceived failure in adoption have been discussed in several
papers (published in 2004 and 2016; for a complete list see
Sect. 2). In this study, we are set to take yet another look
at this issue and draw some conclusions based on a factual
basis. Regardless of whether true or not, this apparent gap
raises questions such as the following: first, what does “prac-
tical” mean? Does it mean “has no use in real life” or “useful
but hard to apply, and would you please simplify it and make
it more accessible”? How real is the perceived gap and how
much of it depends on the skills of the commentator? Is there
a reasonable delineation between theory and practice? For
example, would it take a mobile app with all-inclusive user
interfaces in order for SH to be viewed as practical? These
and other questions will be addressed here.

There is an important issue looming in the background
of this conversation. SH intends to model uncertainty, and
uncertainty exists and must be dealt with, regardless of any
perceived shortcoming. One can argue about strengths and
weaknesses of SH, e.g., the practicality, but there is no ar-
gument about the need to address uncertainty. But who is to
blame for ignoring uncertainty? Are there some external fac-
tors not related to the science? And what has SH missed, if
anything, that could have made a difference in adoption? This
paper reviews the evolution of the thoughts on these topics.
It evaluates the strengths and weaknesses of arguments made
and provides additional perspectives by looking at factors not
considered before.
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The motivation for this paper originated from the need to
get to the root causes of some of the issues that we view as
critical and from the growing recognition that there is a need
to both go beyond the scientific and technical issues asso-
ciated with SH and to consider issues related to education,
public policy, economics, and the law. However, this paper
is not just about external factors: we will also look at SH’s
biggest omissions.

The remainder of the paper is organized as follows: Sect. 2
summarizes and compares the 2004 SERRA (Stoch. Env.
Res. Risk A.) and 2016 WRR (Water Resour. Res.) series;
Sect. 3 reviews available SH-related software; Sect. 4 com-
pares the role of stochastic methods in hydrogeology and
petroleum engineering; and Sect. 5 discusses legal and regu-
latory perspectives on stochastic methods; Sect. 6 discusses
the perception of uncertainty broadly and in SH; and Sect. 7
concludes with recommendations and outlook for the field of
SH in practice.

2 Summary of perspectives from the 2004 and 2016
paper series

To begin the SH-specific discussion, we provide a brief sum-
mary of the comments made in two series of articles address-
ing SH in practice. These series were published in SERRA
in 2004 and in WRR in 2016. In our subsequent discussion
we shall refer to the “2004 series” (Christakos, 2004; Da-
gan, 2004; Freeze, 2004; Ginn, 2004; Molz, 2004; Neuman,
2004; Rubin, 2004; Sudicky, 2004; Winter, 2004; Zhang and
Zhang, 2004) and to the “2016 series” (Cirpka and Valoc-
chi, 2016; Fiori et al., 2016; Fogg and Zhang, 2016; Ra-
jaram, 2016; Sanchez-Vila et al., 2016). The 2004 series
asked nine researchers the following two specific questions:
(1) “Why have there not been many real-world applications
of stochastic theories and approaches, despite the significant
progress in developing such rigorous theories and approaches
for studying fluid flow and solute transport in heterogeneous
media?” and (2) “In your opinion, what must be done in order
to render stochastic theories and approaches as routine tools
in hydrogeologic investigation and modeling?”. The 2016 se-
ries is more open-ended, asking four teams of researchers to
debate on “stochastic subsurface hydrology from theory to
practice”. We chose these two series as a baseline for dis-
cussion because they address similar questions, they com-
bine multiple perspectives from a variety of researchers, and
the 12-year timespan between them allows us to consider the
evolution of SH. However, due to the more open nature of the
2016 series, not all of the discussion points can be compared
between the two series. Of note is that we refrain from con-
sidering issues related to transport modeling specifics in as
much detail as the 2016 WRR series due to the wider scope
of our questions regarding stochastic methods in general.

2.1 A brief summary of the issues

The themes pursued by both paper series in trying to ex-
plore the gap between academia and practitioners regarding
the adoption of SH are as follows:

1. Regulations and litigation. There is a broad agreement
(but not a consensus) that institutional attitudes (in the form
of regulations, public policy, and the legal system) are major
factors to consider, and that in the case of SH, the institu-
tional attitudes have played a negative role. In a departure
from this broadly held view, Christakos (2004) opines that
no blame should be assigned on the court system when other
fields use models with uncertainty, e.g., biomedical mod-
els for DNA analysis, under legal scrutiny. We will address
the following questions. What is the evidence to support the
claim about institutional resistance? Is there evidence to the
contrary?

2. The role of higher education. Authors criticized the lack
of academic preparation in the theoretical fundamentals of
stochastic theory. Suggestions were made that SH theory is
too complex to be taught. We will address the following
questions. What is the factual basis for this statement? Is
there evidence to the contrary? Who drives the development
of teaching curricula, and what can be learned about it from
other disciplines?

3. Lack of appropriate measurement technology and/or
data. A major theme in the 2004 series is the apparent lack of
technologies needed for providing measurements attributable
to the parameters and scales of stochastic models. Addition-
ally, it is suggested that the application of SH requires large
amounts of data. We will address the following questions.
What are the elements of SH that require lots of measure-
ments? Are there statistical tools to handle situations with a
severe shortage of measurements?

4. Lack of user-friendly software that applies theory. This
topic mainly appears as the call for user-friendly software
that integrates multiple forms of information and that is com-
putationally efficient enough for practitioners to use. We will
address the following questions. What is the factual basis for
this assertion?

5. SH theory is out of touch with reality. Arguments here
were either directed to the theoretical research as not appli-
cable in real-world problems (e.g., oversimplification of spa-
tial structure, or minimizing uncertainty in parameters when
other uncertainties need to be minimized) or to the lack of
applications to showcase the applicability of theories in real-
world problems. We will address the following questions. Is
there a factual basis for these arguments? Is there any partic-
ular aspects of SH that gives rise to such arguments?

The topics most prevalently mentioned in the 2016 WRR
series are Issue 4 (user-friendliness of concepts) and Issue 5
(theory too limited or not showcased in applications). Con-
cerns regarding the availability of useful software tools re-
main (Cirpka and Valocchi, 2016); however there is some
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recognition that a few stochastic modules were introduced
into forward models (Fiori et al., 2016).

2.2 Possible misconceptions and general observations

In assessing the root causes of the so-called gap, we need to
distinguish between real and perceived obstacles. Perceived
obstacles reside in myths and misconceptions. Real obstacles
are everything else.

It is often stated that SH requires lots of data for real-life
applications. As is the case with most persistent myths, there
is a grain of truth here, and this is the observation that getting
a well-defined variogram (or for that matter, other space ran-
dom function (SRF) models such as multi-point spatial statis-
tics) requires dozens of measurements. Whereas this obser-
vation is true, everything else that is added on top of it is not
true. The variogram is a stochastic method for representing
the spatial variability structural patterns with a model that is
parsimonious compared to a field of unknown values but al-
lows for the uncertainty in the local variability in un-sampled
locations. A shortage of field data does make accurate mod-
eling of variograms difficult, but that is not a gap in SH. In
fact, SH is amply equipped to deal with that challenge. For
example, instead of wrongly using (and wrongly assuming)
the existence of a deterministic variogram model, one can
consider simultaneously several potential variogram models
instead of only one. Additionally, one can introduce paramet-
ric uncertainty into the estimation process (Rubin, 2003).

Fiori et al. (2016) noted the significant advancement of
measurement technologies. And while this is commendable
and most welcome, it does not appear to have made a signif-
icant change in closing the gap. This suggests that measure-
ment technologies, although they advance the field of hydro-
geology, should not be viewed as a critical factor in closing
the gap for SH. SH’s primary goal is the modeling of un-
certainty, and uncertainty exists (and must be modeled) re-
gardless of the limited availability of measurements and the
limitations of measurement technologies. The data help in re-
ducing uncertainty, but they cannot make it disappear (at least
not in field applications). The need for a large amount of data
in this context is somewhat of an oxymoron: having lots of
data is useful, but a lack of data does not make uncertainty go
away, and in fact, it only accentuates the need for stochastic
methods. Should theories be accepted or rejected based on
the availability of appropriate measurement technologies? If
that were true, then the theory of relativity would have been
kept in the drawer until the 1970s.

