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Pasmo is one of the most widespread diseases threatening flax production. To identify

genetic regions associated with pasmo resistance (PR), a genome-wide association

study was performed on 370 accessions from the flax core collection. Evaluation of

pasmo severity was performed in the field from 2012 to 2016 in Morden, MB, Canada.

Genotyping-by-sequencing has identified 258,873 single nucleotide polymorphisms

(SNPs) distributed on all 15 flax chromosomes. Marker-trait associations were identified

using ten different statistical models. A total of 692 unique quantitative trait nucleotides

(QTNs) associated with 500 putative quantitative trait loci (QTL) were detected from six

phenotypic PR datasets (five individual years and average across years). Different QTNs

were identified with various statistical models and from individual PR datasets, indicative

of the complementation between analytical methods and/or genotype × environment

interactions of the QTL effects. The single-locus models tended to identify large-effect

QTNs while the multi-loci models were able to detect QTNs with smaller effects. Among

the putative QTL, 67 had large effects (3–23%), were stable across all datasets and

explained 32–64% of the total variation for PR in the various datasets. Forty-five of

these QTL spanned 85 resistance gene analogs including a large toll interleukin receptor,

nucleotide-binding site, leucine-rich repeat (TNL) type gene cluster on chromosome 8.

The number of QTL with positive-effect or favorite alleles (NPQTL) in accessions was

significantly correlated with PR (R2 = 0.55), suggesting that these QTL effects are mainly

additive. NPQTLwas also significantly associatedwithmorphotype (R2 = 0.52) andmajor

QTL with positive effect alleles were present in the fiber type accessions. The 67 large

effect QTL are suited for marker-assisted selection and the 500 QTL for effective genomic

prediction in PR molecular breeding.

Keywords: pasmo resistance, quantitative trait loci (QTL), quantitative trait nucleotides (QTNs), fiber, linseed, core
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INTRODUCTION

Flax (Linum usitatissimum L.) is an important economic crop

for both linseed and stem fiber. As of 2011, flax was the third

largest textile fiber crop and the fifth largest oil crop in the
world, with Canada being the world’s largest exporter of flax

seeds (You et al., 2017). Pasmo, caused by Septoria linicola (Speg.)
Garassini, is one of the most widespread diseases threatening flax
production. Infected plants show brown circular lesions on leaves
and brown to black banding patterns alternating with green
healthy tissue on stems. Pasmo infects flax plants from seedling
to maturity, but it is most acute during ripening under high
humidity and high temperature conditions. During flowering,
yield losses in susceptible varieties can reach up to 75% despite
fungicide application (Hall et al., 2016). Pasmo also negatively
affects seed and fiber quality. Despite the slow improvements
made in pasmo resistance (PR) through breeding, developing
resistant varieties remains the most efficient and environmentally
friendly approach to prevent yield losses caused by the disease.

Conventional breeding approaches have been widely used
to incorporate genetic variations to improve agronomic traits
and introduce durable resistance to diseases in flax (Soto-Cerda
et al., 2014b). The availability of the latest molecular tools allows
the rapid identification of genes of interest and the selection
of individuals carrying favorable genes, and may well-serve to
improve breeding efficiency. Development of molecular markers
associated with host resistance to pathogens is paramount
to marker-assisted selection (MAS), enhancing the power of
selection in plant breeding by combining the advantages of
high precision and reduced cost (Kumar et al., 2011). MAS
for disease resistance is routinely applied for a number of
plant-pathogen systems to select resistant genotypes (Miedaner
and Korzun, 2012). To date, no genetic study on flax PR
has been reported despite the identification of more than one
million single nucleotide polymorphisms (SNPs) from a flax core
collection (You et al., unpublished data) that constitute a suitable
genotypic dataset to detect marker-trait associations (MTAs)
through genome-wide association studies (GWAS).

