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Glycine betaine (GB), as a putative compatible substance, protects plants against
the damaging effects of abiotic stresses. Phosphorus deficiency is one type of
abiotic stress that is detrimental to plant growth. Maintenance of phosphate (Pi)
homeostasis is crucial. This study demonstrates GB-regulated phosphate homeostasis
in the tomato (Solanum lycopersicum cv. ‘Moneymaker’) transformed with the choline
oxidase gene codA from Arthrobacter globiformis. The codA-transgenic lines displayed
more resistance to low-phosphate stress. The data revealed that the wild-type plants
were stunted and consistently retained less Pi than transgenic lines, especially when
grown under low-phosphate conditions. This difference in Pi retention was attributable
to the enhanced Pi uptake ability in the transgenic lines. The transgenic plants
translocated more Pi into the plant cell due to the enhanced enzymatic activity of plasma
membrane H+-ATPase and increased Pi/H+ co-transport, which improved Pi uptake.
The differential expression of ‘PHO regulon’ genes further maintained intracellular Pi
homeostasis. Furthermore, GB maintained a higher photosynthesis rate, thus increasing
the production and translocation of sucrose via phloem loading to enhance plant
response to low-phosphate stress. We conclude that GB mediates Pi uptake and
translocation by regulating physiological and biochemical processes that promote
adaptation to environmental changes in Pi availability. These processes eventually
lead to better growth and development of the codA-transgenic lines. This finding will
help to further elucidate the signaling mechanism of how GB perceives and transmits
low-phosphate signals to alleviate Pi nutritional stress.

Keywords: glycinebetaine, codA gene, low phosphate stress, phosphate homeostasis, phosphate acquisition,
tomato

INTRODUCTION

As an essential macronutrient, phosphorus is required for plant growth, development, and
metabolism (Raghothama, 1999; Vance et al., 2003; Pandey et al., 2017). Phosphorus not only serves
as the backbone for the biosynthesis of nucleic acids, membranes, phospholipids and ATP but also
participates in many important biochemical pathways, including signal transduction, regulation of

Frontiers in Plant Science | www.frontiersin.org 1 January 2019 | Volume 9 | Article 1995

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2018.01995
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2018.01995
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2018.01995&domain=pdf&date_stamp=2019-01-10
https://www.frontiersin.org/articles/10.3389/fpls.2018.01995/full
http://loop.frontiersin.org/people/592049/overview
http://loop.frontiersin.org/people/657337/overview
http://loop.frontiersin.org/people/332411/overview
http://loop.frontiersin.org/people/289749/overview
http://loop.frontiersin.org/people/524094/overview
http://loop.frontiersin.org/people/66687/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01995 January 5, 2019 Time: 18:24 # 2

Li et al. Glycine Betaine Enhances Phosphate Uptake

enzymatic activities, photosynthesis, and oxidative
phosphorylation (Hamburger et al., 2002; Shin et al., 2004;
Ai et al., 2009; Shen et al., 2011; Song et al., 2016). While
the phosphorus content of the soil may be high, phosphorus
deficiency can still arise due to precipitation and mineralization
processes (Richardson, 1994; Yuan et al., 2017). Approximately
70% of global cultivated land is subjected to Pi deficiency (López-
Arredondo et al., 2014). Thus, low phosphorus availability
is a major constraint for plant growth and productivity
(Mehra et al., 2016; Pandey et al., 2017). Inorganic phosphate
is the only form of phosphorus that can be assimilated by
plants (Chiou and Lin, 2011; Nussaume et al., 2011; López-
Arredondo et al., 2014). Although Pi may fluctuate widely in
soils, intracellular concentrations of Pi are strictly regulated
to maintain homeostasis in plants (Chiou and Lin, 2011).
To cope with phosphorus deficiency, plants have evolved a
series of sophisticated strategies to maintain stable cellular
Pi concentrations (Lin et al., 2009). These strategies involve
physiological, biochemical and molecular responses, including
the modification of root system architecture (i.e., reduction of
primary root growth and the formation of more lateral roots
and root hairs) (Watanabe et al., 2006; Lin et al., 2009; Lei
et al., 2011; Mehra et al., 2016); the induction and secretion
of acid phosphatases (APases) (Tian et al., 2003; Xiao et al.,
2006; Wang X. et al., 2009; Mehra et al., 2017; Pandey et al.,
2017), RNase (Löffler et al., 1992, 1993; Lin et al., 2009; Plaxton
and Tran, 2011; López-Arredondo et al., 2014; Yuan et al.,
2017), organic acid or protons (H+) (Otani et al., 1996; Yun
and Kaeppler, 2001; López-Arredondo et al., 2014) into the
rhizosphere contribute to the release of Pi from some organic
sources; enhanced expression of high-affinity Pi transporter
genes (Liu et al., 1998; Pandey et al., 2017) and establishment
of differential photosynthate distribution between shoots and
roots, resulting in increased root growth (Yun and Kaeppler,
2001; Gong et al., 2011; Yuan et al., 2017). In addition, Mehra
et al. (2016) proposed that plant release Pi from membrane
phospholipids through global membrane lipid remodeling under
Pi deficiency. Mehra et al. (2017) also revealed the role of a novel
rice purple acid phosphatases in improving plant utilization of
organic-phosphorus. Recently, more adaptive strategies have
been proved.