As noted by Cirpka and Valocchi (2016) and Li et
al. (2018), Bayesian methods can use a variety of forms
of information including prior knowledge and indirect data
to help constrain the uncertainty in these parameters. Vari-
ograms can be used, even in the absence of a single measure-
ment based on prior information. This would result in large
uncertainty in the predictions, but (1) that is not a problem,
but just a reflection of reality, and (2) that is the role of SH:

to predict uncertainty, not to make it go away. The option of
giving up on modeling uncertainty on the grounds that there
are not enough data is not justified.

Moving forward, we will refrain from focusing on data
needs based on our understanding that scarcity of data does
not contribute to the gap. For the same reason, we will also
avoid discussing the (always welcome) effort towards im-
proving measurement technologies. Rather, we should focus
on Issues 1, 2, and 4. We will show that there is a factual
base that allows evaluating the veracity of these issues. We
will also address what we call the “big miss” of SH.

3 Software issues

The 2004 and 2016 paper series both identified the lack of
SH software solutions as a critical hindrance on the road
to acceptance of stochastic methods by practitioners. Neu-
man (2004) mentioned the lack of ready-to-use and user-
friendly software packages. Dagan (2004) and Winter (2004)
suggested that most software solutions tend to oversimplify
hydrogeologic complexity and thus are of limited appeal.
Cirpka and Valocchi (2016) pointed out that stochastic soft-
ware solutions for reactive transport are in their infancy. Fiori
et al. (2016) mentioned that “Practical tools guided by the
stochastic paradigm are very few, although the last few years
have seen a promising increase of them”. Here, we wish to
explore the software aspect of SH further through a limited
survey of the software landscape. Toward this goal, we devel-
oped a list of stochastic software solutions and related them
to various components of SH studies. We investigated the ex-
tent to which these solutions are capable of handling a variety
of SH problems. We do not intend to provide here an exhaus-
tive summary of all SH software tools. Our plan is to identify
whether (or not) a critical mass of software tools exists, such
that most geologies and most aspects of SH studies could be
addressed using an existing software solution.

Critical mass for software is a debatable concept. If one
defines critical mass as having readily available software for
all situations, critical mass would forever stay an elusive
goal. A less demanding and possibly more realistic definition
would be to consider readily available solutions as well as
source codes that could be modified to address special situa-
tions. There is an ever-increasing library of open-source soft-
ware solutions and modular, adjustable solutions requiring
minimal programming skills for applications and it makes
significant contributions to the critical mass. Hence, we will
avoid making calls about whether or not critical mass is avail-
able, but we will show that we are possibly very close and
way beyond the common perception.

3.1 Classification of stochastic software with examples

There is a wide range of software solutions relating to SH
that we could mention. In this study, we focused on software
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solutions consistent with the definition of SH given in the
introduction. We therefore limit our search to software solu-
tions that are guided by complete statistical theories or that
make substantial use of statistical concepts.

The three application areas covered in our review include
(1) the simulation of random fields, (2) stochastic forward
modeling, and (3) stochastic inverse modeling. The first area
focuses on the simulation of spatially variable flow and trans-
port domains using geostatistical models. The second area
focuses on simulating dependent hydrogeological variables,
such as pressure or concentration, in spatially variable do-
mains. The third area focuses on identifying the SRF models
that could then be used in application under areas 1 and 2.

Table 1 provides a list of software packages and their pri-
mary focus area. Our selection does not imply best of class
and should not be viewed as a recommendation. We recog-
nize that forward and inverse modeling tools utilize (and may
even have built-in) random field generators (RFGs), but in
general, random field generation is not their primary focus.
Hence, we identified each software package only by its pri-
mary application area(s).

3.1.1 Random field generation and data exploration

The first application area refers to the generation of spatially
variable fields and field data exploration. Available software
packages cover a wide range of SRF models that can be, and
have been, used to characterize a diverse range of geologi-
cal environments, from unlithified sediments to sedimentary
bedrock aquifers to crystalline bedrocks (see Eaton, 2006, for
a more detailed review of type of geologies).

A partial review of the types of SRF models covered by
software packages listed in Table 1 is provided in Table 2.
In many cases, the SRF models used in the software pack-
ages were modified to meet the needs of specific applications,
and, with that modification, expanded the range of applica-
bility. For example, when investigating the karst carbonate
Biscayne aquifer in southeastern Florida, Sukop and Cun-
ningham (2014) used GSLIB to simulate the spatial distribu-
tion of porosity in the carbonated matrix of the karst aquifer
after adding capability for simulating nested variogram struc-
tures. Castilla-Rho et al. (2014) used Gaussian random field
generators (GRFGs) as implemented in SGeMS to simulate
small-scale variability in a paleo-valley-type aquifer in north-
ern Chile, where SGeMS is considered as an evolution of
GSLIB (Bianchi and Zheng, 2009).

GRFGs represent a class of SRFs useful for modeling con-
tinuous variables, such as hydraulic conductivity, due to the
parsimony of the Gaussian models. Jankovic et al. (2017)
used a three-dimensional version of HYDRO_GEN in or-
der to simulate three-dimensional SRFs of log-normally dis-
tributed hydraulic conductivity characterized by exponential
and spherical variograms and their influence on breakthrough
curves (Bellin and Rubin, 1996). Cvetkovic et al. (1999)
used HYDRO_GEN to generate SRFs of a log-normally dis-

tributed variable characterized by an exponential correlation
structure to model fracture aperture controlling fluid flow and
tracer transport in a crystalline rock. While dominant in the
early days of SH, GRFGs represent just one of many options
currently available.

The development of multi-point statistics (MPS) allowed
users to easily simulate non-Gaussian fields (Mariethoz et
al., 2010). Although the concept of MPS was explored in
the 1990s (Guardiano and Srivastava, 1993), it was Mari-
ethoz et al.’s (2010) multi-point direct sampling (MPDS) al-
gorithm that opened the door for broad use. Pirot et al. (2014)
used MPDS as implemented in DeeSse to simulate topogra-
phies in a braided river system (Straubhaar, 2015). Savoy et
al. (2017) used a DeeSse-generated dataset to explore trans-
port through complex geometry that GRFs could not de-
scribe.

Another method for simulating non-Gaussian geostatisti-
cal simulations is the transition probability–Markov chain
(TP–MC) approach to the random field generation of cat-
egorical variables implemented in TPROGS (Carle, 1999).
The TP–MC approach focuses on modeling the spatial ar-
rangement of lithofacies with linkage to basic geological
attributes such as volumetric lithofacies proportions, mean
lengths, and juxtaposition tendencies. He et al. (2014) used
TPROGS to simulate structural heterogeneity for glacial de-
posits in a headwater catchment in Denmark. Engdahl et
al. (2010) used TPROGS to simulate shallow fluvial aquifer
that contain representations of sedimentary bounding sur-
faces. Fleckenstein et al. (2006) used TPROGS to simulate
gravel, sand, and muds in the alluvial fan of the Cosumnes
River in California, USA. Indicator and categorical variables
have been implemented in GSLIB for simulating geologic
layers (Deutsch and Journel, 1998; Marinoni, 2003). Jackson
et al. (2000) used Isim3d to simulate a heterogeneous con-
tinuum porous medium to represent fractured rocks (Gómez-
Hernández and Srivastava, 1990). In conclusion, a variety of
software implementing different theoretical models of spatial
variability are available. Our table does not aim to provide a
full review of all methods and associated software for spa-
tial variability, but rather to show that implementations are
readily available for multiple types of geologies represented
by the different statistical models of spatial variability. We
also note that programming capability goes a long way to-
wards expanding the original, stated capabilities of current
software packages.

3.1.2 Forward modeling

Stochastic software for forward modeling refers to software
tools for simulating hydrogeological processes using spa-
tial distributions of hydrogeological parameters. A forward
model, in itself, may not be an SH item, but when coupled
with a random field and/or parameter generator, it becomes
a bona fide SH application. There are numerous SH studies
that couple process simulators with random field and param-
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Table 1. Application areas of reviewed stochastic hydrogeology software.

Software Main focus area Reference

Random field Forward Inverse
generation and modeling modeling

data exploration

DeeSse X Straubhaar (2015)
DREAM X Vrugt (2016)
FIELDGEN X Doherty and Hunt (2010)
GMS X X X Aquaveo LLC (2012)
GSLIB X Deutsch and Journel (1998)
GSTAT X Pebesma (2004)
Isatis X Bleines et al. (2004)
PEST X Doherty (2005)
iTough2 X Finsterle (2011)
MAD X Osorio-Murillo et al. (2015)
SGeMS X X Remy et al. (2009)
TPROGS X Carle (1999)
spMC X Sartore (2013)
HYDRO_GEN X Bellin and Rubin (1996)
Isim3D X Gómez-Hernández and Srivastava (1990)

Table 2. Popular methods for simulating spatial variability of hydrogeological properties and their implementation in software packages
(area 1). Additional options for random field generation are discussed here: https://petrowiki.org/Geostatistical_conditional_simulation\T1\
textbackslash#Sequential_simulation (last access: 12 December 2017).