GWAS commonly estimate the statistical significance of
MTAs in a diverse genetic panel that can lead to the identification
of causal genes underlying phenotypes. GWAS with high-
throughput genotyping are advantageous over traditional
biparental population analyses, such as rapid processing of large
mapping populations, high abundance of molecular markers, and
identification of causal loci at a higher resolution (Goutam et al.,
2015; Ogura and Busch, 2015). GWAS have been successfully
applied to the identification of MTAs for many important flax
agronomic traits (Soto-Cerda et al., 2014a,b; Xie et al., 2017; You
et al., 2018b). The effectiveness of GWAS in identifying MTAs
for disease resistance traits is exemplified in wheat for fungal
diseases, such as Fusarium head blight (FHB) (Buerstmayr et al.,
2009), leaf and stem rusts (Liu et al., 2017).

In general, population structure can be represented by
proportions of individuals from subpopulations, regularly called
the Q matrix (Larsson et al., 2013), or alternatively principal
components (PCs) (Reich et al., 2008; Stich et al., 2008; Zhang
et al., 2009) derived from genome-wide molecular markers. The

relationships among individuals of a population are represented
by a kinshipmatrix (K). False positiveMTAs generally result from
two indirect factors: population structure and kinship among
individuals (Price et al., 2006; Liu et al., 2016). Two statistical
models have been widely used to reduce false positives. The first is
the General Linear Model (GLM) or Q model (Price et al., 2006)
in which the population structure is fitted as fixed effect. The
second is the Mixed Linear Model (MLM) (Yu et al., 2006) that
additionally fits kinship as random effect, hence its alternative
name, the Q + K model. Theoretically, MLM methods correct
the inflation from small polygenic effects, effectively controlling
the population stratification bias (Wen et al., 2017); thus, some
reports show that the Q+Kmodel outperforms the independent
Q and K only models (Liu et al., 2016). The computational
burden ofMLMs remains amajor issue. Somemethods have been
proposed to improve computational efficiency including Efficient
Mixed-Model Association (EMMA) (Kang et al., 2008) and
Genome-Wide Efficient Mixed-Model Association (GEMMA)
(Zhou and Stephens, 2012).

GLM and MLMs are single-locus methods that perform
one-dimensional genome scans by testing one marker at
a time using stringent multiple test corrections (such as
Bonferroni) as significance threshold. As such, these methods
have relatively low power to detect the polygenes with small
effects that underlay most quantitative traits. Thus, Multi-Locus
Mixed-Model (MLMM) (Segura et al., 2012) was proposed to
simultaneously test multiple markers. Alternative and powerful
multi-locus methods have been proposed to identify quantitative
trait nucleotides (QTNs) with small effects, such as the multi-
locus random-SNP-effect Mixed Linear Model (mrMLM) (Wang
et al., 2016; Li et al., 2017), the FAST multi-locus random-
SNP-effect EMMA (FASTmrEMMA) (Wen et al., 2017), the
polygene-background-control-based Least Angle Regression plus
Empirical Bayes (pLARmEB) (Zhang et al., 2017), the Iterative
modified-Sure Independence Screening EM-Bayesian LASSO
(ISIS EM-BLASSO) (Tamba et al., 2017), and the integration
of Kruskal–Wallis test with Empirical Bayes under polygenic
background control (pKWmEB). These multi-locus methods do
not rely on stringent Bonferroni correction (Ren et al., 2017);
the algorithms underlying these statistical models substantially
increase the statistical power and reduce Type 1 error and
running time (Wang et al., 2016; Li et al., 2017; Ren et al., 2017;
Tamba et al., 2017; Wen et al., 2017; Zhang et al., 2017). An
additional multi-locus model, called Fixed and random model
Circulating Probability Unification (FarmCPU) (Liu et al., 2016)
divides theMLMM into a fixed effect model (FEM) and a random
effects model (REM) and uses them iteratively. Its advantages
are improved statistical power and reduction of the confounding
between population structure, kinship, and QTN (Liu et al.,
2016).