As is well-known, glycine betaine (GB) is one of the
best-studied compatible solutes that enables plants to tolerate
abiotic stress (Chen and Murata, 2002, 2008, 2011; Giri, 2011).
Some studies have confirmed that GB has multiple functions
in plant survival and growth, under both stressful and normal
conditions (Yang et al., 2005, 2008; Park et al., 2007; Giri, 2011; Li
et al., 2011; Masood et al., 2016; Kumar et al., 2017). However, few
studies suggested that GB also interacts with mineral nutrition.
Li et al. (2014) presented a new mechanism by which GB
participates in salt stress tolerance. They indicated that GB acted
as a cofactor of the Ca2+-CaM signal transduction pathway under
salt stress. Wei et al. (2017) demonstrated that GB might regulate
ion channel and transporters, resulting in high potassium and low
sodium levels to enhance salt tolerance in transgenic plants under
salt stress conditions. Nevertheless, the interaction between
GB and phosphorus nutrition is still largely unknown. Several

studies suggest that GB protects photosynthetic processes in
stressful environments (Yang et al., 2007; Khan et al., 2009;
Masood et al., 2016). In addition, phosphorus deficiency has
immediate and direct consequences for photosynthesis (Plaxton
and Carswell, 1999; Hammond and White, 2008). Therefore, we
hypothesized that there may be a relationship between GB and
phosphorus, and GB may play an important role in phosphate
homeostasis.

In this study, we used codA-transgenic tomato plants,
which were transformed with the choline oxidase gene codA
from Arthrobacter globiformis. GB was accumulated in vivo
as material to explore the mechanism used to enhance plant
tolerance to phosphorus deficiency. Our results suggested that
GB accumulation in vivo modulates phosphate homeostasis by
regulating phosphate translocation and acquisition in tomato
plants. Our findings shed light on the important role of GB in
plant adaptation to low phosphate conditions and provide a new
direction to explore the mechanisms by which GB modulates
mineral nutrition.

MATERIALS AND METHODS

Plants Materials, Growth Conditions, and
Stress Treatment
The codA-transgenic tomato plants (L2, L3, and L4) and
wild-type (WT) tomato plants (Solanum lycopersicum cv.
‘Moneymaker’) were used in this study. Our and others previous
studies indicated the wide-type tomato plants are considered
non-accumulators of GB (Park et al., 2004; Li et al., 2011;
Kurepin et al., 2015; Kumar et al., 2017). The L2, L3, and
L4 transgenic tomato plants were transformed with a gene
(codA) for choline oxidase (Park et al., 2007). The seedlings
(after germination) were grown in pots with sand containing
the modified Hoagland’s solution. The seedlings were treated
with 1.0 mM phosphorus (CK), 0.2 mM phosphorus, and
0.02 mM phosphorus (LP) for 15 days under sand-culture
system. The nutrient solution was renewed every 3 days. The
plants were grown in greenhouse at 25/20◦C (day/night) with
a photosynthetic photon flux density of 500 µmol m−2 s−1,
a relative humidity of 65–70% and a photoperiod of 16/8 h
light/dark.

Extraction and Quantification of GB
The seedlings treated under normal or low-phosphate stress
conditions for 15 days were used in this experiment. The
GB content was measured following Rhodes et al. (1989)
with some modifications. Leaf samples (four biological
replicates were used in each genotype) were ground in
methanol:chloroform:water (12:5:1) at 60◦C for 30 min.
The aqueous phase was fractionated by ion-exchange
chromatography. After that, the GB fraction was eluted
with 4 M NH4OH and dried on a rotary evaporator. Then,
the preliminarily purified extract of betaine was analyzed
by high-performance liquid chromatography (HPLC) and
Millennium Chromatography Manager System Control software
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on a liquid chromatograph (SCL-10AVP; Japan) equipped with a
Hypersil 10 SCX column.

Determination of the Net Photosynthetic
Rate (Pn)
Measurements of the Pn were performed at the same leaf
position of the tomato plants in the morning between 9:00
and 11:00 at the seedling stage for different Pi concentrations.
For each combination of genotype and Pi treatment, six
biological repeats were performed. We used a portable
photosynthetic system (CIRAS-3, PP Systems, Hitchin,
United Kingdom) under the following conditions: 380 µl L−1

CO2, 800 µmol m−2 s−1 photosynthetic photon flux density,
a leaf temperature of 25 ± 1◦C and a relative air humidity of
60–70%.

