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Atypical atrial flutter (AFlut) is a reentrant arrhythmia which patients frequently develop

after ablation for atrial fibrillation (AF). Indeed, substrate modifications during AF

ablation can increase the likelihood to develop AFlut and it is clinically not feasible

to reliably and sensitively test if a patient is vulnerable to AFlut. Here, we present

a novel method based on personalized computational models to identify pathways

along which AFlut can be sustained in an individual patient. We build a personalized

model of atrial excitation propagation considering the anatomy as well as the spatial

distribution of anisotropic conduction velocity and repolarization characteristics based

on a combination of a priori knowledge on the population level and information derived

from measurements performed in the individual patient. The fast marching scheme is

employed to compute activation times for stimuli from all parts of the atria. Potential

flutter pathways are then identified by tracing loops from wave front collision sites

and constricting them using a geometric snake approach under consideration of the

heterogeneous wavelength condition. In this way, all pathways along which AFlut can be

sustained are identified. Flutter pathways can be instantiated by using an eikonal-diffusion

phase extrapolation approach and a dynamic multifront fast marching simulation. In

these dynamic simulations, the initial pattern eventually turns into the one driven by

the dominant pathway, which is the only pathway that can be observed clinically.

We assessed the sensitivity of the flutter pathway maps with respect to conduction

velocity and its anisotropy. Moreover, we demonstrate the application of tailored

models considering disease-specific repolarization properties (healthy, AF-remodeled,

potassium channel mutations) as well as applicabiltiy on a clinical dataset. Finally,

we tested how AFlut vulnerability of these substrates is modulated by exemplary

antiarrhythmic drugs (amiodarone, dronedarone). Our novel method allows to assess

the vulnerability of an individual patient to develop AFlut based on the personal

anatomical, electrophysiological, and pharmacological characteristics. In contrast to

clinical electrophysiological studies, our computational approach provides the means to

identify all possible AFlut pathways and not just the currently dominant one. This allows

to consider all relevant AFlut pathways when tailoring clinical ablation therapy in order to

reduce the development and recurrence of AFlut.
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1. INTRODUCTION

The long-term success rate of atrial fibrillation (AF) ablation

is unsatisfactory low, particularly in patients suffering from
persistent AF. Besides AF recurrence, the development of post-

ablational atrial flutter (AFlut) represents a major problem

(Villacastín et al., 2003; Kobza et al., 2004; Chugh et al., 2005;
Patel et al., 2008; Yamada and Kay, 2013; Biviano et al., 2015).
In more than half of the patients, sustained AF is reinitiated
within 5 years after ablation or AFlut develops (Bunch et al.,
2016). 20% of recurrences after AF ablation in elderly are due to
AFlut (Dong et al., 2015). In the general AF population, 18.5%
of patients were diagnosed with AFlut during a median follow-
up time of 421 day post ablation (Gucuk Ipek et al., 2016). Liang
et al. (2015) observed AF or organized atrial tachycardia in 53%
of 300 patients within the first 6 weeks after pulmonary vein
(PV) isolation. AF and AFlut are often even combined endpoints
in studies evaluating the success of AF ablation (Bunch et al.,
2016). Waldo and Feld (2008) highlighted the inter-relationship
between AF and AFlut. AF precedes AFlut in most cases
forming the required line of block by fibrillatory conduction.
Moreover, ablation of atrial tissue can lead to a substrate for
AFlut. Particularly gaps in linear lesions forming isthmuses or
revitalized tissue areas forming zones of slow conduction render
the atria vulnerable. Also PV isolation has been associated with a
substantial risk to develop AFlut (Mesas et al., 2004; Deisenhofer
et al., 2006; Jaïs et al., 2006). Castrejón-Castrejón et al. (2011)
reviewed the occurrence of organized atrial tachycardia such
as AFlut after AF ablation and emphasize that more extensive
left atrium (LA) ablation renders the patient more vulnerable
to AFlut. However, the exact origin of the pathologic substrate
is not understood. Therefore, we present a method to assess
the vulnerability to AFlut in personalized computational models.
Besides an identification of possibly AFlut sustaining pathways
in the observed state of the patient (baseline), the approach
allows to assess the effect of different therapeutic strategies
such as ablation patterns, pharmacological compounds, or other
anatomical and electrophysiological interventions in silico before
actually performing them in vivo.

A common approach to simulate complex excitation patterns
is the monodomain reaction-diffusion model which is based
on the transport of ions within the domains and across the
cell membrane (Niederer et al., 2011). As such, it considers
electrotonic effects and source-sink relations resulting in
e.g., convex or concave wavefronts. On the one hand, the
monodomain approach provides the means to study complex
and chaotic patterns such as fibrillation including wave breaks.
On the other hand, the monodomain model is computationally
expensive even using optimized implementations (Labarthe et al.,
2014; Pezzuto et al., 2017). Hence, a thorough exploration of
the parameter space regarding effects on the three-dimensional
whole organ level, as e.g., the vulnerability to arrhythmia
caused by ectopic stimuli from a multitude of locations and
at varying time instants, is infeasible. Eikonal approximations
of the continuous dynamics of the reaction-diffusion system
allow to simulate excitation propagation in terms of activation
times with significantly reduced computational load by several