To find QTL associated with field PR, we performed GWAS
using a diverse genetic panel of 370 accessions of the flax
core collection (Diederichsen et al., 2012; Soto-Cerda et al.,
2013) and 258,873 SNPs identified from this population (You
et al., unpublished data). Seven multi-locus and three single-
locus statistical methods were evaluated with the PR datasets
from 5 consecutive years to determine the suitable statistical

Frontiers in Plant Science | www.frontiersin.org 2 January 2019 | Volume 9 | Article 1982

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


He et al. GWAS for Flax Pasmo Resistance

methods for detecting putative QTL with large or small effects
and environmental stability.

MATERIALS AND METHODS

Genetic Panel for GWAS
A diverse genetic panel of 370 cultivated flax accessions from
the core collection (Diederichsen et al., 2012; Soto-Cerda et al.,
2013) was used. The core collection was assembled from the
world collection of 3,378 flax accessions, collected from 39
countries and corresponding to 11 geographical origins defined
as North America, South America, Eastern Asia, Western Asia,
Southern Asia, Central, and Eastern Europe, Western Europe,
Southern Europe, Northern Europe, Oceania, and Africa. This
panel contained 17 landraces, 85 breeding lines, 232 cultivars,
and 36 accessions of unknown improvement status that were
grouped into two morphotypes: 80 fiber and 290 linseed (You
et al., 2017).

Phenotyping of Pasmo Resistance and
Statistical Analysis
The 391 accessions were evaluated for field PR in the same
pasmo nursery from 2012 to 2016 at Agriculture and Agri-
Food Canada, Morden Research and Development Center’s
farm, Morden, Manitoba, Canada. A type-2 modified augmented
design (MAD2) (Lin and Poushinsky, 1985) was used for the field
trials (You et al., 2017). Each accession was seeded during the
second or third week of May every year. Approximately 200 g of
pasmo-infested chopped straw from the previous growing season
was spread between rows as inoculum when plants were ∼30-
cm tall. A misting system was operated for 5min every half hour
for 4 weeks, except on rainy days, to ensure conidia dispersal and
disease infection and development. PR was assessed on leaves and
stems of all plants in a single row plot using a pasmo severity
(PS) scale of 0–9 (Table 1). Field assessments were conducted
at the early (P1) and late flowering stages (P2, 7–10 days after
P1), the green boll stage (P3, 7–10 days after P2), and the early
brown boll stage (P4, 7–10 days after P3). In 2014 and 2015,
only the first three field assessments were conducted because
early maturity of the plants did not allow for a fourth rating. A
rating of 0–2 is considered resistant (R), 3–4 moderately resistant
(MR), 5–6 moderately susceptible (MS), and 7–9 susceptible (S).
The statistical analysis for the phenotypic data was performed
as described in You et al. (2013). A total of 370 accessions that
had complete phenotypic data and sequence data were used for
GWAS (Table S1).

The variance components for pasmo severity were estimated
using the linear mixed effects “lmer” model in R package “lme4.”
All effects of variance components were treated as random and
the following linear model was used:

Xij = µ + Gi + Yj + (GY)ij + εij, i = 1, 2, . . . , n and

j = 1, 2, . . . ,m,

where n and m are the number of genotypes and years,
respectively, Xij is the observed pasmo severity, µ is the overall
mean, Gi is the effect resulting from the ith genotype, Yj is the

TABLE 1 | Criteria for field assessment of pasmo severity on a scale of 0–9.

Severity score Criteria

0 No sign of pasmo, the most vigorous

1 <10 leaf area or/and stem area affected by pasmo

2 10–20% leaf area or/and stem area affected by pasmo

3 21–30% leaf area or/and stem area affected by pasmo

4 31–40% leaf area or/and stem area affected by pasmo

5 41–50% leaf area or/and stem area affected by pasmo

6 51–60% leaf area or/and stem area affected by pasmo

7 61–70% leaf area or/and stem area affected by pasmo

8 71–80% leaf area or/and stem area affected by pasmo

9 >80% leaf area or/and stem area affected by pasmo

Assessment of pasmo severity is based on all plants in a single row plot.

effect resulting from the jth year, (GY)ij is the effect resulting from
genotype× year (environment) interaction, and εij is the residual
error (effect resulting from the experimental error).