Determination of the Sucrose and Starch
Content
The leaf content of sucrose and starch was determined using
a kit from Nanjing Jiancheng Bioengineering Institute. For
sucrose analysis, tomato plant samples (leaves) were extracted
in 1 mL of 80% ethanol (v/v) for 10 min at 80◦C in a
water bath, and the samples were centrifuged at 4000 g for
10 min at 25◦C. For destaining, 2 mg active carbon was added
to the supernatant at 80◦C for 30 min. Then, 1 mL 80%
ethanol (v/v) was added and the samples were centrifuged
at 4000 g for 10 min at 25◦C and the supernatant was
analyzed.

For starch analysis, tomato plant samples (leaves) were
thoroughly ground in 1 mL 80% ethanol (v/v) and then treated
for 30 min at 80◦C in a water bath. Samples were centrifuged
at 3000 g for 5 min at 25◦C, and the residue was retained (the
supernatant was discarded). Next, 0.5 mL of water was added,
and the samples were incubated in a water bath for 15 min
at 95◦C. After cooling, the tissue residue was digested with
0.35 mL perchloric acid at 25◦C for 30 min and oscillated 3–5
times. After that, 0.5 mL water was added, the samples were
centrifuged at 3000 g for 10 min at 25◦C, and the supernatant
was analyzed.

The content of sucrose and starch were measured in three
independent samples for each line. Statistical analysis was
performed using Student’s t-test.

Quantitative Measurements of
Anthocyanin
The anthocyanin was extracted using a methanol-HCl method
according to Rabino and Mancinelli (1986) with slight
modifications. Tomato plant samples (0.2 g, three biological
replicates for each condition) were incubated in 1 mL of acidic
methanol (MeOH, HPLC quality) solution, consisting of 80%
(v/v) MeOH, 0.16% (m/v) ascorbic acid, 0.16% (m/v) t-butyl
hydroquinone, and 0.1% (m/m) HCl, with gentle shaking for
18 h at room temperature. After centrifugation at 12000 g
for 2 min, 0.4 mL of supernatant was added to 0.6 mL acidic
methanol and then the sample was filtered through a 0.22 µm

filter before analysis. Extract absorbance was measured at 530
and 657 nm.

Determination of the Activity of Sucrose
Phosphate Synthase (SPS) and Sucrose
Synthase (SS)
The enzymatic activities of SPS and SS for leaves were determined
using a kit from Nanjing Jiancheng Bioengineering Institute.
Three independent experiments were carried out per condition.

Measurement of Fresh Weight, Total
Phosphorus Content, and Pi Content
The tomato plants were treated under different Pi conditions for
15 days. After that plants were collected and then weighed.

The phosphorus concentrations of whole plants and the Pi
content in the leaf, stem and root samples were determined
colorimetrically by the molybdenum blue method, but the
phosphorus concentration was measured after digestion in a
mixture of H2SO4–H2O2 (Ames, 1966; Lei et al., 2011). For
each combination of genotype and Pi treatment, three biological
replicates were used.

Plasma Membrane H+-ATPase Activity
and Net H+ Flux in the Root Tip of
Tomato Plants
The root plasma membrane isolation was performed following
Yan et al. (2002) with some modifications. The root plasma
membrane was stored at −80◦C until analysis. The membrane
protein concentration was quantified using the method Bradford
(1976). Root plasma membrane H+-ATPase activity was
measured according to the method of Yan et al. (2002). To
assess the purification of H+-ATPase activity, H+-ATPase activity
was expressed as the difference in activity between the presence
and absence of 0.1 mm vanadate. A number of roots were
collected for the extraction of plasma membrane, the total
extractions were divided into three parts, and three replicates
of total extracted plasma membranes of each treated plants of
WT and transgenic plants were used for further determination
of H+-ATPase activity. Finally, the plasma membrane extraction
and the H+-ATPase activity determination experiments were
repeated for three times.

The net fluxes of H+ were measured by Non-invasive
Micro-test Technology (NMT) (NMT100 Series, Younger USA
LLC, Amherst, MA, United States). For each line, six independent
samples were measured. H+ flux measurements were recorded
for 10 min, and H+ flux data were calculated with Mage Flux1.

Quantitative Real-Time PCR Analysis
Total RNA was extracted from 100 mg of leaves and roots
from WT and codA-transgenic tomato plants (L2, L3, and L4)
using TRIzol reagent (TransGen Biotech; China). First-strand
cDNA was synthesized from 1 µg of total RNAs using a reverse
transcription system from TaKaRa. Q-PCR was performed

1http://xuyue.net/mageflux
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using a SYBR R© PrimeScriptTM RT-PCR Kit (TaKaRa; China)
in a 20 µL volume on the Bio-Rad CFX96 real-time PCR
detection system. The quantitative real-time PCR experiment was
repeated at least three times under identical conditions, using the
housekeeping gene (actin) as an internal control. Primers used in
the experiment are listed in Supplementary Table S1.