orders of magnitude (Wallman et al., 2012; Labarthe et al.,
2014; Loewe, 2016; Neic et al., 2017; Pezzuto et al., 2017) as
only one static, non-linear partial differential equation derived
from the monodomain model has to be solved, which makes it
interesting for simulations of cardiac activation (Keener, 1991;
Franzone and Guerri, 1993). In contrast to level set methods in
general, shortest pathway (van Dam and van Oosterom, 2003)
and fast marching methods assume monotonously expanding
wavefronts. Thus, a specific approach considering multiple
fronts, reentry, and anisotropic conduction was developed for
cardiac electrophysiology (Sermesant et al., 2007; Pernod et al.,
2011) based on the fast marching method on structured grids
(Sethian, 1996, 1999; Sermesant et al., 2005). Several extensions
provide the means to consider wavefront curvature and the
mesh structure if that is needed for the specific application
(Sethian and Vladimirsky, 2000, 2003). Ablation of ventricular
tissue in order to prevent scar-related ventricular tachycardia was
presented as a potential application for thismethod (Pernod et al.,
2011). However, one should keep in mind that while current
multifront fast marching methods faithfully represent macro-
reentrant arrhythmias like AFlut, they are not well suited to
study more complex reentries like spiral wave or multiple wavelet
reentry where local source-sink mismatch plays a crucial role
(Loewe, 2016).

The aim of this work is to develop a method that allows to
comprehensively assess the vulnerability to AFlut in personalized
models considering both anatomical and electrophysiological
properties allowing to evaluate therapeutic approaches such as
ablation and drug treatment in silico.

2. MATERIALS AND METHODS

A simulation pipeline consisting of several steps (Figure 1)
was developed in order to assess the vulnerability to AFlut. In
this section, the different building blocks of the workflow are
presented.

2.1. Fast Marching Simulation of Excitation
Propagation
The eikonal equation governs the spread of an activation wave in
a possibly anisotropic medium resulting in a scalar field ta (xi) –
the activation map:

c

√
∇ta EG∇ta = 1, (1)

with c (xi) being the speed function defined for each node xi,
ta (xi) being the activation time, and EG being a tensor enabling
anisotropy to account for faster conduction along the principal
axis of myocytes than perpendicular to it (Loewe, 2016):

EG = R(φ, θ)



k 0 0
0 1 0
0 0 1


R(φ, θ)T , (2)

with R(φ, θ) rotating the coordinate system to align the positive
x-axis with the prinicipal myocyte orientation. The multifront
fast marching scheme for the eikonal-based simulation of
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FIGURE 1 | Overview of the algorithm to compute vulnerability maps considering all possible AFlut loops (left) and transfer the AFlut scenarios to dynamic simulations

(right).

excitation propagation introduced by Sermesant et al. (2007)
(Supplementary Algorithm 1) was extended to consider
restitution of conduction velocity (CV) and effective refractory
period (ERP). Restitution of both parameters with respect
to basic cycle length (BCL) was determined by pacing in
a one-dimensional tissue strand using the Courtemanche
et al. cell model (Courtemanche et al., 1998) coupled in a
monodomain approach as detailed in Wilhelms et al. (2013).
These restitution curves provide opportunities for functional
model personalization in the future as further discussed below.
The resulting curves for CV were approximated by fitting to
exponential decays:

CV (BCL) = A− B · exp
(
−BCL

C

)
. (3)

The BCL was defined as the time passed since the last activation
of the respective node and initialized with a user-defined value
either globally or for each node individually. The restitution of
the ERP was described the same way.

2.2. Identification of Flutter Loop
Candidates
The fast marching approach was used to trigger excitations
from a multitude of locations sequentially. For each stimulus
location, activation times were computed and stored together
with information regarding the spread of excitation in terms
of a vector pointing from the activating to the activated
node. Wavefront collision sites were defined as points of
latest activation on circular pathways composed of two traces
originating from the stimulus site to opposite sides, i.e., at an
angle of approximately π . On the one hand, these pathways
are the shortest in the sense of wave propagation, i.e., they are
not artificially prolonged by zig-zag patterns but determined
as the shortest connection by the fast marching algorithm. On

the other hand, they are locally the longest as two independent
waves collided on the loop. A wavefront collision for node i
was identified if the following condition was fulfilled for any
neighboring node j:

Eai
‖ Eai‖2

+ Eaj∥∥ Eaj
∥∥
2

< 0.99 , (4)

with Eai/ Eaj being the vector pointing from the node that activated
node i/j to node i/j itself. The condition identifies all points at
which the vectors meet at an angle ∈ (π /2,3π /2), thus pointing
in opposite directions. From the sites of collisions, loops were
defined by the two traces along the steepest negative activation
time gradient leading back to the stimulus location. A loop was
thus composed of a circular, ordered series of nodes. Along the
loop, the round trip time (RTT) was calculated considering the
heterogeneous and anisotropic tissue properties in terms of CV.
If a loop did not fulfill the wavelength (WL) condition

max
i

(
ERPi(RTT)

)
< RTT, (5)

it was disregarded. Here, ERPi is the ERP of node i considering a
BCL equal to the RTT according to Equation (3). i iterates over
all nodes spanning the loop candidate.

2.3. Constriction of Flutter Loop
Candidates
The fact that the loops were traced back all the way to
the initial stimulus site introduced artifacts as a dynamic
wave would cut short between the two traces from the
site of collision to the stimulus site in many cases. In the
easier case, both half loops share a part of the loop. Under
such circumstances, all common nodes can be neglected,
thus shrinking the loop (Supplementary Figure 1A). In most
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cases, however, artifacts of other types were present as well.
In Supplementary Figure 1B, a shortcut of the two half
loops running adjacent on the posterior LA wall can be
anticipated between the posterior interatrial connections and the
connection via the coronary sinus. Therefore, a geometric snake
approach (Supplementary Figures 2, 3) considering anisotropy
was implemented in order to constrict the loops like a rubber
band by minimizing the spline energy. Evolving snakes on
triangular meshes were proposed before for mesh scissoring
operations and constriction detection (Lee and Lee, 2002;
Hétroy and Attali, 2003; Bischoff and Kobbelt, 2004; Lee
et al., 2004) and were adapted to the requirements of the
specific application in this work as further detailed in the
Supplementary Methods.