Software package Geostatistical models of spatial variability

Gaussian Non-Gaussian

Multi-point Transition Indicator/
statistics probability categorical

DeeSse X X
FIELDGEN X
GMS X X X
GSLIB X X
GSTAT X X
Isatis X
SGeMS X X X
TPROGS X X
Isim3d X

eter generators. Most commonly, investigators link between
one of the software packages listed above for generating real-
izations of the SRF with a process simulator of their choice.
Several of the software packages listed embed both RFGs
and forward models into a single software package. Jones et
al. (2005) presented an algorithm implemented within GMS
that combines the stochastic simulation of hydraulic conduc-
tivity using TPROGS with MODFLOW 2000, a popular nu-
merical model for flow and transport modeling (Harbaugh et
al., 2000). Renard and Jeannée (2008) combined geostatisti-
cal simulations implemented using Isatis with flow simula-
tions using METIS (Goblet, 1989). Most software packages
are able to perform in two dimensions and three dimensions.

The important point is that the RFGs are stand-alone and thus
can be easily coupled with forward simulators, and this opens
the door for a large number of situations amenable to SH
treatment.

3.1.3 Inverse modeling

The third application area covers inverse modeling. Inverse
modeling is a study in assimilating Type A (i.e., local data,
correlated with a collocated target variable) and Type B data
(non-local, usually related to a subdomain of the target vari-
ables). It is intended to produce an image of the subsur-
face more coherent that what could be achieved with Type
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A data alone. As an example, Murakami et al. (2010) used
the Method of Anchored Distributions (MAD) algorithm
(Rubin et al., 2010) to condition a three-dimensional hy-
draulic conductivity field at the Hanford 300 Area, Washing-
ton, USA. MAD allowed the combination of large-scale in-
jection rate measurements with small-scale electromagnetic
borehole flowmeter measurements to derive posterior proba-
bility density functions (pdfs) for geostatistical parameters.
In another example, Reeves et al. (2014) combined Type
A data obtained from boreholes with soil deformation data.
Chen and Hoversten (2012) and Hou et al. (2006) used seis-
mic AVA and CSEM data to estimate reservoir parameters
based on statistical rock physics models through Markov ran-
dom fields. Kowalsky et al. (2004, 2005) combined ground-
penetrating radar (GPR) data (for Type B data) with Type
A hydrologic data to estimate the flow parameters in the
vadose zone. Bellin and Rubin (2004) and Woodbury and
Rubin (2000) used concentration for Type B data. Chen et
al. (2004) used geophysical data for Type B data for geo-
chemical characterization. Hubbard et al. (1999) used GPR
for Type B data used for identifying the spatial correlation
structure. Ezzedine et al. (1999) used geophysical data for
Type B data in a characterization study of a superfund site,
and Hubbard et al. (2001) used geophysical data for Type B
data in a characterization study of a large-scale experimental
site.

Published inverse modeling software packages cover a
wide range of statistical concepts. It is not our goal here to
rank and compare inverse modeling strategies, but rather, to
provide a glimpse into the diversity for ideas employed and
implemented. Detailed reviews are provided in McLaugh-
lin and Townley (1996), Ginn and Cushman (1990), and in
Rubin (2003, chap. 13). There are, of course, different ways
to classify inverse modeling concepts, but the most common
one is to define the inverse models by the way they treat the
hydrological variables. One approach here is to consider the
parameters as deterministic yet unknown, which translates
into some sort of optimization- or regression-based proce-
dure (e.g., PEST, iTough2, TPROGS, and spMC). The goal
of the inverse modeling here would be to define the uncer-
tainty associated with estimating these parameters.

Another approach is to consider the model parameters as
random variables, with inverse modeling targeting their pdfs
(e.g., MAD and DREAM). Here, we can identify strategies
employing maximum likelihood (Kitanidis and Lane, 1985;
Rubin and Dagan, 1987b), maximum a posteriori (McLaugh-
lin and Townley, 1996), and Bayes’ theorem (Osorio-Murillo
et al., 2015; Rubin et al., 2010; Vrugt and Ter Braak, 2011).
In the Bayesian approach, parameters are described by a pdf,
and the estimation process consists in updating the prior pdf
with in situ measurements. Bayesian methods offer a more
complete treatment of uncertainty than optimization meth-
ods, as optimization discards nonoptimal yet realistic param-
eter sets, whereas in the Bayesian framework each of the pa-

rameter sets is associated with probability and they are all
recognized, when assigned with the tiniest probability.

3.2 Description of properties of software packages

Several software solutions come with built-in forward
model(s) and/or random field generator(s). For example,
MODFLOW includes the possibility of importing SRFs
simulated by TPROGS (ModelMuse Help, 2009), and the
forward model GMS contains modules for the generation
of conditional GRF based on FIELDGEN (Aquaveo LLC,
2012). This approach provides an easy gateway into SH ap-
plications, but at the price of limiting the range of applica-
tions. Others software solutions are designed to accommo-
date user-supplied computational modules (e.g., PEST and
GSLIB). MAD is a hybrid between these two approaches, as
it comes with built-in modules, but it is also capable of ac-
commodating user-supplied modules. This flexibility opens
the door for a wide range of applications, but it could be chal-
lenging for users lacking some minimal programming skills.

The modularity of SRF software solutions is a key as-
pect for their wide adoption. This modularity, implemented
for example in GSLIB as a set of Fortran utility routines,
allows users to identify specific code sections of relevance
and use them in the data analysis workflow. Other exam-
ples of modularity include R packages, such as GSTAT or
spMC, which respectively implement parameter estimation
based on variograms and transitional probabilities within R
(Pebesma, 2004; Sartore, 2013). This allows R users to adopt
spatial statistics concepts seamlessly in their workflow. Fi-
nally, MAD has been implemented such that it can easily be
linked to any RFG or forward model. Even though links to
popular models such as MODFLOW and GSTAT are readily
available within MAD, using other specific models is made
easy thanks to the existence of built-in links that require min-
imal coding from the user. Allowing for flexibility in the form
of packages that can be integrated into the user’s workflow,
either as a toolbox within a forward numerical model, or as a
package that can be used within a wider programming envi-
ronment, should facilitate the adoption of stochastic concepts
by users.

One final important issue to consider relates to the user-
friendliness of software solutions. While some users prefer
to work from shell command lines providing flexibility and
modularity and allowing the construction of reproducible and
automated workflow, others might prefer a graphical user in-
terface (GUI), designed to ease the use of the software by
providing user-friendly options for inputting data to the sta-
tistical algorithms and visualizing results for interpretation.
In our review, all software provided shell command line ver-
sions, thereby allowing practitioners and researchers to ran-
domize parameter fields using text input files. On the other
hand, GUIs were not available for all packages. For a few
geostatistical programs, a GUI was added at later stages of
the development as an interface to the geostatistical pro-
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grams. For example Batgam© is a GUI developed for GSLIB
(Buxton et al., 2005). Our review recognizes that differ-
ent audiences require different capabilities in terms of user-
friendliness and therefore reports available forms for using
the software solution (Table 3).

3.3 Discussion

In this section, we aim to provide further thoughts about
other statistical software and toolkits that were not designed
directly for SH applications, but could nevertheless be eas-
ily connected to SH. In addition, we will also identify focus
areas in need for additional attention and development effort.

Statistical concepts, such as Markov chain Monte Carlo
simulation, transitional probability, GRF, and random walks,
have been widely used in SH. In addition to a few of the exist-
ing SH packages that have already incorporated those mod-
ules, there are other statistical packages that are available,
which can be easily linked with hydrogeological models. For
example, Nimble provides a way to incorporate Bayesian hi-
erarchical modeling into our subsurface parameter estimation
(de Valpine et al., 2016), and the R package forecast offers a
way to build a random walk to help solve reactive transport
models (Hyndman and Khandakar, 2008). The geostatisti-
cal MATLAB toolbox mGstat provides a MATLAB interface
to GSTAT and SGeMS, allowing its users to call GSTAT or
SGeMS functions directly from MATLAB and have the out-
put returned seamlessly (Hansen, 2004). These stand-alone
statistical packages or software are not designed for SH, but
could be easily connected to either existing hydrogeology
models or SH toolkits.