RESULTS

GB Enhances Tolerance to
Low-Phosphate in Transgenic Plants
Previous results showed that GB improved plant performance
against environmental stresses (Ahmad et al., 2013). We
wondered whether GB plays a role in tomato plants responses
to low-phosphate stress. First, we measured the accumulation
of GB in transgenic and WT tomato plants. Quantitative
HPLC analysis demonstrated that the contents of GB in three
independent transgenic lines ranged from 1.5 to 2.5 µmol g−1

FW, while GB was undetectable in WT plants (Figure 1).
According to the result of Figures 2A–C, no significant
differences in the phenotype or biomass were observed between
the codA-transgenic tomato plants (L2, L3, and L4) and WT
plants under normal conditions (1.0 mM). Under low-phosphate
conditions (0.2 and 0.02 mM), the growth of transgenic plants
and WT plants was inhibited (Figures 2A,B), but transgenic
plants were significantly less affected than WT plants and
showed the higher biomass of tomato plants (Figure 2C).
These results indicate that the codA-transgenic tomato plants
were more tolerant to low-phosphate stress than WT plants.
To respond to low-phosphate stress, plants also induce
anthocyanin and starch accumulation. Quantitative analysis
showed that, under low-phosphate conditions, anthocyanin and
starch content in transgenic tomato plants were less than in
WT plants (Figures 2D,E). All the above indicate that GB

FIGURE 1 | Levels of glycine betaine (GB) in the leaves of wild-type (WT)
plants and three codA-transformed tomato lines (L2, L3, and L4). Plants were
treated under normal or low-phosphate stress conditions for 15 days. Values
represent the means ± SD of four replicates. Asterisks indicate significant
differences compared with WT plants (Student’s t-test). FW, fresh weight;
∗P < 0.05; ∗∗P < 0.01.

affects multiple aspects of plant response to low-phosphate
conditions.

GB Participates in the Metabolism of
Sucrose in Transgenic Plants
Some studies have shown that sucrose may play an important
role in the modulation of phosphorus metabolism under low
phosphorus stress (Hammond and White, 2008; Lei et al., 2011).
Therefore, we measured some physiological indexes of sucrose
metabolism in WT and transgenic tomato plants to examine the
role of GB in the adaptation response to low phosphate. The
sucrose content in the leaves of codA-transgenic tomato plants
was significantly higher than that of WT plants (Figure 3A).
To further confirm whether the difference in sucrose content is
caused by synthesis and/or transport, and the activity of sucrose
synthase (SS) and sucrose phosphate synthase (SPS), which are
enzymes that participate in synthesizing sucrose for sucrose
loading into phloem, was determined in leaves of WT and codA-
transgenic tomato plants (Figures 3B,C). Under Pi-deficient
conditions, the activities of SS and SPS were significantly higher
in codA-transgenic plants than in WT plants (Figures 3B,C). In
addition, we also tested the expression of SUC2, which encodes a
sucrose-proton symporter that is capable of transporting sucrose
(Lloyd and Zakhleniuk, 2004), and the results indicated that
SUC2 was induced under low-phosphate conditions and that its
expression in transgenic plants was far greater than that of WT
plants (Figure 3D). These results suggested that GB may affect
sucrose metabolism as a response to low-phosphate conditions.

GB Maintains Higher Photosynthesis in
Transgenic Plants
To verify the elevated levels of sucrose in transgenic plants,
we further analyzed photosynthesis under different Pi
concentrations. Only under normal Pi levels (1.0 mM; Figure 4)
did the transgenic plants appear similar to the WT plants. As
the Pi concentration decreased, photosynthesis in the WT plants
was severely inhibited. In contrast, photosynthesis has been
maintained at an elevated level in the codA-transgenic plants
even when they were grown under a very low Pi level (0.02 mM;
Figure 4), indicating that GB may be involved in low-phosphate
response, thus influencing photosynthesis.

GB Affects Phosphorus Accumulation in
Transgenic Plants
To sustain normal growth and development, it is important for
plants to have enough phosphorus. We noted above that the
transgenic plants adapted well to the low-phosphate condition.
With the decreased Pi concentrations during growth, the total
phosphorus in WT plants dramatically decreased, but the
total phosphorus content in transgenic plants remained high
(Figure 5A). To test whether the transgenic plants are better
at absorbing and utilizing Pi, we measured the Pi content of
various parts in both WT and transgenic plants. In all cases,
the transgenic plants consistently retained more Pi compared
with the WT plants (Figures 5B–D). These results suggest that
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FIGURE 2 | Growth phenotype of WT and transgenic lines under variable Pi conditions. (A,B) The shoot and root phenotypes of 15-day-old WT tomato plant and
three codA-transgenic tomato lines under variable Pi conditions. Seedlings (after germination) were treated with 1.0 mM phosphorus (CK), 0.2 mM phosphorus and
0.02 mM phosphorus (LP) for 15 days under sand-culture system. Then, photos were taken. (C) The whole-plant biomass of WT and transgenic lines under the
various Pi concentrations as described in (A,B). 15-day-old tomato seedlings were collected for biomass analysis. Values are means ± SD. n = 12 for each
genotype. (D) Anthocyanin content in the leaves of plants treated with 1.0, 0.2, 0.02 mM phosphorus for 15 days; seedlings were subsequently harvested for
measuring anthocyanin content. (E) Starch accumulation of the 15-day-old WT and transgenic lines described in (D). Values represent means ± SD of three
replicates. Asterisks indicate significant differences compared with WT plants (Student’s t-test). FW, fresh weight; ∗P < 0.05; ∗∗P < 0.01.