2.4. Eikonal-Diffusion Phase Extrapolation
The methods introduced above allow to identify pathways in
an atrial model that can potentially sustain AFlut. However, the
pathways are not necessarily dominant and might thus not be
expressed in dynamic scenarios. An example is shown in Figure 2
where several pathways run from the septal side of the tricuspid
valve to the right atrial appendage and to the coronary sinus
region. Each pathway is locally the shortest and long enough
to sustain AFlut according to the WL condition. However,
according to Huygen’s principle, only one pathway will dominate
the excitation pattern distal to the constriction at the tricuspid
valve where all pathways narrow. Thus, the remaining pathways
will be suppressed. In order to identify the dominant pathway,
i.e., to distinguish between theoretically vulnerable pathways and
practically inducible pathways, the initial state for a dynamic
simulation can be extrapolated from a single loop to the entire
simulation domain as detailed in the Supplementary Methods.

Figure 1 summarizes the pipeline used to generate AFlut
vulnerability maps and transfer the results to dynamic
simulations.

FIGURE 2 | Example of an AFlut vulnerability map for the right atrium (anterior

aspect in A, posterior aspect in B). The vulnerable pathways are marked in

yellow on the substrate of the right atrium (brown); the blood pool is indicated

in gray. Several pathways run from the septal side of the tricuspid valve to the

right atrial appendage.

2.5. Heterogeneous Tissue Properties,
Disease-Specific Substrates, and Drug
Effects
The restitution of CV and ERP was determined through
monodomain simulations in a one-dimensional tissue strand
as detailed in Wilhelms et al. (2013). CV and ERP were
determined for 50 BCLs between 200 and 1,000ms distributed
linearly in frequency domain. Regional heterogeneity between
different anatomical areas within the atria was accounted for
as described previously in terms of both electrophysiological
properties (Krueger et al., 2013) and monodomain conductivities
(Loewe et al., 2015) in a heterogeneous setup. Furthermore,
four different atrial substrates were analyzed in homogeneous
setups: (i) a control substrate representing healthy myocardium
modeled by the original Courtemanche et al. (1998) cellular
model, (ii) a substrate which has undergone remodeling due
to chronic atrial fibrillation (cAF) (Loewe et al., 2014b), (iii)
a substrate with the N588K mutation in the human ether-à-
go-go-related gene (hERG) (Loewe et al., 2014c), and (iv) a
substrate with hERG mutation L532P (Loewe et al., 2014c). The
latter two substrates have been associated with familial AF and
are used here to demonstrate how patient-specific information
like genotype-specific repolarization properties can be included
in the overall workflow. All four substrates were investigated
with and without the influence of two exemplary antiarrhythmic
drugs to demonstrate how not only ablation but also drug
therapy can be considered and evaluated using our method.
Based on a previous study (Loewe et al., 2014a), the class
III antiarrhythmic compounds amiodarone and dronedarone
where chosen and modeled as detailed there. Figure 3 shows the
exponential fit of the restitution curves based on the coefficients
in Supplementary Table 1. The CV for the homgeneous control
model was reduced compared to the RA/LA tissue in the
heterogeneous setup to obtain a similar total activation time.

The ERP for long BCLs ranged between 256ms for the
tricuspid and mitral valve rings to 332ms for the crista
terminalis. Crista terminalis, Bachmann’s bundle, and the
working myocardium showed a steeper decrease toward shorter
BCLs compared to the remaining regions (Figure 3C). Regarding
AFlut vulnerability, the WL is the decisive factor. Both, different
regions and different substrates, exhibited distinct behavior at
different BCLs. For example, at short BCLs, crista terminalis was
the region with the shortest WL opposed to long BCLs where it
was the region with the longest WL together with Bachmann’s
bundle (Figure 3E).

2.6. Clinical Example
The proposed method was applied to a clinical example from
a 70 year-old female patient who underwent electroanatomical
mapping due to atypical AFlut after previous ablation for AF.
The previous AF ablation comprised PV isolation, ablation of a
mitral isthmus line and the cavotricuspid isthmus. The patient
presented with atypical AFlut with a cycle length of 420ms.
Mapping was performed using the Rhythmia system (Boston
Scientific, Marlborough, MA, USA). The PVs were still isolated,
electrogram voltage along the mitral isthmus line was reduced
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FIGURE 3 | Fitted exponential restitution curves of ERP (A,B) and CV (C,D), as well as the WL as the product of the former measures (E,F) for different anatomical

regions in the atria (A,C,E) and different substrates (B,D,F). In (B,D,F), the dashed lines represent the respective substrates under the influence of 2.3µM amiodarone

whereas the dotted lines represent the influence of 0.21µM dronedarone. Exponential curves according to Equation (3) were used to fit the output of monodomain

tissue strand simulations. The CV for the homgeneous control model in (D) was reduced compared to the RA/LA tissue in the heterogeneous setup in (C) to obtain a

similar total atrial activation time. In (A), BB and PM curves are covered by the RA/LA curve. Coefficients are listed in Supplementary Table 1. RA, right atrium; LA,

left atrium; CT, crista terminalis; PM, pectinate muscles; BB, Bachmann’s bundle; II, inferior isthmus; PV, pulmonary veins; RAA, right atrial appendage; LAA, left atrial

appendage; TVR, tricuspid valve ring; MVR, mitral valve ring.

but the line was not blocked. A zone of slow conduction was
identified on the left anterior wall close to the left PVs. Five
different AFlut types with cycle lengths between 280 and 470ms
could be induced clinically. The arrhythmia terminated to sinus
rhythm upon the first ablation in the zone of slow conduction.
Further ablation points were placed in the area of the anterior line
and connected to the mitral valve. Afterwards, tachycardia could
not be induced anymore by burst pacing from the coronary sinus
with cycle lengths down to 200ms. The LA geometry aquired
during the procedure comprising 7,471 nodes was retrospectively
exported from the clinical system and transferred to the fast
marching simulation environment. The previous ablations were
manually annotated in the patient LA geometry (Figure 10A).