Resequencing and SNP Discovery of the
Core Collection
Genotyping by sequencing (GBS) methodology was employed
to genotype all individuals of the core collection. The Illumina
HiSeq 2000 platform (Illumina Inc., San Diego, USA) was
used to generate 100-bp paired-end reads with ∼15.5 ×

genome equivalents of the reference genome. All reads from
each individual of the population were aligned to the scaffold
sequences of the flax reference genome (Wang et al., 2012) using
BWA v0.6.1(Jo and Koh, 2015) with base-quality Q score in
Phred scale >20 and other default parameters. The alignment
file for each individual was used as input for SNP discovery
using the software package SAMtools (Li et al., 2009). All
variants were further filtered to get a set of high-quality SNPs
as previously described (Kumar et al., 2012). The coordinates
of SNPs were then converted to the chromosome scale of
the flax pseudomolecules v2.0 upon its release (You et al.,
2018a). All procedures were implemented in the AGSNP pipeline
(You et al., 2011, 2012) and its updated GBS version (Kumar
et al., 2012). The detected SNPs were further filtered with
minor allele frequency (MAF) > 0.05 and SNP genotyping rate
≥ 60%. To minimize contribution from regions of extensive
strong linkage disequilibrium (LD), a single SNP was retained
per 200-kb window when pairwise correlation coefficients (r2)
among neighboring SNPs were >0.8 (International HapMap,
2005; Huang et al., 2010), resulting in a total of 258,873 SNPs.
Missing SNPs (on average 14.13% of a missing data rate) were
imputed using Beagle v.4.2 with default parameters (Browning
and Browning, 2007).

Genome-Wide Association Study and
Validation
GWAS analyses were conducted separately for combinations
of the 5 individual years and the 5-years average datasets
with 10 single- and multi-locus methods (Table 2). Kinship
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TABLE 2 | Statistical methods used for GWAS.

Statistical model Q matrix or PCs Threshold for QTNs GWAS software References

GLM First six PCs Bonferroni correction MVP v1.0.1 Price et al., 2006

MLM First six PCs Bonferroni correction MVP v1.0.1 Yu et al., 2006

FarmCPU First six PCs Bonferroni correction MVP v1.0.1 Liu et al., 2016

GEMMA None needed Bonferroni correction GEMMA v0.96 Zhou and Stephens, 2012

mrMLM From Frappe LOD ≥ 3 mrMLM v3.0 Wang et al., 2016

FASTmrEMMA From Frappe LOD ≥ 3 mrMLM v3.0 Wen et al., 2017

ISIS EM-BLASSO From Frappe LOD ≥ 3 mrMLM v3.0 Tamba et al., 2017

pLARmEB From Frappe LOD ≥ 3 mrMLM v3.0 Zhang et al., 2017

pKWmEB From Frappe LOD ≥ 3 mrMLM v3.0 Ren et al., 2017

FASTmrMLM From Frappe LOD ≥ 3 mrMLM v3.0 https://cran.r-project.org/web/

packages/mrMLM/index.html

The kinship matrix used for each method was calculated using the module implemented in the corresponding software. PC, principal component; QTN, quantitative trait nucloetide.

genetic relationship matrices were estimated using the protocol
suggested by each GWAS software package. The population
structure of the 370 accessions was estimated using Frappe
(http://med.stanford.edu/tanglab/software/frappe.html) or PCs
as determined by principal component analysis (PCA) using
MVP in the R package (https://github.com/XiaoleiLiuBio/MVP).
Using Frappe, the 370 accessions of the flax core collection were
grouped into five sub-populations that corresponded to two
major morphotypes (fiber and oil) and different geographical
regions (Table S1).