GB may enhance the absorption of elemental phosphorus in
transgenic plants under low-phosphate conditions.

GB Activates Plasma Membrane
H+-ATPase in Transgenic Plants
Transport of Pi across the plasma membrane is regulated
by Pi/H+ co-transport stimulated by H+-ATPase activity
(Raghothama, 2000). Phosphorus elemental analysis of tomato
plants suggested that GB potentially functions in Pi absorption
and utilization. To further support this hypothesis, we measured
the activity of H+-ATPase in WT plants and transgenic plants.
To evaluate the purity of root plasma membrane in tomato
plants, the activity of various inhibitor-sensitive ATPases in the

membrane fraction was analyzed (Table 1). As described in
previous studies (Yan et al., 2002; Xu et al., 2012), our results
showed that vanadate-sensitive ATPase occupied approximately
90% of the total activity in the plasma membrane, which
indicated a highly purified plasma membrane. Afterward, plasma
membrane H+-ATPase activity was analyzed in the whole
root of WT plants and transgenic lines (Figure 6). Under
normal conditions, no significant difference in H+-ATPase
activity in the root plasma membrane was observed between
the codA-transgenic plants and WT plants. However, the activity
of root plasma membrane H+-ATPase in transgenic plants was
clearly higher than that in WT plants under low-phosphate stress
(Figure 6). Generally, protons (H+) in the plant cells are pumped
out by the plasma membrane H+-ATPase (Zhang et al., 2011).

Frontiers in Plant Science | www.frontiersin.org 5 January 2019 | Volume 9 | Article 1995

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01995 January 5, 2019 Time: 18:24 # 6

Li et al. Glycine Betaine Enhances Phosphate Uptake

FIGURE 3 | Sucrose concentration (A), SS and SPS activity (B,C) and leaf SUC2 gene expression (D) in WT tomato plants and three codA-transgenic tomato lines
under variable Pi conditions. Seedlings (after germination) were treated with 1.0 mM phosphorus (CK), 0.2 mM phosphorus and 0.02 mM phosphorus (LP) for
15 days under sand-culture system. The seedlings were subsequently used for experimental analysis. Values represent means ± SD of three replicates. Asterisks
indicate significant differences compared with WT plants (Student’s t-test). SS, sucrose synthesis; SPS, sucrose phosphate synthesis; FW, fresh weight; ∗P < 0.05;
∗∗P < 0.01.

FIGURE 4 | Photosynthetic rate (Pn) of leaves of plants grown with normal or
low phosphorus. Seedlings (after germination) were treated with 1.0 mM
phosphorus (CK), 0.2 mM phosphorus and 0.02 mM phosphorus (LP) for
15 days under sand-culture system. The photosynthetic rate was measured
by the CIRAS-3. Values are means ± SD. n = 6 for each genotype. Asterisks
indicate significant differences compared with WT plants (Student’s t-test).
∗P < 0.05; ∗∗P < 0.01.

These results partially suggested that the transgenic plants with
enhanced H+-ATPase activity may have a stronger ability to
secrete more H+ to regulate Pi absorption.

The proton (H+) could couple with Pi to carry out Pi transport
(Zhang et al., 2011). The relationship between Pi uptake and

plasma membrane H+-ATPase activity was examined further
by analyzing proton flux along the root tip of WT plants and
codA-transgenic plants (Figure 7). We found that no significant
difference in H+ influx was observed between transgenic plants
and WT plants under normal conditions. Nevertheless, the H+
influx in codA-transgenic plants was significantly higher than WT
plants at the root tip under low-phosphate stress (Figures 7C–F).
These results indicate that GB accumulation in vivo increases the
H+ influx, to promote Pi absorption in the root.

GB Mediates the Expression of Pi Uptake
and Translocation Related Genes in
Transgenic Plants
In addition, PHT1 transporters are responsible for Pi uptake from
the soil (Hammond and White, 2008; Bucher and Fabiańska,
2016). SlPT1 and SlPT2, members of the PHT1 family, are major
high affinity Pi/H+ symporters in tomato whose expression is
also highly induced by Pi starvation (Liu et al., 1998; Chen
et al., 2014). Consistent with this observation, transcription of
SlPT1 and SlPT2 was clearly induced in the codA-transgenic lines
(Figures 8A,B), especially in the 0.02 mM treatment. In contrast,
the same genes were expressed at a lower level in the WT plants.
This result indicates that the induction of SlPT1 and SlPT2 in
codA-transgenic lines was partially caused by GB-mediated.