To reproduce the clinical reentry pattern and activation map
qualitatively, the CV was homogeneously set to 650mm/s and
the ERP to 250ms. The protocol was approved by the ethics
committee of the University of Freiburg. The subject gave written
informed consent in accordance with the Declaration of Helsinki.

3. RESULTS

3.1. Flutter Loops and Geometric Snakes
Excitation propagation was calculated from several stimulus
locations and sites of collision were detected using the
activation vectors as shown in Figures 4A,B. From the sites
of wavefront collision, the activation front was traced back
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to the stimulus site along the gradient of the activation time
field. Combining the traces obtained by following the activation
waves of both colliding waves yielded a set of initial loops for
each stimulus node (Figure 4C). The WL condition Equation
(5) was not fulfilled by several loops that could thus be

neglected during the following steps (lighter colored loops in
Figure 4C).

A geometrical snake was initialized for each valid loop
candidate. Figure 5 shows a geometrical snake initialized along
a flutter loop candidate in the LA. The stimulus leading to

FIGURE 4 | Loop candidate finding. Activation time resulting from a stimulus at the junction of the superior vena cava with the right atrial appendage (yellow star)

ranging from early (blue) to late (red). The direction of activation is indicated by arrows (A). Points of wavefront collisions were detected and are indicated by red dots in

(B). (C) shows the loops composed of the two traces leading from the collision site to the stimulus site (yellow star). The yellow loops fulfill the WL condition

Equation (5) whereas the light gray loops do not and were thus not considered for further steps.

FIGURE 5 | Evolution of a geometric snake covering the LA. Initially, the snake (gray) covered the loop found by the collision tracing algorithm (blue band)

corresponding to a RTT of 390ms (A). By iteratively constricting the snake (B–F), the shortest RTT of 304ms considering heterogeneous CV and anisotropy was

found. In this way, the influence of the particular choice of the stimulus site (yellow star in A) was reduced.
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that loop was applied between the two left PVs (yellow star
in Figure 5A). The segment connecting the loop candidate
with the stimulus location was shared by both half loops and
disregarded before the snake was initialized. The initial RTT of
390ms was reduced to 304ms by iterating the snake according
to Supplementary Equation (4). The converged snake reflects
myocyte orientation and CV heterogeneity (Figure 5F).

3.2. Vulnerability Maps
By triggering stimulation from different points, identifying loop
candidates, and constricting them using geometrical snakes,
AFlut vulnerability maps were generated as outlined in Figure 1.
In a first step, an MRI-derived triangular mesh of the RA
comprising 19,296 nodes augmented with rule-based tissue
labels and myocyte orientation (Wachter et al., 2015) was
used. The triangular surface model is a lumped representation
of the atrial wall with a single myocyte orientation in each
element. As detailed in Wachter et al. (2015) and Loewe (2016),
crista terminals and the pectinate muscles were integrated
within the RA wall. The vulnerability maps were sensitive to
tissue anisotropy as indicated by the lower number of flutter
pathways in the isotropic models (Figures 6A,C) compared to
the anisotropic cases (Figures 6B,D). While the heterogeneous
A and B values defining the CV according to Equation (3)
were scaled in the isotropic and homogeneous cases to match
the sinus rhythm activation time of the last element in the
heterogeneous anisotropic simulation, both anisotropy and
heterogeneity increased the number of vulnerable pathways.
In the homogeneous isotropic setup (Figure 6A), only 12.7%
of all elements were covered by vulnerable pathways. Adding

FIGURE 6 | Influence of heterogeneity and anisotropic conduction on

vulnerability maps of the RA. Vulnerable pathways are marked in yellow on the

RA myocardium (brown); the blood pool is indicated in gray. While CV was

tuned such that the latest sinus rhythm activation coincided in all models, both

anisotropy and heterogeneity lead to a higher number of vulnerable pathways.

(A) isotropic homogeneous; (B) anisotropic homogeneous; (C) isotropic

heterogeneous; (D) anisotropic heterogeneous.

anisotropy (Figure 6B) increased the coverage to 20.8% whereas
adding heterogeneity (Figure 6C) lead to 15.9% coverage. 51.7%
of the fully heterogenous and anisotropic model (Figure 6D)
were covered by vulnerable pathways.

The number of vulnerable pathways and the share of RA
myocardium covered by them was highly dependent on the
CV. In a homogeneous anisotropic setup (ERP 318ms at long
BCLs), the coverage increased from 0% at a CV of 475mm/s
to over 90% for CVs of 360mm/s and lower (Figure 7A).
When interpreting these findings, one should keep in mind the
homogeneous ERP restitution used in this experiment (solid
green line in Figure 3B). The degree of coverage also depends on
the number of different stimulus locations evaluated (Figure 7B).
Considering all 19,296 RA nodes yielded a coverage of 54.5% for
a fixed CV of 425mm/s. Requiring a minimum distance of 1mm
between stimulus points reduced their number to 8,254 without
affecting the coverage result markedly (50.9%). Considering less
points yielded lower coverage rates (39.4% for 2mm =̂ 2,136
nodes, 3.8% for 20mm =̂ 19 nodes).