There are some areas in which important gaps still exist.
For example, modeling of uncertainty in karst formations is
at its infancy. In another direction, stochastic modeling of
reactive transport lags behind modeling of flow processes,
mostly due to the complexity of the reaction networks and
some ambiguity about the underlying physics. Some of the
key transport processes such as diffusion-dominated reactive
transport and transverse reactive transport (see the 2016 de-
bate papers, as listed in Sect. 2) are still debatable. The chal-
lenge here, it might be argued, is not in the SH side. If a
clearer picture of the physics and chemistry in complex sys-
tems were to emerge, the corresponding stochastic software
could be used to account for uncertainties due to spatial vari-
ability. We, in fact, disagree with such an argument because
uncertainty must be dealt with whether or not an underlying
physical model does exist. We will expand on that in a sec-
tion devoted to the shortcomings of SH.

In summary, a wide variety of stochastic software pack-
ages and toolkits are available for practitioners and re-
searchers and have proven capability for modeling and an-
alyzing a wide range of conditions. Despite significant ef-
forts in linking between the software packages representing
the various aspects of SH, we note that in many cases some
minimal programming skills are needed in order to imple-

ment numerical solutions targeted at the specific needs of the
modeling exercise. One could always aspire to obtain seam-
less links between all packages, but the need of programming
skills is not a credible reason for explaining why practition-
ers in environmental engineering and groundwater hydrology
are ignoring opportunities offered by the stochastic approach.
We propose that concerns about limitations of software solu-
tions may be rooted in having (or not having) programming
skills. It is hard to believe that a sophisticated application in
petroleum reservoirs would be scuttled because of difficulties
in linking software packages, and so, it is not the lack of pro-
gramming skills but the availability to pay for programming
skills. And for this, you must have clients who are willing to
pay. We will explore this question in the subsequent section.

4 A comparative study: hydrogeology and petroleum

Several of the contributors to the 2004 and 2016 paper series
have pointed to a lack of education in SH, along with stochas-
tic analyses being too costly and not providing enough bene-
fit, as main reasons for the lack of adoption of these methods
in practice (Cirpka and Valocchi, 2016; Dagan, 2004; Fiori et
al., 2016; Molz, 2004; Neuman, 2004; Sudicky, 2004; Win-
ter, 2004). In response, we aim to compare the factors affect-
ing the adoption of new methods in hydrogeology to those
in petroleum engineering, for which stochastic methods for
characterizing, mapping, and modeling the subsurface have
become commonplace (e.g., Floris et al., 2001; Jonkman
et al., 2000; Liu and Oliver, 2003; Oliver and Chen, 2011;
Rwechungura et al., 2011). The factors we aim to compare
include incentive structure, education, and the interaction be-
tween academic and industrial organizations.

4.1 Incentive

To compare the two industries, we start by recognizing the
fundamental difference in the corporate incentive structure,
which in turn leads to a difference in operations and adop-
tion of new practices. In the petroleum industry, any improve-
ment in subsurface characterization and mapping capabilities
would ultimately lead to increase in profits, whether in the
form of enhanced productivity or reduction in risk. Reservoir
characterization and reserve estimates have a major impact
on the bottom line of a company. They affect interactions
with Wall Street (Misund and Osmundsen, 2015), and they
are strictly regulated by the Securities and Exchange Com-
mission (SEC). This relationship between petroleum engi-
neering and the financial markets relies on guidelines set by
both the SEC and the Society for Petroleum Engineers on
how to communicate the certainty in the inherently uncer-
tain reserve estimates (Harrell and Gardner, 2003). By hav-
ing both professional and regulatory bodies dictating the use
of probabilistic methods, the petroleum engineering field has
significant incentive to stay at the forefront of innovation and
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Table 3. Properties of reviewed stochastic software solutions. Third-party GUI indicates that one or more graphical user interface solutions
are available for the listed program, but implemented in a separate solution than the listed program.

Software User-friendliness Open source Free/commercial

GUI Third-party Free Commercial
GUI

DeeSse X X
FIELDGEN X X
GMS X X X X
GSLIB X X
GSTAT X X X
iTough2 X X X
Isatis X X
MAD X X X
PEST X X X
SGeMS X X X
TPROGS X X
spMC X X
Isim3D X X X

application regarding stochastic methods. In addition, the
enormous capital costs associated with new and continued
wellfield operations motivates the use of the most informa-
tive, risk-based predictions of costs versus benefits. In sum-
mary, petroleum firms are highly driven to create the most
accurate depiction of underground resources in order to both
accurately report reserve estimates and to best allocate costly
drilling resources. Simply put, there is a direct link between
improved characterization and improved profitability.

In hydrogeology, on the other hand, improvements in char-
acterization and modeling do not always directly lead to im-
provements in profitability for firms involved with ground-
water investigation and contaminant remediation. There are
several factors that affect the perceived costs and benefits
of adopting stochastic methods in hydrogeology, thus ob-
fuscating the incentive structure. Very often, hydrogeolo-
gists involved in groundwater contamination projects must
explain and justify steps taken, methods used, and conclu-
sions reached to a wide range of people, including scien-
tists in other fields, site owners, regulators, attorneys, and the
general public. In light of these factors, it may seem more
justifiable to adhere to established, commonly held concepts
because adopting new methods could invite criticism. Fur-
thermore, as will be elaborated upon in Sect. 5, it may often
be the case that hydrogeologists are eager to use stochastic
methods for uncertainty quantification, while their clients are
reluctant to do so due to the perception that admitting any
uncertainty may be construed as ignorance, thus leaving the
client vulnerable to penalties from regulatory agencies.

There are no clear tangible financial benefits for improved
modeling of uncertainty on the hydrogeology side. Environ-
mental degradation, in simple economic terms, is a market
failure and requires external intervention, e.g., regulations, to
prevent. In terms of innovation with respect to environmental

protection, the incentive must come from regulation, which
heretofore has been lacking (see Sect. 5). Consider, however,
a (hypothetical) situation in which owners of contaminated
sites are held liable for not reporting the financial liabili-
ties implied by their contaminated sites accurately, much the
same way that energy companies are required to provide ac-
curate estimates of their oil and gas reserves. Private com-
panies would be required to include such liabilities in their
balance sheets, whereas local and state governments would
be required to set aside the resources needed for remediation.
This would bring hydrogeology on par with petroleum engi-
neering in the utilization of stochastic methods, since both
would be equally motivated to find the oil, both metaphori-
cally and literally. As things stand now, petroleum companies
make money from finding oil. But that is not true for anyone
else.

4.2 Education

Several contributions to the 2004 and 2016 series identified
the lack of university courses in stochastic methods and, in
consequence, a lack of hydrogeologists trained in stochas-
tic methods as one of the setbacks to widespread adoption
of stochastic methods in practice (Neuman, 2004; Winter,
2004). The lack of courses is driven, as explained in these
two paper series, by what appears to be a high level of math
and abstraction and seemingly, lack of practicality. One way
to investigate this hypothesis is to look at differences between
the education of hydrogeologists and reservoir engineers, as
it is reasonable to expect that academic education would re-
spond to the demands of industry.

Continuing the comparative analysis of these two indus-
tries, we compared the prevalence of courses in these sub-
jects in the disciplines most likely to be studied by future
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petroleum engineers and practicing hydrogeologists. Three
academic disciplines were selected for analysis: petroleum
engineering, civil/environmental engineering, and earth sci-
ences. We surveyed the top 10 schools in the US News
& World Report 2016 rankings for graduate programs in
petroleum engineering and earth sciences. Rankings for civil
engineering are done separately from environmental engi-
neering, and the top 10 of the two rankings produced 13
unique universities, which were the universities included for
this survey.

Gathering information is made complicated because the
amount of information about course offerings was vari-
able from school to school. For some schools, course ti-
tles and course descriptions were available, while for others
only course titles were available. For a couple of programs,
no course information was publicly available online. While
rankings exist for earth sciences as a subject, it is difficult
to make direct comparisons due to the various organizational
structures.