The PHO1 gene is involved in loading Pi into the xylem
of roots (Hamburger et al., 2002). As shown in Figure 8C,
the transcription level of the PHO1 gene was evaluated

Frontiers in Plant Science | www.frontiersin.org 6 January 2019 | Volume 9 | Article 1995

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01995 January 5, 2019 Time: 18:24 # 7

Li et al. Glycine Betaine Enhances Phosphate Uptake

FIGURE 5 | Comparison of total P and Pi content between WT and transgenic plants. Plants were grown under variable Pi conditions for 15 days. (A) Total
phosphorus content of WT and transgenic lines under different Pi concentrations. Seedlings (after germination) were treated with 1.0 mM phosphorus (CK), 0.2 mM
phosphorus, and 0.02 mM phosphorus (LP) for 15 days under sand-culture system. Seedlings were subsequently harvested for measuring phosphorus content.
Values are means ± SD. n = 4 for each genotype. (B–D) The Pi content of the leaves, stem and root under normal Pi and low Pi conditions. Pi content was
measured in harvested 15-day-old tomato plants. Values represent the means ± SD of three replicates. Asterisks indicate significant differences compared with WT
plants (Student’s t-test). DW, dry weight; FW, fresh weight; ∗P < 0.05; ∗∗P < 0.01.

TABLE 1 | The purity of plasma membrane isolated from tomato roots was
analyzed by the activity of various inhibitor-sensitive ATPases in the membrane
fraction.

Na3VO4 KNO3 NaN3 Na2MoO4

1.0 mM 0.881 ± 0.02 0.091 ± 0.01 0.057 ± 0.05 0.022 ± 0.02

0.2 mM 0.874 ± 0.04 0.079 ± 0.02 0.038 ± 0.08 0.029 ± 0.05

0.02 mM 0.91 ± 0.02 0.066 ± 0.02 0.05 ± 0.03 0.032 ± 0.07

The membrane was isolated from tomato roots subjected to normal and
low-phosphate stress conditions. The values are the means and SD of 10 replicates
from two independent experiments.

in the roots of the codA-transgenic lines and WT plants.
However, the transcription of PHO1 was significantly enhanced
in the codA-transgenic lines (Figure 8C), with the highest
induction at 0.02 mM and the lowest under normal conditions.
The UBC24 gene was identified as PHO2, which negatively
regulates Pi remobilization and uptake (Aung et al., 2006;
Bari et al., 2006; Chiou et al., 2006; Zhou et al., 2017).
Our results showed that the expression of PHO2/UBC24 was
clearly repressed under low-phosphate conditions (Figure 8D),
and the repression level of PHO2/UBC24 expression in the
codA-transgenic lines was more marked than that in WT
plants. These data indicate that GB in vivo may modulate
the expression of some genes related to Pi uptake and
translocation.

FIGURE 6 | Comparison of plasma membrane H+-ATPase activity derived
from tomato roots. Seedlings (after germination) were treated with 1.0 mM
phosphorus (CK), 0.2 mM phosphorus, and 0.02 mM phosphorus (LP) for
15 days under a sand-culture system. Values are means ± SD of three
replications per experiment, n = 6 for each genotype. Asterisks indicate
significant differences compared with WT plants (Student’s t-test). ∗P < 0.05;
∗∗P < 0.01.

DISCUSSION

Plants require a large amount of Pi for their growth and
development, but Pi levels are limited and constantly changing.
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FIGURE 7 | H+ flux in tomato roots under variable Pi conditions. (A,C,E) Transient net flux of H+ in the root elongation zone of WT plants and three codA-transgenic
tomato lines under different Pi concentrations. A continuous flux recording over 10 min was conducted in a corresponding measuring solution (pH 6.0). (B,D,F) The
mean rate of H+ flux within the measuring periods is shown. Values are means ± SD. n = 6 for each genotype. Asterisks indicate significant differences compared
with WT plants (Student’s t-test). ∗P < 0.05; ∗∗P < 0.01.

To adapt to this nutrient stress, plants have evolved a strong Pi
uptake and translocation capability (Liu et al., 2015). However,
GB, as an important compatible solute, plays a vital role in various
forms of abiotic stresses responses (Khan et al., 2009; Giri, 2011).
Phosphorus stress is one type of abiotic stress. However, the
relationships between GB and mineral nutrition remain unclear,
especially for elemental phosphorus. Few studies indicated that
the interaction between GB and mineral nutrients can be targeted
to develop a tolerant phenotype (Masood et al., 2016). In this
study, we confirmed the differential Pi uptake and translocation
capacity between WT and transgenic plants and proposed a novel
role that GB could alleviate low-phosphorus stress.

Phosphorus deficiency is detrimental to plant growth,
development and metabolism. Several reports have shown

that phosphorus deficiency leads to growth retardation and
lowers the Pi level in plants (Ciereszko and Barbachowska,
2000; Lei et al., 2011; Xu et al., 2012; Su et al., 2015).
In this study, although the codA-transgenic plants and WT
plants both displayed a Pi-deficiency phenotype (Figure 2),
including the level of internal phosphorus was reduced under
low-phosphate stress (Figure 5), but the codA-transgenic plants
were rendered more resistant to low-phosphate stress. We
observed that the difference is not obvious in phosphorus content
between WT and the codA-transgenic plants under normal
condition and the codA-transgenic plants still maintained higher
phosphorus content in the tissue compared with WT plants
under low-phosphorus stress (Figure 5). This difference was
probably due to that GB can affect the expression of some
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FIGURE 8 | Quantitative analysis of gene expression of PT1 (A), PT2 (B), PHO1 (C), and UBC24 (D) in the root of the WT tomato plant and three codA-transgenic
tomato lines under variable Pi conditions. Seedlings (after germination) were treated with 1.0 mM phosphorus (CK), 0.2 mM phosphorus, and 0.02 mM phosphorus
(LP) for 15 days under a sand-culture system. Seedlings were subsequently harvested for experimental analysis. Values represent the means ± SD of three biological
replicates. Asterisks indicate significant differences compared with WT plants (Student’s t-test). ∗P < 0.05; ∗∗P < 0.01.