The degree of coverage was highly dependent on the
substrate as detailed in Table 1. 8,254 stimulus points with
a minimum distance of 1mm were considered using the
CV and ERP values fitted from the monodomain model
output using the biophysically detailed cell models given in
Supplementary Table 1. While the fitted exponential restitution
of ERP and CV was modeled homogeneously across the
RA, its region-dependent heterogeneous anisotropy (k in
Supplementary Table 1) was kept. To operate in an interesting
range of vulnerability (Figure 7A), CV at long BCLs (A in
Supplementary Table 1) was set to 454mm/s in the following
yielding a total RA activation time of 194ms in the controlmodel
without any drug applied.

Both the cAF substrate and the two hERG mutations
were more vulnerable to AFlut than the control model
representing healthy myocytes. The higher degree of coverage
under the influence of amiodarone observed for all substrates
can be explained by the WL restitution (Figure 3F). The WL
was shortened by the administration of amiodarone due to
conduction slowing caused by the sodium channel inhibition.
This effect was most pronounced in the control substrate and was
reflected in the vulnerability maps as well (Figure 8).

In order to separate the effects of the different substrates
and compounds on CV and ERP, the total activation time of
the RA was matched with the activation of the last element
in the control model and no drug (192ms) in a second set
of simulations (Supplementary Figure 4), i.e., the A and B
parameters determining the CV according to Equation (3) were
scaled while keeping the anisotropy ratio k constant. In this way,
only the effect on repolarization (ERP) was considered leading
to a reduction of vulnerable pathways under the influence of
amiodarone in all substrates and a more pronounced reduction
under the influence of dronedarone compared to Figure 8.

Besides evaluating different substrates, distinct spatial
heterogeneities were introduced in the RA model. The normal
RA myocardium was parametrized with an isotropic CV of
700mm/s and an ERP of 250ms for all BCLs. A circular
zone of slow conduction on the posterior wall was modeled
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FIGURE 7 | Sensitivity of vulnerable pathway coverage to changes in homogeneous, anisotropic CV (A) and the stimulus point density (B). The CV was altered in a

homogeneous, anisotropic setup causing different degrees of RA coverage by vulnerable pathways for a fixed stimulus density of 1mm. In (B), the distance between

stimulus points was varied for a fixed CV of 425mm/s.

TABLE 1 | Degree of coverage of RA elements with pathways vulnerable to AFlut for different substrates and antiarrhythmic drugs amiodarone (amio) and dronedarone

(drone).

Degree of coverage

Original CV Total activation time matched

no drug amio drone no drug amio drone

Control 18.1% 70.5% 0.0% 18.1% 0.0% 0.0%

cAF 96.0% 96.3% 95.6% 96.2% 96.1% 94.9%

N588K 93.2% 94.1% 0.0% 93.0% 77.8% 0.0%

L532P 96.2% 96.5% 34.5% 96.3% 96.0% 11.1%

In the right three columns, the A and B values determining the CV according to Equation (3) were scaled to match the activation time of the last element during sinus rhythm in the

control substrate with no drug applied.

(Figures 9B,C). Depending on the CVs inside and outside
this zone, the wave might be faster bypassing the zone than
propagating through it. Comparing the time the wave takes to
bypass the circle with the time it takes to propagate through
the zone of slow conduction yields a critical CVslow/CVnormal

ratio of 2/π ≈ 0.63. If the ratio is higher, the dominant pathway
is through the zone of slow conduction. If it is lower, the
bypassing wave is faster. Therefore, the zone of slow conduction
within the surrounding tissue conducting at 700mm/s was
parametrized with a CV of 500mm/s resulting in a ratio of 0.71
(Figure 9B), and 250mm/s (=̂ 0.36, Figure 9C). In contrast to
the control model (Figure 9A), the zones of slow conduction
yielded additional flutter pathways. For the CV of 500mm/s
in the zone of slow conduction, 24.1% of the RA were covered
by vulnerable pathways (Figure 9B) in contrast to 14.1% in the
control case (Figure 9A). Additional flutter pathways crossed the
periphery of the zone of slow conduction and thereby prolonged
the RTT. For the slower CV of 250mm/s, the entire zone of
slow conduction was covered by vulnerable pathways yielding
a total RA coverage of 47.8% (Figure 9C). The pathways were
not constricted to the faster route outside the zone as the route
through the zone of slow conduction was optimal considering
the field of view of the geometrical snake. When computing an
inducability map (see Discussion), the driving pathway would be
running around the zone of slow conduction, though.

The second spatial substrate modification was an ablation
lesion which encircled the RA completely (Figure 9D). Rather
than being a clinically used ablation pattern, this scenario serves
as an example separating the RA into two electrically isolated
regions. The lesion was modeled as non-conductive, thus no
flutter pathways could cross it. In additional scenarios, a gap in
the ablation lesion of varying extent was assumed at the central
posterior wall (Figures 9E,F). In case of the complete lesion, no
flutter pathways were identified (Figure 9D) as theWL condition
could not be fulfilled on any of the two separated, smaller
substrates. The gap in the ablation lesion yielded numerous
vulnerable pathways running through the gap at various angles
(Figure 9E). The flutter pathways covered 42.9% of the RA
in contrast to 14.1% in the control case, thus the ablation
increased AFlut vulnerability markedly. In case of a smaller gap
(Figure 9F), the number of loops was smaller than for the wider
gap as the narrow gap served as a funnel. Nevertheless, the
coverage (23.3%) was still markedly higher than for the control
case.