Our goal was to look for courses focused on stochastic
methods in characterization and mapping. While utilization
of geostatistical methods is not always necessary for incor-
poration of stochastic concepts, they are often used in con-
junction, so our search included courses in geostatistics. For
schools for which course information was found, seven out
of nine petroleum engineering schools had a course in which
geostatistics is the main focus (i.e., in the course title), and
one school had a course where geostatistics is mentioned as
part of the course. On the other hand, 4 out of 12 of the
civil/environmental programs had a course for which geo-
statistical methods were the main focus. Two programs had
a course that included geostatistics or SH in the course de-
scription, but were seemingly not a main focus. Only one
earth sciences program had a course focusing on SH. Many
civil/environmental engineering or earth sciences programs
have at least one course on the topics of probability, statis-
tics, or uncertainty analysis in some regard, but not specifi-
cally related to hydrology.

Note that this survey does not include information about
how often these courses are taught, or what percentage of stu-
dents take these courses. This survey also does not account
for the possibility that these courses are being offered in
other departments and taken by students of the departments
in question. Despite these limitations, the results are clear:
courses in geostatistics and stochastic methods are much
more prevalent in petroleum engineering departments than
in civil/environmental engineering or earth sciences depart-
ments. This finding suggests to us that there is no fundamen-
tal pedagogical difficulty in teaching stochastic methods. The
demand for classes is not there, and it is very likely curbed by
the limited marketability of the SH skill set in groundwater-
related industries. Class offerings are driven by demand and
are rarely curbed by intellectual challenges, especially in top
academic programs. Of course, classroom teaching is just
one mode of instruction and training, the other being re-

search. This brings us to our next subsection, in which we
will take a closer look at this aspect of teaching.

4.3 Research culture/collaboration

The vast majority of research in any scientific field comes
from institutions belonging to one of three categories – aca-
demic, governmental, and industrial. Significant collabora-
tion in research between these three sectors of the economy
can act as a catalyst for adoption of novel methods, due to fo-
cusing of research goals, improved funding, and faster trans-
fer of research-based knowledge from lab to field.

Since participation by industrial institutions in research is
one avenue for adoption of new methods in practice, we aim
to compare this activity in the two fields. To accomplish this,
we performed a bibliometric survey using the Web of Sci-
ence similar to the one performed by Rajaram (2016). The
goal of the survey was to quantify the extent of collaboration
in research between academia, government, and industry in
each of the two disciplines.

The bibliometric survey was performed in March 2018 by
searching matching keywords related to stochastic methods
in the two fields for all articles. The author affiliations of the
resulting articles were recorded, and ordered by number of
articles for each institution. All institutions that appeared in
at least three articles were recorded and categorized as be-
ing academic, governmental, or industrial. The number of
appearances of each category was calculated for each of the
two disciplines, with results presented in Fig. 1. Details of
the survey and processing are provided in Appendix A.

For both hydrogeology and petroleum engineering, the
majority of affiliations are academic, which may be expected
for any field, but the ratio of academic to industrial affili-
ations is approximately 211 : 1 for hydrogeology, whereas
it is only approximately 23 : 1 for petroleum engineering,
a 10-fold difference in industry involvement. Hydrogeol-
ogy has approximately 10 times as many publications as
petroleum engineering overall, but petroleum engineering
still has more industry appearances in 15 affiliations (e.g.,
PetroChina, DWA Energy Ltd., Chevron, and Schlumberger,)
compared to hydrogeology’s 12 industry appearances (e.g.,
Aquanty Inc., Schlumberger, and Tetra Tech Inc.). While this
affiliation search is not completely exhaustive for all pub-
lications, languages, and possible search terms, the results
are conclusive: there is clearly a larger presence of indus-
trial institutions contributing to research in the petroleum
field compared to hydrogeology. These results confirm the
hypothesis that there is much greater participation in re-
search by industrial institutions in the petroleum field than
in hydrogeology. In turn, it can be argued that this indicates
a stronger connection between theoretical development and
practice: advances in theory are both motivated by practice
and smoothly adopted by practice. These observations are
closely aligned with our earlier observations on course of-
ferings in the respective academic programs, for which we

www.hydrol-earth-syst-sci.net/22/5675/2018/ Hydrol. Earth Syst. Sci., 22, 5675–5695, 2018



5684 Y. Rubin et al.: Stochastic hydrogeology’s biggest hurdles

Figure 1. Bibliometric survey results for university, government,
and industry author affiliations for petroleum engineering (left) and
hydrogeology (right). The numbers on top of the columns indicate
the percent of affiliations per category. The percent of affiliations
reflect the proportion of total unique affiliations per document re-
turned by the Web of Science database for each category (see Ap-
pendix A for full survey details). The total unique affiliation is a
weighted sum of unique affiliations returned by the Web of Science
with weights being the number of documents containing that affili-
ation at least once; i.e., two authors from the same institution on the
same document are only counted once.

noted a much stronger emphasis on stochastic methods in
petroleum-related schools, driven by a strong interest from
industry.

4.4 Comparison summary

Despite being closely aligned in theoretical bases, hydrogeol-
ogy and petroleum fields are fundamentally different in their
incentive structures. The direct nature of the relationship be-
tween methodological improvements on the one hand and in-
creased profitability plus regulatory constraints on the other
provides impetus for advancement in the petroleum industry,
which translates into funding opportunities and demand for
skilled graduates. Schools are easy to adapt to market forces
through course offerings and faculty recruitment. However,
such relationships are not present in hydrogeology, leading to
stagnation in industry and anemic interest in academia. When
considering how often industry collaborates with academia,
as quantified by journal article affiliations belonging to in-
dustry, the pattern remains: the petroleum engineering field
has closer ties between industry and academia than the hy-
drogeology field does when it comes to SH research.

5 The law, the courts, and regulations

Previous publications opined that the regulatory and legal
systems are not receptive to stochastic concepts and viewed
this as one of the factors contributing to the gap. Early work

on environmental regulations in the context of stochastic hy-
drology, e.g., Sudicky (2004), and more recent works, e.g.,
Fiori et al. (2016), noted that regulations do not require quan-
tification of uncertainty, which would of course limit the de-
mand for SH applications. Fogg and Zhang (2016) and Ra-
jaram (2016) presented a somewhat different point of view
and identified a drive towards a more explicit treatment of
uncertainty.

5.1 Case study – risk-based corrective actions

Some perspective on the regulators’ approach for managing
uncertainty could be gained by looking at the regulations as-
sociated with risk-based corrective action (RBCA; US EPA,
1989) as a case study. RBCA focuses on cancer risk, defined
as the upper bound lifetime probability of an individual de-
veloping cancer as a result of exposure to a particular level
of a potential carcinogen (US EPA, 1989). For example, fol-
lowing Smalley et al. (2000), a risk of 10−6 represents an
increased probability of 1 in 1 million of developing cancer
(De Barros et al., 2009; De Barros and Rubin, 2008; Maxwell
et al., 1999). Assessment of the exposure risk requires ana-
lysts to consider all the elements contributing to this risk,
which would include the source, contaminant transport path-
ways, exposure pathways, and toxicology parameters. Thus,
by requesting and expecting risk assessment, specifically for-
mulated in probabilities, RBCA specifically and explicitly
recognizes the stochastic nature of making predictions un-
der uncertainty. The rationale underlying RBCA is extended
to other focus areas of the US Environmental Protection
Agency (EPA), such as risk-based decision-making in un-
derground storage tank corrective action programs (US EPA,
1995). As a starting point for our conversation, we should
note that risk-based assessments, and hence the underlying
probabilistic approach, are endorsed by regulators.

The document shown in Fig. 2 states that “A risk-based ap-
proach is consistent with the Administrator’s efforts to ensure
that our environmental cleanup programs are based on the ap-
plication of sound science and common sense and are flexible
and cost-effective”. With the link between risk and probabil-
ity clearly defined, such as in RBCA, the regulator’s support
of stochastic concepts is clear and compelling. A rationale
similar to RBCA’s was pursued in the development of pro-
tective risk-based levels for the contaminants subject to the
EPA’s Resource Conservation and Recovery Act (RCRA).
What could possibly be confused as being a hindrance is the
language (used, for example, in Directive 9610.17 in Fig. 2
and US EPA, 1995) that encourages the use of RBCAs but
does not mandate them. This, however, would not be an accu-
rate interpretation, as the EPA is a federal agency, which puts
it in a position to make recommendations and leave enforce-
ment to states. EPA recommendations may be ignored by
states, but this ignorance has consequences. Indeed, follow-
up studies (e.g., Rifai and Suarez, 2000) confirm that most
states in the USA have in fact accepted the EPA recommen-
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dations and formalized them as regulations, and that these
regulations were enforced in a large number of field sites.
With all this, it can be stated that regulations, if and when
they exist, do not in principle pose a hindrance to the appli-
cation of stochastic concepts. With such a broad embrace of
stochastic concepts by the EPA, one would expect a broad
adoption of SH by practitioners. This obviously is not the
case.