genes involved in Pi uptake and translocation and further
promote Pi acquisition and translocation in low phosphorus
stress condition (Figure 8). This further proved the notion
that GB plays vital role in responding to low phosphate
stress.

The codA-transgenic plants also display other characteristic
responses to low phosphate levels, including reduced
anthocyanin (Figure 2D) and starch (Figure 2E) accumulation.
We speculated that these altered low-phosphate responses
are caused by the GB accumulation in the transgenic plants
(Figure 1). Numerous reports have demonstrated that GB plays
a versatile and crucial role in imparting stress tolerance in
plants (Takabe et al., 2006; Ahmad et al., 2013; Masood et al.,
2016). Among these studies, none of them indicated that GB
has any negative effects on plant growth and development
under normal or stressful conditions (Ahmad et al., 2013).
Therefore, we can infer that the transgenic plants suffered
less under from smaller low-phosphate stress than WT
plants.

Because the WT plants were smaller in stature, we suspected
that this size difference could affect comparability of Pi
measurements in the WT and transgenic plants. Thus, we next
set out to determine the Pi uptake. Proton release into the
rhizosphere is also a common adaptation to low phosphorus
for enhancing phosphorus uptake (Raven and Smith, 1976;

Lambers et al., 2006; Richardson, 2009). Generally, the increase
in H+ secretion results from the activity of a plasma membrane
H+-ATPase (Yan et al., 2002; Vance et al., 2003). The plasma
membrane H+-ATPase plays an especially important role in
the plant response to low-phosphate stress. Compared with WT
plants, the transgenic plants exhibited higher activity of plasma
membrane H+-ATPase low-phosphate conditions (Figure 6),
suggesting that GB maybe involved in the low-phosphate
response by activating root plasma membrane H+-ATPase to
release protons. Several studies demonstrated that GB could
positively affects complex proteins and antioxidative defense
systems (Chen and Murata, 2011; Giri, 2011; Masood et al.,
2016). In addition, our previous study (Wei et al., 2017)
indicated that GB can regulate the H+-ATPase by enhance the
expression of genes. We infer that GB accumulation due to the
expression of choline oxidase in transgenic plants enhances the
activity of H+-ATPase might associated with the protection to
H+-ATPase and the enhancement of gene expression. However,
the mechanism of how GB enhances enzyme activity remains
to be further studied. The activation of the plasma membrane
H+-ATPase may enhance the transport of phosphorus via
establishing an electrochemical proton gradient that drives ion
transport across the plant cell membrane (Haruta and Sussman,
2012; Yuan et al., 2017). Therefore, it is feasible to hypothesize
that more H+ may be involved in Pi transport across the plasma
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membrane in the transgenic roots under low-phosphate stress,
which facilitates Pi uptake. This inference is further supported
by the enhanced H+ influx in the transgenic lines (Figure 7).
Considering the stronger values of H+ influx in transgenic roots,
we presume that more H+ do carry more Pi into the plant
cell under low-phosphate conditions. This hypothesis is also
confirmed by the phosphorus and Pi content measured in this
paper (Figure 5). Wei et al. (2017) found that GB also regulated
H+-ATPase activity in the codA-transgenic tomato lines under
salt stress, to enhance Na+ exclusion and K+ uptake. In addition,
growing evidence suggests that GB has a certain impact on ion
absorption, including Na, K, Ca and others (Gobinathan et al.,
2009; Alikhani et al., 2011; Wei et al., 2017). Therefore, we
believe that GB can mediate Pi uptake by regulating proton
circulation.