The time to compute a complete vulnerability map depends
on the mesh resolution as well as the number of stimulus
points considered and the number of loop candidates fulfilling
the WL condition over time. The computation is faster, the
fewer loop candidates there are and the earlier the constricted
loops are disregarded because they no longer fulfill the WL
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FIGURE 8 | Vulnerability maps of the RA for combinations of different substrates and pharmacological agents. Besides a control substrate representing healthy

myocytes, a cAF remodeled substrate (neglecting changes of cell-to-cell coupling), and the two hERG mutations N588K and L532P were evaluated. Standard

concentrations of the antiarrhythmic agents amiodarone (2.3µM) and dronedarone (0.21µM) were administered in the center and right columns, respectively.

Vulnerable pathways are marked in yellow on the RA myocardium (brown); the blood pool is indicated in gray. Supplementary Figure 4 shows the results for a

matched total sinus rhythm activation time in all setups.

condition (data not shown). For the RA mesh consisting of
19,296 nodes, computation was timed on an Intel Xeon E5-
2697V2 machine with twelve cores at a base clock rate of
2.7GHz. The control vulnerability map in Figure 9A with a
coverage of 14.1% was computed within 4.0min whereas it took
5.5min to compute the vulnerability map for the RA including
the zone of slow conduction yielding a coverage of 47.8%
(Figure 9C).

3.3. Phase Extrapolation
The vulnerable pathways represented in the vulnerability
maps and identified using the methods described above were
extrapolated on the whole RA in terms of phase using the
methods described in section 2.4. Each vulnerable pathway was
extrapolated in phase space individually. The eikonal-diffusion

approach converged within 16 to 18 iterations and was robust
against variations of the CV [Supplementary Equation (7)]
and the RTT [Supplementary Equation (9)], i.e., the cycle
length of the reentry. CV was varied between 0.1× and
2× the ground truth value used in the fast marching
simulation and assumed RTTs between 0.3× and 3× the
ground truth value. The phase map was then used to
determine the initial state of a dynamic fast marching
simulation as exemplified in the next section for a clinical
dataset.

3.4. Clinical Example
The inital vulnerability map representing the state with which the
patient presented for the redo procedure (compare section 2.6)
covered most parts of the LA (Figure 10A). AFlut pathways
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FIGURE 9 | Vulnerability maps of the RA for different substrate modifications. Compared, to (A), a zone of slow conduction was introduced in (B,C) (light brown area

enclosed by dashed circle). A circular ablation lesion (black line) was introduced in (D). In (E,F), a gap in the ablation lesion with varying extent was modeled on the

central posterior wall.

running through the gap in the anterior line were present. After
closing this gap, the left part of the anterior wall became free
from AFlut pathways and they were restricted to the central
part of the posterior wall (Figure 10B). However, there were still
numerous AFlut pathways remaining. These pathways (the gray
line in Figure 10D shows one example) were used to extrapolate
a phase map on the whole domain (Figure 10C) and intialize a
dynamic fast marching flutter simulation (Figure 10D). Reentry
was stable for the entire simulation duration of 100 reentrant
cycles. After connecting the line on the anterior wall to the RSPV
by additional ablation, no more vulnerable pathways could be
identified (Figure 10E).

4. DISCUSSION

4.1. Main Findings
In this study, a simulation workflow to identify vulnerable
pathways potentially sustaining AFlut was presented. The
approach builds on personalized fast marching simulations
of excitation propagation and geometric snakes to constrict
pathways identified on the basis of wavefront collision sites.
Throughout the whole pipeline, heterogeneous, anisotropic, and

heart rate-dependent tissue properties are considered in terms of
CV and ERP.

The geometrical snake approach presented by Bischoff and
Kobbelt (2004) was adapted to the excitation propagation
application scenario considering the tissue property
heterogeneities mentioned above. Applying the geometric
snake approach to loop candidates identified as circular
pathways from an initial stimulus point via a site of wavefront
collision back to the initial stimulus yielded AFlut vulnerability
maps. The number and the location of the identified vulnerable
flutter pathways were sensitive to (i) anisotropy (Figure 6), (ii)
the substrate properties regarding CV and repolarization, as
well as modification of these parameters due to pharmacological
compounds (Figure 8 and Supplementary Figure 4), (iii)
zones of slow conduction or ablation lesions (Figure 9), and
most importantly (iv) the assumed CV (Figure 7). Anisotropic
substrates were more vulnerable than isotropic tissue when
matching the total sinus rhythm activation time of the RA.
The WL is a crucial parameter as can be seen by the higher
number of vulnerable pathways identified for the cAF and hERG
mutated substrates compared to control. While dronedarone
reduced the AFlut vulnerability, amiodarone rendered the
substrate more vulnerable due to the reduced WL caused by
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FIGURE 10 | Application of the proposed simulation pipeline on a clinical

example. The inital vulnerability map (A) shows numerous pathways along

which AFlut can be sustained. By closing the gap in the previous line on the

left part of the anterior wall (green arrow), the number of pathways could be

reduced but a significant amount remained (B). The extrapolated phase map

(C) for one of the pathways identified in (B) (gray line in D) was used to intialize

a dynamic fast marching simulation (D) exhibiting stable reentry. Additional

ablation to the RSPV (green arrow) eliminated all vulnerable pathways (E).