For GLM, MLM and FarmCPU, the first six PCs, accounting
for 33.04% of the total variation, were chosen as covariates to
measure population structure (Figure S1). GEMMA was also
compared with the regular MLM methods because it does not
require a Q matrix. The threshold of significant associations for
all four of these methods was determined by a critical P-value
(α = 0.05) subjected to Bonferroni correction, i.e., the corrected
P-value = 1.93 × 10−7 (0.05/258,873 SNPs). GWAS analyses
for the GLM, MLM, and FarmCPU were performed using
the R package MVP (https://github.com/XiaoleiLiuBio/MVP)
and for GEMMA using the GEMMA software (https://github.
com/genetics-statistics/GEMMA). The additional six multi-locus
methods were conducted with default parameters using the
R package mrMLM (https://cran.r-project.org/web/packages/
mrMLM/index.html) (Table 2). Because these six methods are
implemented in the same mrMLM R package and developed by
the same research team, we refer to them as “mrMLMmethods.”
A log of odds (LOD) score of three was used to detect robust
association signals for these six methods.

After putative QTNs were identified, we performed QTN
analysis to obtain sets of QTNs/QTL. The procedure is
summarized in Figure 1. First, we tested the significance of
the difference in PS between two alleles of a QTN (henceforth
called QTN effect) in all accessions. Statistically significant
differences served to validate the QTNs. Wilcox non-parametric
tests were performed using the R function wilcox.test to remove
the non-significant QTNs at a 5% probability level. The direction
(positive or negative) of QTN effects were subsequently assessed.
Only QTNs with consistent effect directions in all PS datasets

were considered valid and were retained. Such QTNs were
grouped into QTL by calculating linkage disequilibrium (D′)
between pairs of QTNs on the same chromosomes using
plink v1.9 (https://www.cog-genomics.org/plink2). Neighboring
QTNs with D′

> 0.8 were grouped into the same QTL (Twells
et al., 2003; Grassmann et al., 2017). For each such defined QTL,
the QTN of the largest average R2 over all datasets was chosen
as a representative or tag for the QTL. R2 were calculated based
on simple regressions of QTNs on PS because they represent
the proportion of the total variation of PS explained by the
QTNs/QTL.

Statistically stable QTL were those significant across all six PS
datasets. Multiple regressions of all stable QTL were fitted to each
of the six PS datasets using a forward stepwise regression to select
QTL with significant contributions to PS. Six regression models
were obtained for the six PS datasets. OnlyQTL existing in at least
three regression models were considered to be statistically stable
with relatively large effects.

To test QTL effect additivity, the number of QTL with
positive-effect or favorite alleles (NPQTL) in all accessions was
tallied. A QTL with positive-effect or favorite allele (PQTL)
in a given accession was called if this accession possessed a
positive effect allele for that QTL. In the case of the PS trait (PS
rating is opposite to resistance), alleles with positive signs are
associated with lower PR. A simple regression of NPQTL on PS
in the population was calculated. Correlations of NPQTL with
PS in the six PS datasets were calculated using the R function
“cor.”

Resistance Gene Analogs (RGAs)
Co-localized With QTL
A total of 1,327 RGAs have been identified in the flax
pseudomolecule (You et al., 2018a). To predict candidate
resistance genes co-localized with QTL, the RGAs within 200 kb
of a QTL’s flanking region were considered.

Evaluation of the Flax Core Collection
The extreme pasmo resistant and susceptible accession subsets
and all 370 accessions were evaluated based on the identified
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FIGURE 1 | Diagram of stable and large-effect quantitative trait loci (QTL) associated with flax pasmo resistance. NPQTL: the number of QTL with positive-effect

alleles.

stable and large-effect QTL. Two extreme subsets of 23
resistant (R) and 23 susceptible (S) were selected based on PS
ratings. Two-dimensional cluster analysis for accessions and

the QTL were performed. The Euclidean distances between

accessions or between QTL were calculated based on QTL
genotypes (positive alleles as 1 and alternate alleles as 2)

using the “dist” function with the “euclidean” method in

R. The Ward algorithm in the function “hclust” of the R
package stats was employed for hierarchical cluster analysis.

Dendrograms and heat maps were created with the R package

Complexheatmap.