To further confirm that GB mediates Pi influx into plant
cells, we measured the expression of SlPT1 and SlPT2 in the
tomato roots, since the induction of SlPT1 and SlPT2 increased
phosphate uptake (Liu et al., 1998). Interestingly, the results
above showed that the transgenic tomato roots enhanced Pi
uptake and root Pi content. In fact, the expression of SlPT1 and
SlPT2 was also significantly induced in the transgenic lines in
response to low-phosphate conditions (Figures 8A,B), showing
that GB may modulate Pi uptake by directly up-regulating
SlPT1 and SlPT2 expression. Pi homeostasis in plants depends
not only on Pi influx into cells but also on Pi efflux. Proper
distribution of Pi among the various plant tissues requires the
loading and unloading of Pi in the xylem and phloem. The
genes PHO1 and PHO2 have been identified as important to
the control of Pi homeostasis (Hamburger et al., 2002; Aung
et al., 2006; Bari et al., 2006). In addition, the PHO1 gene has
been demonstrated to transfer Pi into the xylem of roots (Poirier
et al., 1991; Hamburger et al., 2002; Ribot et al., 2008). Then,
we hypothesized that the improved Pi content in the stem and
leaf of the codA-transgenic lines was partially caused by the
differential expression of ‘PHO regulon’ genes. We noticed that
the expression levels of PHO1 in WT plants were clearly lower
than that of transgenic lines even when they are grown under
Pi-sufficient conditions (Figure 8C). In addition, reduced PHO1
expression caused by PHO1 mutations impedes Pi uptake (Liu
et al., 2012), which also accounts for lower root Pi content
of WT plants. The results provided evidence that GB may
participate in the transport of Pi. In addition, down-regulated
PHO2/UBC24 alleviates the repression of Pi transporter genes
and alters root growth and architecture to maximize Pi uptake
(Aung et al., 2006; Bari et al., 2006; Sunkar et al., 2007; Wang
Z. et al., 2009). The repression level of PHO2/UBC24 was
slightly stronger in the codA-transgenic lines (Figure 8D), which
was consistent with their phenotype of higher expression of Pi
transporter genes, stronger Pi uptake and translocation and better
root development compared with WT seedlings. Previously,
several studies have provided convincing evidence that the
GB-accumulating transgenic plants have enhanced expression of
stress-responsive genes (Kathuria et al., 2009; Chen and Murata,
2011; Giri, 2011), which might be a plausible explanation for
GB-mediated genes related to Pi uptake and redistribution.
These results further supported the speculation that GB plays an

important role in Pi uptake and translocation under low Pi stress
condition.

It is generally known that Pi deficiency has direct
consequences for photosynthesis. Interestingly, GB has
previously been reported to protect photosynthetic machinery
in response to various type of environmental stresses (Bartels
and Sunkar, 2005; Chaum and Kirdmanee, 2010; Chaum et al.,
2013; Masood et al., 2016). In this work, we noticed that the
transgenic plants exhibit better tolerance phenotypes than
do WT plants, especially in the case of severe low-phosphate
conditions (Figures 2A,B), and thus we naturally speculate
that it may be closely related to the strong photosynthetic
and metabolic processes in transgenic plants. As expected,
physiological parameters showed that photosynthetic activity
and fresh weight were significantly higher in transgenic plants
compared with WT plants under low-phosphate conditions
(Figures 2C, 4). Sucrose derived from photosynthesis serves
not only as the major form of carbohydrate for long-distance
translocation but also as a systemic signal of Pi signaling
(Hammond and White, 2008; Zhang et al., 2014). Sucrose
transport requires active loading, unloading and utilization
of sucrose in the sink tissues. We found that low-phosphate
stress enhanced the activities of sucrose synthesis enzymes,
especially in the transgenic lines (Figures 3B,C). These data
are consistent with sucrose content in both WT and transgenic
plants (Figure 3A). In our work, a significantly higher SUC2
expression in the leaves of phosphorus-starved transgenic plants
was also observed (Figure 3D). SUC2 encodes a sucrose-proton
symporter that is responsible for sucrose loading into the
phloem (Gottwald et al., 2000; Lloyd and Zakhleniuk, 2004).
Wissuwa et al. (2005) speculated that the increased translocation
of sucrose to the root may be driven by an increased root
demand and that sucrose is likely to be utilized immediately
by roots. Consequently, the transgenic lines with higher
shoot sucrose concentration and better transport enable the
plants to meet their need for root growth and to maximize Pi
uptake, while lower sucrose biosynthesis and/or translocation
attenuates plant response to low-phosphate stress in the WT
plants. This is also consistent with the root phenotype results

FIGURE 9 | A possible model to show the probable mechanism of how GB
regulates phosphate acquisition in transgenic tomato plants under low
phosphate stress.
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obtained under low-phosphate conditions (Figure 2B). Between
root development and photosynthesis, a mutually beneficial
relationship in the transgenic lines is established. Taken together,
our results suggest that GB is involved in the response of plants
to low-phosphate conditions via regulating leaf carbon allocation
and sucrose transport to promote root growth.

CONCLUSION

In summary, we investigated the potential mechanisms that
GB mediates low Pi tolerance (Figure 9). We demonstrated
that accumulated GB in transgenic tomato plants can alter
the uptake of Pi; carbohydrate signaling; the expression of
low-phosphate-response genes that are involved in Pi signaling,
transport, mobilization; and the Pi balance between roots and
shoots, which will ultimately maintain Pi homeostasis and help
plant better adapt to low phosphate stress. A challenging task
ahead is to identify the direct targets of GB and understand how
GB perceives and transmits low Pi signaling to trigger plant Pi
responses at the molecular level. Our result may benefit effort
to enhance phosphate utilization efficiency of plant as well as to
improve crop yield in low phosphate regions.
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