the slowed CV (Figure 3). When only considering the effect
on repolarization, thus altering ERP to represent the influence
of the drug, amiodarone exhibited antiarrhythmic properties
as well. The effect was less pronounced than for dronedarone,
though. Zones of slow conduction increased the number and
the density of vulnerable pathways as the cycle length increases
both by conducting through the slow zone and by bypassing it.
Ablation lesions isolating different regions completely rendered
the RA invulnerable to AFlut. However, even a small gap
in the lesion increased the number of vulnerable pathways
markedly compared to control. This effect can be explained
by the narrow isthmus formed by the gap in the lesion and

highlights the importance of lesion durability. When linear
lesions are partly revitalizing, they form ideal pathways for
AFlut. In particular, shortcuts leading to wavefront collision
and ceasing the reentrant activation are cut off by the lesion,
thus stabilizing the reentry. The assumed CV had the biggest
effect on the number of vulnerable pathways and the degree
of RA coverage by them. A CV slowing by 25% rendered an
invulnerable RA model highly vulnerable with a flutter pathway
coverage of over 90%. This finding highlights the importance
of a reliable CV estimation to draw relevant conclusions from
personalized models using the method presented here. The
CV of the individual patient has to be measured in a spatially
resolved, and preferably heart rate-dependent, manner. Weber
et al. (2010, 2011) proposed a method to estimate local CV
and its restitution based on a cosine fit method. The advent of
new electro-anatomical mapping systems and catheters with
improved signal quality as well as sophisticated signal processing
approaches gives rise to hope for such CV mapping in the near
future (Latcu and Saoudi, 2014; Cantwell et al., 2015; Verma
et al., 2018).

The application to a clinical example can be considered a
proof of concept. We built on the individual anatomy exported
from the mapping system and tailored the substrate to the
clinically observed activation pattern. The model prediction
and the clinical observations show good qualitative agreement.
However, it has to be considered that the substrate was modeled
homogeneously apart from the lesions and restitution properties
were not taken into account. Therefore the lack of exact
quantitative match is not surprising.

The computation of a single activation sequence was faster
than real-time, a complete vulnerability map took several
minutes. Most of the computational cost was due to the
constriction of the loop candidates using the geometrical
snake approach. While the time spent to calculate excitation
propagation accounted for only a minor share, less complex
alternatives to the fast marching algorithm exist. Graph-based
approaches, such as the A∗ algorithm (Hart et al., 1968; Wallman
et al., 2012) or the fastest route algorithm (van Dam et al.,
2009) are however only faster if the activation time at only
a subset of nodes is needed. Cellular automata on the other
hand do not consider quadratic approximation of activation
times. The computational complexity of the geometrical snake
implementation could be reduced by optimizing the number of
neighbors considered for the calculation of the snaxel velocity
[Supplementary Equation (4)] and the convergence criteria.
Indeed, the approach considering N = 30 neighbors with
decreasing weight could be approximated by a spatial multi-grid
approach starting with distant neighbors in early iterations and
focussing on closer nodes at later iterations. When aiming at
an interactive modification of the substrate, e.g., by introducing
virtual ablation lesions, results from previous evaluations can be
reused for regions not affected by the lastmodification.Moreover,
intermediate results could be precomputed, thus tradingmemory
footprint in for reduced computation time. This potential for
optimizations together with parallel computing approaches make
interactive assessment of ablation therapy in almost real-time
appear achievable.
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4.2. Relation to Previous Work
Dang et al. (2005) and Reumann et al. (2008) compared different
standard ablation patterns for AF using idealized computational
models and suggest that PV isolation together with linear
lesions is the most effective treatment for AF. However, they
did not investigate the vulnerability to AFlut post AF ablation
systematically. Hwang et al. (2014) proposed a method to test
AF ablation patterns in silico using a monodomain approach on
anatomically, but not electrophysiologically personalizedmodels.
Thus, no substrate information regarding fibrosis, zones of slow
conduction or the degree of electrophysiological remodeling
is considered. Recently, Alessandrini et al. (2018) presented
an in silico framework to holistically consider the entire cycle
from excitation propagation, catheter deformation, electrogram
acquisition and processing to virtual ablation. McDowell
et al. (2015) published a proof-of-concept how computational
modeling can predict ablation sites terminating rotors driving
AF in personalized models including fibrosis distribution. Bayer
et al. (2016) evaluated the potency of PV isolation, mitral and roof
lines, ablation guided by rotor mapping, and lesions streamlining
sinus activation regarding the termination of AF in silico. The
potential of clinically-derived computational models to optimize
catheter ablation of AF was recently reviewed by Zhao et al.
(2015). They conclude that high-resolution three-dimensional
models of functionally and structurally mapped atria of the exact
patient are imperative to provide clinically relevant insights on a
personalized level.

Lines et al. (2009) presented a method to parametrize a
monodomain simulation in a standard bi-atrial model aiming
to incorporate electrograms acquired during electroanatomic
mapping studies in order to replicate clinically mapped AFlut
in silico. The extracellular potentials at 32 computational
nodes served as a boundary condition for the solution of the
monodomain system. While the algorithm synchronized the
simulation to the synthetic reference simulation, the algorithm
is computationally expensive and only allows to study clinically
observed cases in silico but cannot provide information on the
vulnerability to AFlut.

While those previous studies assessed ablation patterns
regarding the prevention or termination of AF, this is the
first work to assess the vulnerability to AFlut based on an
individualized anatomical model besides a recent work by Zahid
et al. (2016) to the best of our knowledge (see also reviews
by Jacquemet, 2016; Boyle et al., 2017). Zahid et al. employed
the minimum cut algorithm to predict optimal ablation sites
for AFlut in the LA with substantially increased computational
effort. Child et al. (2015) introduced the reentry vulnerability
index (RVI) as a quantitative metric based on the difference
between activation and repolarization intervals at pairs of spatial
locations. The RVI correlates with exit sites of scar-related
reentrant arrhythmia as commonly observed in the ventricles
(Hill et al., 2016). However, it aims at predicting functional
lines of block rather than providing a comprehensive map
of vulnerable pathways based on the individual geometrical
properties. The same holds for a study by Wallman et al.
(2013) quantifying the arrhythmogeneity of scar and left-to-right
heterogeneity in the ventricles.