RESULTS

Pasmo Resistance
PS ratings increased with growth stage and peaked at the final
evaluation stage every year (Figure 2; Table S2), supporting
the adoption of the final stage data for analysis. Significant
correlations of PS ratings across years were observed (Table 3)
but were largely affected by year and genotype× year interaction
(Table S3). The variance of genotype × year interaction
accounted for 24.23% of the total variation of PS (Table S4).
Thus, datasets from all individual years and the 5-years average
were used for GWAS analyses.
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FIGURE 2 | Violin plots of pasmo severity observed in various growth stages in 2012 (A), 2013 (B), 2014 (C), 2015 (D), and 2016 (E).

TABLE 3 | Spearman correlation coefficients of pasmo severity between years

(2012–2016).

2012 2013 2014 2015 2016

2012 1 0.56** 0.54** 0.44** 0.62**

2013 1 0.51** 0.49** 0.60**

2014 1 0.76** 0.70**

2015 1 0.70**

2016 1

**Significant at 1% probability level.

Identification of PR QTL
A total of 719 putative QTNs were identified using the three
single-locus and seven multi-locus methods for the six PS
datasets (Table S4). To further statistically check the significance
of QTNs, a Wilcox non-parametric test was conducted for the six
datasets separately. A total of 27 QTNs were removed because
they were not significant in all six datasets. The remaining
692 QTNs were merged into a total of 500 QTL based on the
linkage disequilibrium D′ criteria between contiguous QTNs.
GLM detected multiple significant QTNs in the same QTL region
while in most cases a QTN corresponded to a QTL for other
single-locus and multi-locus methods (Table 4). Tag QTNs were
selected to represent each QTL for downstream analyses.

Of the three single-locus methods, MLM identified only one
QTL (R2 = 15.02%) while GEMMA detected six with an average
R2 of 11.13%. GLM identified the largest number of QTL (209) or
QTNs (346) of all methods and these had relatively large effects
with an average R2 of 5.57%, ranging from 0.48 to 15.02%.

TABLE 4 | Comparison of QTN/QTL identification for different statistical models.

Statistical No. of No. of No. of non- Average R2

model QTL QTNs significant R2 (%) range (%)

identified identified QTNs

GLM 209 346 2 5.57 0.48–15.02

MLM 1 1 0 15.02 N/A

GEMMA 6 6 0 11.13 3.59–15.02

mrMLM 97 99 7 2.75 0.36–15.02

FASTmrEMMA 60 62 2 2.82 0.25–6.92

ISIS

EM-BLASSO

97 98 8 2.91 0.29–12.68

pLARmEB 118 120 8 2.69 0.22–12.68

pKWmEB 95 95 5 2.93 0.25–12.68

FASTmrMLM 125 125 3 2.69 0.25–15.02

FarmCPU 22 22 3 5.09 0.42–15.02

QTL differed depending on the statistical methods. QTL
detected by at least twomethods accounted for a small proportion
of overall QTL (Tables S4, S5). The mrMLM methods detected
more common QTL than the other methods, e.g., 45 QTL
in common with pLARmEB and FASTmrMLM and 32 with
ISIS EM-BLASSO and pKWmEB (Table 5). Multi-locus methods
detected more small-effect QTL than the single-locus methods
(Table 4). Six mrMLM methods could identify more QTL
with smaller effects (average R2 of 2.80%) than FarmCPU
(average R2 of 5.09%) owing to the high stringency of the
Bonferroni correction used in FarmCPU. Generally, QTL with
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TABLE 5 | Number of common QTNs and QTL identified by any two statistical models.