5.2 A view on the courts, the judiciary, and
administrative agencies

Administrative agencies do not operate in a vacuum, but
rather in a public policy continuum that also includes the
judiciary and the legislation, and the politicians who con-
nect them. It is the interaction between these institutions that
dominates the attitude towards uncertainty, and this is where
agencies and courts get their cues. In this section, we seek to
explore this continuum and assess the attitude towards prob-
abilistic concepts and the modeling of uncertainty. The main
question we wish to address is whether SH has experienced
limited adoption outside academia due to some structural
constraints rooted in the public policy continuum.

The view of the judiciary towards issues of uncertainty
has been reviewed and heavily criticized by legal scholars,
and the picture that emerges is that of inconsistency and
confusion. There appears to be no fundamental difficulty
with probabilistic concepts. There is no law, to the best of
our knowledge, that forbids probabilistic concepts being pre-
sented. Furthermore, there are several cases in which courts
considered and evaluated probabilities. Courts made some
astute comments on probabilities. For example, when re-
viewing a low-probability (18 % chances of success!) plan
proposed by a federal agency (NOAA Fisheries), the US
Court of Appeals famously stated that “Only in Superman
Comics’ Bizarro world where reality is turned upside down
could the [National Marine Fisheries] Service reasonably
conclude that a measure that is at least four times likely to
fail as to succeed offers a ‘fairly high level of confidence”’
(see Owen, 2009). Currell et al. (2017), commenting on the
legal system in Australia, noted that courts could deal with
evidence in whatever form it is presented, and they may ac-
cept it, reject it, misinterpret it, request clarifications and ad-
vice, ignore it, refer cases to other courts, or “kick the can
down the road”. Rejection of probabilistic concepts in the
judiciary, if and when it occurs, may be driven not by re-
sistance to probabilistic concepts but possibly as a matter of
convenience. One way of avoiding hard decisions, sometimes
adopted by the courts, is relying on what is euphemistically
called “adaptive management”, which assumes that manage-
ment will be able to respond to changes. Although Currell
et al. (2017) refer to the Australian judiciary, their findings
seem to apply also in the USA.

At the same time, courts have been sending confusing
messages. Farber (2011, p. 907) noted that “courts have

sometimes reproved agencies for ignoring unquantified haz-
ards, sometimes given their blessing as agencies buried their
heads in the sand, and sometimes even forbidden agencies to
act in the absence of quantification”. This inconsistency leads
to ambiguity, and it is reasonable to expect that profession-
als may want to avoid this uncharted territory. What are the
root causes of this ambiguity? Legal scholars see three main
factors contributing to this ambiguity: Congress, politicians,
and the lack of probability standards. Although we present
them as separate items, they are obviously interrelated.

The US Congress underestimated and ignored environ-
mental uncertainties because “Uncertainty management may
seem a ‘politically unappealing topic”’ (Owen, 2009). Euro-
pean legislature is even less prescriptive, opting for the very
vague precautionary principle as a guideline. To understand
Congress, we need to look at politicians. In the absence of
clear guidance from the legislature, agencies opted for non-
binding guidance. A few environmental statutes contain sig-
nals about managing uncertainty, but these signals are of-
ten vague and indirect, leaving agencies with minimal guid-
ance and a significant amount of discretion (Owen, 2009).
To fill in the void left by Congress, agencies have rarely pro-
mulgated rules or set standards for dealing with uncertainty.
More frequently, they opted for providing nonbinding guid-
ance, which, as stated by Owen (2009), has very little visi-
bility and often leaves major issues unresolved.

Politicians prefer to avoid stating the uncertainty associ-
ated with the stated goals of their proposed legislation and
“it probably is unrealistic to expect legislators to candidly
acknowledge the reality that their prescribed planning ap-
proaches will not always work out” (Owen, 2009). The at-
titudes by politicians are also driven by the public’s view
of uncertainty being a consequence of disagreement between
scientists and science disciplines, and as such might as well
be ignored.

The third factor to consider is the lack of probability stan-
dards. Probability standards are defined by Owen (2009) as
“standards addressing plans’ chances of achieving mandated
outcomes”. The lack of probability standards is, for example,
what allowed NOAA Fisheries to submit a plan with 18 %
probability of success (Owen, 2009). The lack of probabil-
ity standards is possibly the most critical of the three factors
because such standards, were they to exist, would promote
“more systematic and transparent confrontations with the un-
certainties inherent in environmental planning” and would
instill “somewhat more cautious approaches to management
of those uncertainties” and “reduce the persistent gaps be-
tween written environmental standards and actual perfor-
mance” (Owen, 2009).

The negative consequences due to the lack of probability
standards are numerous. It enhances risk-taking. It encour-
ages making decisions on an ad hoc basis, which means that
once a particular site is chosen, political pressure naturally
will build to make the evaluative system fit the site rather
than the underlying public safety goal” (Owen, 2009). It
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Figure 2. EPA’s letter encouraging (but not requiring!) the use of RBCA (US EPA, 1995). This document endorses a probability-based
concept and refers to it as “sound science and common sense”.

encourages individualized judgment and improvisation. The
lack of probability standards “can turn stringent protection
standards into a perpetually unattained aspiration, lowering
short-term compliance costs but also creating persistent slip-
page between legal requirements and actual performance”
(Owen, 2009). Furthermore, without clear probability stan-
dards, assessments undertaken with different methodologies
lead to different conclusions. Such challenges are particu-
larly difficult to address when several regulatory agencies
are involved, with disparate resources and levels of expertise
(Rothstein et al., 2006). It resulted in “a patchwork response
to uncertainties about plan success”, and finally, the lack of
probability standards closes the door for SH analyses and ap-
plications.

There are plenty of reasons why probability standards are
avoided, a few justified and others opportunistic, but in any
case they are not related to strengths or weaknesses of sta-
tistical theories. First, it is often argued that setting standards
would limit the dialog, and hence the latitude for political
maneuvering, on the trade-offs between the level of protec-
tion on one hand, and compliance costs on the other. Proba-
bility standards therefore have substantial environmental and
economic implications.

As already alluded to, there is the “all politics is local”
factor (O’Neill and Hymel, 1995). The Interstate Technol-
ogy & Regulatory Council (ITRC) (2005) points out that
“Risk-based decisions are sometimes met with intense and
divisive criticism by industry and environmental stakehold-
ers, as well as the public” due to normative conflicts con-
cerning how risks of adverse events and the associated im-
pacts are viewed technically, socially, and politically by the
affected constituencies. National or international regulatory
standards may not be accepted by local communities or busi-
nesses if those actors assess and balance costs and benefits in

different ways. Some stakeholders see risk-based approaches
as residing in the “world of specialists” and essentially clos-
ing off debate about broader historic, social, and economic
issues (Rothstein et al., 2006). Regulators, civic groups, and
business interests apparently prefer to settle environmental
issues without being constrained by federal “interventionist”
policies. In addition, there is the issue of financial incentives.
As noted in Bullard and Johnson (2000), the current regula-
tory environment “creates an industry around risk assessment
and risk management”, implying a satisfying status quo for
some of the stakeholders, and hence a lack of financial in-
centives for change by the professional community. And this
occurs despite “faulty assumptions in calculating, assessing,
and managing risk”.

The case in support of setting probability standards is not
without its criticism (Rothstein et al., 2006), but it may also
have the unintended consequence of focusing policy atten-
tion on problems that carry high institutional risks for the
regulator at the expense of those that carry high risks to so-
ciety. Against this background, it does not seem that setting
probability standards is imminent. The courts acceptance, or
not, of probabilistic concepts is perhaps not the key question
to ask in this context. A more fundamental question, dated
possibly to the age of Galileo, is whether courts should be
the arbiters of good science. A thorough review of the inter-
action between courts and groundwater hydrologists is pro-
vided by Currell et al. (2017). They concluded that, whereas
courts are not prevented from dealing with uncertainty, they
are not well equipped to do so. Hydrogeologists should not
expect courts to take an activist approach for promoting SH
methods. This is not within their purview. Unfortunately, pro-
fessional hydrologists generally follow the legal theories set
by attorneys. Litigators may not be receptive to the modeling
of uncertainty because uncertainty means ambiguity, which

Hydrol. Earth Syst. Sci., 22, 5675–5695, 2018 www.hydrol-earth-syst-sci.net/22/5675/2018/



Y. Rubin et al.: Stochastic hydrogeology’s biggest hurdles 5687

may translate into unfavorable judgment. Attorneys claim
that their clients are innocent, not “maybe innocent”. And
similarly, prosecutors declare the defendants to be guilty, not
“maybe guilty”. In other words, “Uncertainty? What uncer-
tainty? There is no uncertainty!”, and so, who needs SH?