Trächtler et al. (2015) used the fast marching implementation
presented here for a similar in silico reproduction of clinical cases.
While both methods allow to test ablation strategies regarding
the termination of the specific reentry, they do not allow to
draw conclusions regarding the vulnerability to AFlut along other
pathways. Thus, these approaches do not provide the means to
optimize AF ablation aiming at the prevention of post-ablational
AFlut.

4.3. Outlook
Themethod presented here could be further developed regarding
two aspects. First, the extrapolated phase map obtained by the
eikonal-diffusion approach could not only be used to initialize a
fast marching simulation but also to replicate the flutter pathway
in a monodomain simulation. Matene and Jacquemet (2012)
proposed a suitable approach, which they used to initiate AF
by extrapolating phase singularities (Jacquemet, 2010; Herlin
and Jacquemet, 2011). By initiating the same flutter loop in
both the fast marching and the monodomain environment,
the fast marching approach could be further validated with
respect to macro-reentry. Second, the dominant flutter pathways
sustaining reentry in the dynamic simulations could be tracked
and compared to the pathways used to extrapolate the initial
state. In this way, not only a map of vulnerable flutter
pathways but also a map of inducible flutter pathways could be
computed.

Moving forward, the complete simulation pipeline should be
validated in the clinical setting once tools for a spatially resolved
CV and ERP estimation become available. The anatomical model
of the individual patient built fromMRI data could be augmented
with a priori knowledge (Wachter et al., 2015). CV and ERP
would be parametrized using intracardiac measurements (Unger
et al., 2017; Verma et al., 2018) and complemented with rule-
based assumptions. Preferably, the subjects should be recruited
from patients undergoing ablation of AFlut that developed
after AF ablation. Ideal validation cases would be formed by
patients in which a gap in the intial ablation lesion set is
identified during the second procedure. The lesions placed
during the initial AF ablation procedure as well as the gap
in it would be included in the suggested pipeline as further
a priori knowledge. The clinically observed flutter pathway
should then be found in the vulnerability and inducability map.
Moreover, the ablation terminating the flutter in the clinical
setting should also remove the specific vulnerable pathway from
the map. In this way, the concepts and methodologies for
both vulnerabiltiy and inducability maps could be clinically
validated.

4.4. Limitations
The implementation of the fast marching algorithm used in
this work does consider anisotropic CV but does not consider
recursive anisotropic correction as proposed by (Sermesant et al.,
2007). In Pernod et al. (2011), the authors of Sermesant et al.
(2007) show that the computation time is higher by a factor
of ≈1.6 when considering anisoptropic correction. While the
influence of the anisotropic correction has never been evaluated
systematically, it should not be too relevant for moderate
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anisotropy values. For the application presented in this work,
subtle differences of the activation sequence do not play a major
role for the final result as fast marching activation times serve
only as the input for subsequent processing.

Another limitation of the presented method is its restriction
to monoatrial flutter pathways. The reason for this can be seen
in Supplementary Figure 5 in which a biatrial loop candidate
was constricted using the geometrical snakes approach. While
a shortcut within the LA exists, it cannot be resolved by
the snake as it is constrained by the interatrial connections
and can thus not cross the septum. However, the method
could be extended to identify shortcuts within the two atria
by also considering monoatrial loops in addition. The final
constricted biatrial loop could be used to initialize additional
monoatrial loops comprising the segment of the biatrial loop and
shortest connection between the two open ends at the interatrial
connections. When computing inducability maps instead of
vulnerability maps, this limitation is not relevant since reentry
along a loop as in Supplementary Figure 5 could not be induced
if this would not be the case for a comparable monoatrial loop
as well. Regarding the dynamic simulation of AFlut, the missing
representation of electrotonic coupling is a limitation.

The biggest hurdle is the sparsity of the available clinical
data to characterize an individual’s substrate and the associated
uncertainty. The importance of a reliable CV estimation is
highlighted by the fact that a CV uncertainty of 1c corresponds
to scaling of the atrium by a factor of

√
1c (Jacquemet, 2016).

Considering that the minimal WL needed to sustain reentry
is defined by the product of CV and ERP, uncertainty of ERP
plays an important role as well (Jacquemet et al., 2005; Krogh-
Madsen and Christini, 2012; Deng et al., 2017). Improved electro-
anatomic mapping systems providing better signal quality and
simultaneous mapping using a multitude of electrodes, as well
as advanced signal processing methods (Cantwell et al., 2015;
Unger et al., 2017; Verma et al., 2018) make it seem probable
to have suitable data available in the near future. Moreover,
the uncertainty in the data could be taken into account by
probabilistic modeling using Bayesian inference and compressed
sensing methods (Konukoglu et al., 2011).

4.5. Conclusion
We presented a comprehensive method to analyze the
vulnerability to AFlut in a personalized way and demonstrated
its applicability for clinical data. The individual anatomy as well
as electrophysiology in terms of CV, ERP, and their heart rate
dependence is taken into account. This tool provides the means
to evaluate potential ablation strategies in silico regarding their
arrhythmic potential for AFlut before actually applying them in
the electrophysiology lab. In this way, this work can be one piece
in the puzzle to overcome the learning by burning paradigm
and eventually reduce the number of patients suffering from
post-ablational AFlut.
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