Statistical model GLM MLM GEMMA FASTmrEMMA FASTmrMLM ISIS EM-BLASSO mrMLM pKWmEB pLARmEB

MLM 1 (1)

GEMMA 6 (6) 1 (1)

FASTmrEMMA 8 (5) 0 (0) 0 (0)

FASTmrMLM 17 (12) 1 (1) 2 (2) 26 (18)

ISIS EM-BLASSO 18 (15) 0 (0) 3 (3) 13 (9) 33 (23)

mrMLM 18 (11) 1 (1) 5 (5) 17 (14) 33 (27) 18 (13)

pKWmEB 24 (17) 0 (0) 3 (3) 17 (12) 34 (30) 34 (32) 27 (19)

pLARmEB 20 (13) 0 (0) 2 (2) 26 (15) 50 (45) 31 (20) 29 (24) 32 (27)

FarmCPU 13 (13) 1 (1) 2 (2) 1 (1) 3 (3) 5 (4) 7 (6) 5 (4) 5 (4)

Values in parentheses are the number of QTL corresponding to QTNs.

TABLE 6 | QTNs/QTL for pasmo severity identified using phenotypic data from 5

consecutive years and their mean with ten statistical models.

Dataset No. of No. of No. of non- Average R2

QTL QTNs significant R2 (%) range (%)

identified identified QTNs

Mean 240 362 4 5.26 0.28–15.02

2012 82 98 12 3.68 0.22–15.02

2013 92 100 8 3.26 0.32–15.02

2014 114 138 7 4.7 0.42–15.02

2015 65 72 4 2.86 0.27–15.02

2016 85 100 3 4.46 0.39–15.02

TABLE 7 | Number of common QTNs/QTL identified from any two datasets.

Dataset mean 2012 2013 2014 2015

2012 33 (30)

2013 28 (25) 6 (4)

2014 62 (52) 16 (11) 11 (10)

2015 18 (14) 3 (2) 5 (2) 6 (3)

2016 45 (36) 10 (6) 7 (6) 14 (11) 7 (7)

Values in parentheses are the number of QTL corresponding to QTNs.

large effects were identified by both GLM and mrMLM methods
(Table S4).

QTL also differed across individual year datasets (Tables 6,
7, S5) but most (240) were identified from the mean dataset
which comprised two to four timesmore QTL than the individual
year datasets (Table 6). This is indicative of strong gene ×

environment interactions and reinforces the representability of
the mean dataset for QTL identification.

Validation of PR QTL
Additional validation was warranted for the identified
QTNs/QTL. Of the 500 QTL, 134 were detected in all six
PS datasets and explained 27.4–60.9% of the total variation;
they are considered stable. By construction of forward stepwise
multiple regression models, 67 out of the 134 stable QTL were

detected in at least three regression models; they explained
31.5–64.2% of the total variation in individual datasets: this is
comparable or slightly greater than that of the 134 QTL set.
The 67 QTL subset represents the non-redundant and large
effect QTL as each of them could explain 3.3–23.4% of the
total variation (Table 8). QTL with similar contributions but
that were highly correlated and/or that had small effects were
excluded.

The tally of the PQTL in the 370 accessions ranged from 3
to 60 per accession (Table S6). NPQTL were compared between
two extreme subsets of 23 resistant (R) and 23 susceptible (S),
respectively. Notably, all accessions of the R group belong to the
fiber type and those of the S group were oilseed type. The R
group, with an average PS rating of 3.2, contained an average
of 42.5 PQTL per accession ranging from 14 to 60; the S group,
with an average PS rating of 8.3, averaged only 9.4 PQTL per
accession (Figure 3). Significant negative correlations between
NPQTL and PS were observed in all six datasets (r = −0.45
to −0.74) (Figures 4A–F), with the highest negative correlation
being with the mean PS rating dataset (r =−0.74) (Figure 4F).