Realizing that courts should not be the arbiters of science,
an important outcome from the extensive Australian experi-
ence in litigating groundwater hydrology (Currell et al. 2017)
has been the establishment of independent expert scientific
committees to advise the courts in all matters scientific. An
example in which such involvement opened the door for
SH can be found in the Environmental Radiation Protection
Standards for Management and Disposal of Spent Nuclear
Fuel and Transuranic Radioactive Wastes (40 CFR Part 190).
The standards require applicants to perform a probabilistic
assessment of long-term risk to the public due to acciden-
tal releases. An example of analyses based on these stan-
dards is provided in Zimmerman et al. (1998). This publica-
tion demonstrates that clear guidelines and quick responses
are certainly possible. Why then is there such a difference
between nuclear waste situations and what could possibly
be viewed as the “lesser evil”? Legal scholars associate this
special case with the involvement of a high-caliber scientific
board in the form of the National Academy of Sciences (Far-
ber, 2011; Owen, 2009).

In summary, courts are not prohibited from dealing with
probability, but they have sent confusing messages with in-
consistent rulings. Agencies lack probability standards for
addressing their “plans’ chances of achieving mandated out-
comes”. The guidance provided in lieu of regulations is non-
binding and fraught with problems. Congress, in the USA,
underestimated and ignored environmental uncertainties. Eu-
ropean countries rely in the precautionary principle when
dealing with uncertainty, which is vague and it is even less
prescriptive. Politicians refrain or hesitate acknowledging
that their plans are associated with uncertainty. And as a
consequence, SH is facing formidable headwinds on its way
to become applicable, and this has nothing to do with the
strength of the science. Unfortunately, there is no indication
of any dynamics that will pull SH into a more favorable po-
sition, at least not from this angle.

6 The big miss – SH blind spot

Previous sections explored the challenges facing SH on its
road to becoming broadly accepted by practitioners, regu-
lators, and administrators. These challenges do not reflect
weaknesses in the underlying SH science. There is, how-
ever, at least one challenge that is real and urgent, that has
been around for a long time and that has been ignored by
SH to its own detriment. This issue can be described by
quoting former US Secretary of Defense Donald Rumsfeld,
who, when addressing the challenges of making decisions
under uncertainty, famously distinguished between “known

knowns”, “known unknowns”, and “unknown unknowns”.
SH has been dealing primarily with the known unknowns
and ignored the most challenging part of uncertainty man-
agement, which covers the unknown unknowns.

What are known unknowns? As explained by Rumsfeld,
known unknowns are things we know that we do not know.
In hydrogeology, this would include examples such as the
spatial distributions of the hydraulic conductivity and almost
any other soil property and, by way of consequence, state
variables such as hydraulic head, concentrations, and so-
lute travel times. It can also include forcing terms such as
recharge (see Rubin and Dagan, 1987a, b).

What did Rumsfeld mean by unknown unknowns? Fol-
lowing Rumsfeld’s definitions, these are the things we do
not know that we do not know. These are the situations in
which a variable is intentionally or unintentionally ignored.
An example of this can be drawn from the case of nuclear
waste disposal. What makes this problem unique is the life
span of compounds such as plutonium. With a life span of
250 000 years, the list of unknown unknowns could include,
for example, climate change and possible changes in hu-
man behavior, societal norms, and political systems. Farber
(2011) noted in this context that “the calculation of the phys-
ical likelihood of leakage should (hopefully) be reasonably
accurate, the assumptions about human presence and activ-
ities in the area (and therefore about exposure) are spec-
ulative, and the likelihood of human interference with the
integrity of the site is completely unknown”. Recalling the
adaptive management concept that is sometimes employed
for dealing with uncertainty, Owen (2009) noted that given
the time span of many hydrological processes, “One there-
fore cannot reasonably assume that present social or politi-
cal institutions will survive long enough to adjust waste con-
tainment systems”, thus rendering any semblance of planning
unreasonable.

In the case of nuclear waste, as in almost any case, it
is hard to fathom the prediction of 250 000 years down
the road. For some perspective, consider that the pyramids
were built only 5000 years ago. The ancient Egyptians did a
good job at hiding the mummies and treasures for thousands
of years, but who could have predicted ground-penetrating
radar? Long-term prediction is not a simple question, but
possibly the most relevant question. A confirmation that the
unknown unknowns are of topmost significance for regula-
tors is given in the National Research Council (2014). This
publication, dealing with risk-informed decision-making in
contaminated sites, identified the unknown unknowns, i.e.,
the drivers of uncertainty, as the major and yet unanswered
challenges in the decision-making process, including, for ex-
ample, (1) “uncertainties that contamination may exist at a
site”, (2) estimation of the “quantities of contamination that
may exist in the future” (p. 91), (3) “low probability, high
consequence events” (p. 92; authors’ note: these are the Na-
tional Research Council’s code words for human-related sce-
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narios), and (4) uncertainty about how to predict failures of
treatment and containment systems (p. 123).

Yucca Mountain, a central activity for hydrogeologists for
more than 40 years, is a paramount example of SH failure.
How did SH address the uncertainty challenges? As noted
earlier, Farber (2011) concluded that the “calculation of the
physical likelihood of leakage should (hopefully) be reason-
ably accurate” (our note: covered by SH; see Zimmerman et
al., 1998), “the assumptions about human presence and ac-
tivities in the area (and therefore about exposure) are spec-
ulative” (our note: not covered by SH), “and the likelihood
of human interference with the integrity of the site is com-
pletely unknown” (our note: not covered by SH). Notably,
there was no reference to issues such as the modeling of
contaminant transport being showstoppers. SH opted to deal
with the physics of flow (known unknowns, using Rums-
feld’s terminology and otherwise known as “risk analysis’
blind spot”, using Farber’s terminology), but ignored the so-
cietal risks residing in the interface between physics and the
human environment (unknown unknowns, otherwise known
as uncertainty). This omission did not escape the attention of
the courts: in the absence of appropriate tools, the site plan-
ners chose to ignore “human activities and economic imper-
atives”, opting instead to assume current conditions, a de-
cision which was referred to by the court as “odd” (Farber,
2011, p. 951).

Modeling the unknown unknowns is a daunting task, but
ignoring it has grave consequences, as Rumsfeld himself at-
tested. It also seems that ignoring it is not an option, as the
legal stance is very clear. Farber (2011, p. 910) quotes the
court as saying that “the inability to quantify a risk does not
justify failure to discuss it if there are other grounds for con-
sidering it significant”.

Returning to our energy industry comparisons, petroleum
engineering does not face such issues because most projects
are of short duration and are well defined by scientific and
engineering considerations, with minimal or no interfacing
with non-engineering issues. But petroleum engineering also
fails in situations in which human factors are involved, such
as in the case of British Petroleum’s Deepwater Horizon well
failure and oil spill in the Gulf of Mexico, and also the now
widely refuted peak oil theory.

Having therefore outlined the challenge, what sorts of so-
lutions have been developed in the field of uncertainty char-
acterization and uncertainty reasoning for dealing with un-
known unknowns, and can these solutions be transferred to
the field of hydrogeology? An important milestone here is
the groundbreaking work of Savage (1954), which provided
probability theory with the necessary link to decision the-
ory. So strong was the impact of Savage’s work that it not
only became the mainstay of decision theory everywhere
(Baron, 2004; Berger, 1985; Bernardo and Smith, 1994;
Gilboa, 2009; Jeffrey, 1992; Kahneman et al., 1982; Peter-
son, 2009), that even when Nobel laureates (Kahneman and
Tversky, 1973) showed how decision-making in real life of-

ten diverges from the axioms described by Savage (1954),
their ideas were largely ignored (initially). On the contrary,
probability theory and probabilistic decision theory was sim-
ply declared to be the rational norm and that anything else is
irrational.

This harsh repudiation of people’s intuition began to
slowly change with the growing recognition that real-world
situations are ripe with unknown unknowns due to ignorance,
ambivalence, or ambiguity. In such situations, it is not easy to
see how a unique prior distribution can be defined by an agent
as demanded by classic decision theory. To account for un-
known unknowns, two lines of thought can be identified. The
first approach stays within the well-defined confines of prob-
ability theory and accounts for possible unknown unknowns
by using a whole set of prior distributions instead of just a
single unique one. Updating of beliefs is then performed by
Bayes’ rule and the common rules of decision theory, i.e.,
the maximization of expected utility (see, e.g., Berger, 1990;
Wasserman and Kadane, 1990). The second approach goes
beyond probability and is based on the works of Dempster
(1968) and Shafer (1976). Here, beliefs are no longer rep-
resented by a probability function but by a so-called belief
function, and for updating, Bayes’ rule is replaced by the
Dempster–Shafer rule. This Dempster–Shafer theory has his-
torically been criticized for its failure to connect with deci-
sion theory (Pearl, 1990), but more recent developments by
Gilboa and Schmeidler (1993) have provided solid founda-
tions for deriving decision rules from Dempster–Shafer be-
lief functions, too.

Whereas we think that in science alone, SH included, the
importance of unknown unknowns is constantly decreasing
with the accumulation of knowledge through research, the
prediction of societal, political, economic, technological, and
demographic changes will remain a source of unknown un-
knowns for the foreseeable future. Since scientific results
constantly interface with these fields through the perspective
of decision makers, we should also expand the applicability
of SH into this domain.

7 Summary

Several publications have attempted to explain the apparent
failure of SH to gain broad acceptance in application. In this
paper, we reviewed the various hypotheses raised and evalu-
ated them by establishing and analyzing a factual basis. We
found a large disparity between several of the hypotheses and
the facts on the ground as we see them. For example, we
show that it is not justified to view SH education or software
as roadblocks on the way to broad acceptance.

The roadblocks on the way to making SH broadly accepted
are primarily twofold. One roadblock is external, meaning
that it is not related to SH fundamentals. The other factor is
in fact internal as it is related to SH self-definition: the topics
it chose to pursue, and more important, those that it chose,
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knowingly or not, to ignore; it is what we call SH’s blind
spot, and it is related to SH fundamentals.

The external factor resides in the continuum defined by
the legislature, the judiciary, and government. Legal schol-
ars summarize it succinctly as a lack of probability stan-
dards. Probability standards are defined by Owen (2009) as
“standards addressing plans’ chances of achieving mandated
outcomes” (see discussion in Sect. 5). The lack of probabil-
ity standards institutionalizes the fragmentation between the
three branches of government often asked to deal with uncer-
tainty and eliminates the financial incentive needed for indus-
try to move in and address the challenges.

The internal roadblock is the focus on risk (Rumsfeld’s
known unknowns) and ignoring uncertainty (the unknown
unknowns). Uncertainty resides in the interface between hy-
drogeology and related disciplines such as climate science
and sociology and political science. It is noted that Yucca
Mountain project failed because of uncertainty, not because
of any doubt about the values of the conductivity anywhere,
but because of the inability to make long-term predictions re-
garding climate change and to model the possible changes in
human behavior, societal norms, and political systems. These
are by no means easy challenges, but work on these topics is
already under way, alas, not by hydrologists. Expanding SH
to account for risk as well as uncertainty is a key for making
an impact. This lacuna is not the privilege of SH: as noted
by several authors, there are other environmental problems
needing to address uncertainty, such as fisheries, air quality,
endangered species, water quality, and climate change (see
Owen, 2009). And of course outside the environmental sci-
ences we have financial risks and other catastrophes. Publi-
cations on the interface between environmental science and
the social sciences are available (Liu et al., 2007; Torn and
Harte, 2006) and there are quite a few from legal scholars
(reviewed earlier), but SH is still lagging.

Data availability. The data used in this paper are limited to the bib-
liometric analysis and are available via Web of Science (http://apps.
webofknowledge.com/, last access: 8 March 2018), with search
terms provided in Appendix A.
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Appendix A

The bibliometric survey comparing the collaboration be-
tween academia and industry for the two fields of hydroge-
ology and petroleum engineering consisted of first compil-
ing information from the Web of Science database at http:
//apps.webofknowledge.com/ (last access: 8 March 2018)
(v.5.27.2 during March 2018) and then processing that in-
formation into useable metrics. This database allows users
to first query certain search terms to generate a list of docu-
ments and then access summaries about that list such as the
number of articles published per year or how often organiza-
tions are included in the author affiliations. To perform the
analysis of comparing the collaboration of academia and in-
dustry in the two fields of interest, further data summary met-
rics were calculated with the results downloaded from the
Web of Science. The two lists below detail the steps taken
for these two procedures.

Steps for compiling data from Web of Science:

1. Search terms were defined to capture relevant docu-
ments for the two fields of hydrogeology and petroleum
engineering. See Table 1 for the search terms used.
There were five sets of iterative search terms used per
field to confirm that the resulting metrics comparing the
two fields were consistent.

2. Each of the search term sets was queried with the Web
of Science database using the advanced search option. A
time span of the last 5 years (2013–2018) was selected,
and all documents types were used; i.e., the search was
not limited to just journal articles in order to capture
collaborations in conference posters and presentations
or other documents.

3. For each search set, the Analyze Results feature was
used to generate information regarding the affiliations
listed for the documents returned by the query. The Or-
ganizations field was selected with a minimum record
threshold set to 3; i.e., an organization had to be listed
on at least three documents, in order to make the vol-
ume of unique affiliations manageable for manual clas-
sification. The data returned include organization names
and both the raw number and percent of articles in the
search containing those organizations as an affiliation.
These numbers reflect how many documents in which
the organization is listed as an affiliation for at least one
author. The results table was downloaded as a text file
for each search set.

Steps for calculating metrics:

1. Each organization returned by Web of Science was man-
ually categorized as a degree-granting academic insti-
tution (“university”), a government agency or research
organization primarily funded by government agencies
(“government”), or, if neither of those, then “industry”.
This was accomplished by searching for certain text
patterns in the organizations’ names. For example, if
the pattern “univ” or “college” was in the organization
name, then it was placed in the university category. Or if
“geological survey” or “national research council” was
in the organization name, then it was categorized as gov-
ernment. Additional patterns were created until all or-
ganizations were categorized. When the name of the or-
ganization was not sufficient to assign a category, the
organization was investigated to ascertain the most ap-
propriate affiliation.

2. For each field, category, and search set, the number of
records across organizations were summed and a per-
centage was calculated. This percentage represents the
proportion of affiliations on documents belonging to the
three categories.

3. The relative relationship between the three categories
per field was confirmed to remain consistent across the
iterative search terms. The fifth set was used for the rest
of the analysis.

4. The categorical percentages were compared between
the two fields to ascertain if the two fields of hydrogeol-
ogy and petroleum engineering had more participation
of industry in research collaborations leading to publi-
cations or conference abstracts.
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Table A1. Web of Science search terms used to compare hydrogeology and petroleum engineering documents. The stochastic terms (leftmost
column) were used for all search sets. For hydrogeology, the searches were limited to the Web of Science categories listed in the second
leftmost column. The five search sets for hydrogeology are listed in the middle column and are composed of the search terms listed. The
search sets vary by incrementally more search terms related to hydrogeology. Similarly, the Web of Science categories and search term sets
for petroleum engineering are listed in the two rightmost columns. Each search set consists of combining the stochastic terms, the Web of
Science categories, and field terms with a logical AND operator via the Web of Science.

Stochastic terms Hydrogeology Petroleum engineering

Web of Science Field terms Web of Science Field terms
categories categories

stochastic OR Water Resources OR 1: porous OR Petroleum OR 1: porous OR
geostatist∗ Environmental Sciences OR soil OR Energy soil OR

Limnology OR aquifer OR subsurface OR
Engineering Environmental OR subsurface OR geology OR
Science hydrogeology OR reservoir OR

geology oil

2: 1+OR groundwater 2: 1+OR petrol∗

3: 2+OR remediation 3: 2+OR exploration

4: 3+OR hyporheic 4: 3+OR natural gas

5: 4+OR phreatic 5: 4+OR hydraulic fracturing

Note the asterisk ∗ denotes the wildcard search feature; e.g., geostatist∗ matches geostatistics and geostatistical.
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