Association of PR and Its QTL With Flax
Morphotype
A significant correlation between PS and morphotype (r = 0.49,
p < 0.00001) was observed, showing that fiber accessions
were more resistant to pasmo (Figure 5A). NPQTL were
also significantly correlated with morphotypes (r = −0.65,
p< 0.00001) (Figure 5B). Chi-square tests of independence were
performed to identify PQTL alleles specifically belonging to a
morphotype. For each QTL, the positive-effect allele was assigned
a value of 0 and the alternate allele, a value of 1. Similarly, fiber
type accessions were assigned 0 and linseed accessions 1. The
chi-square test results indicated that most PQTL alleles were
significantly associated with fiber type accessions (Table S7). For
eight (8, 13, 14, 17, 21, 54, 55, and 63) of the 67 major QTL,
between 80 and 100% of the PQTL were present in the fiber
accessions; this was particularly acute for QTL 43 and 44 that
were almost exclusive to the fiber germplasm. For the remaining
57 QTL, the PQTL were detected in fiber accessions (11–63 out
of 80 fiber accessions) but were also found in many linseed
accessions.
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TABLE 8 | Stable and large-effect QTL associated with pasmo resistance.

QTL Tag QTN Chr Pos SNP Effect R2 Gene/annotation

1 Lu1-9232234 1 9232234 G/A −0.91 16.17

2 Lu1-28707496 1 28707496 G/A −0.54 5.70 Lus10006052/RLK, Lus10006056/RLK, Lus10006057/RLK, Lus10006067/RLK

3 Lu2-3803775 2 3803775 C/T 0.36 3.32

4 Lu3-19643168 3 19643168 G/A −1.97 12.82 Lus10008221/TNL, Lus10008222/TNL, Lus10008230/RLP

5 Lu3-20781286 3 20781286 A/C −1.83 14.63

6 Lu3-22688547 3 22688547 C/G −0.89 8.98 Lus10033291/RLK

7 Lu4-37769 4 37769 G/A −1.36 11.23

8 Lu4-13306407 4 13306407 A/G 0.89 4.58 Lus10015729/RLK

9 Lu4-13779313 4 13779313 T/C −1.73 13.72

10 Lu4-14576826 4 14576826 A/G 0.42 7.99 Lus10041509/RLK, Lus10041512/TM-CC

11 Lu4-14615685 4 14615685 A/T −0.65 10.85 Lus10041509/RLK, Lus10041512/TM-CC

12 Lu4-14738243 4 14738243 G/T −0.61 12.64

13 Lu4-17204590 4 17204590 C/A 0.64 5.17 Lus10004040/RLK, Lus10009107/TNL, Lus10009108/TX, Lus10009109/NBS,

Lus10020794/TM-CC

14 Lu4-17214936 4 17214936 G/T 0.70 5.81 Lus10004040/RLK, Lus10009107/TNL, Lus10009108/TX, Lus10009109/NBS,

Lus10020779/CNL, Lus10020794/TM-CC

15 Lu5-1554121 5 1554121 T/A −0.67 7.75 Lus10004719/TNL, Lus10004726/CNL, Lus10004727/TN

16 Lu5-1650980 5 1650980 C/G −0.81 6.61 Lus10004719/TNL, Lus10008486/RLK, Lus10008491/RLK

17 Lu5-3575865 5 3575865 C/G −0.49 9.64

18 Lu5-4604607 5 4604607 A/G −0.56 6.58 Lus10034787/TM-CC, Lus10034790/RLK, Lus10034795/RLK

19 Lu5-4858045 5 4858045 C/T −1.87 12.83

20 Lu5-13500692 5 13500692 G/A −1.40 11.9 Lus10029802/RLK, Lus10029810/TX

21 Lu6-2081466 6 2081466 T/C 0.68 8.30 Lus10017611/RLK

22 Lu6-5837358 6 5837358 C/T −1.18 9.36

23 Lu6-14738507 6 14738507 C/T −2.01 13.34 Lus10014441/RLP

24 Lu6-15455712 6 15455712 A/G −1.42 9.63 Lus10021003/RLK, Lus10021022/RLK

25 Lu6-15506450 6 15506450 A/G −1.81 12.62 Lus10021022/RLK

26 Lu7-2452981 7 2452981 C/T −0.53 6.30 Lus10012159/RLK

27 Lu7-2453965 7 2453965 T/C −0.56 7.03 Lus10012159/RLK

28 Lu7-2491132 7 2491132 G/A −0.56 8.05 Lus10012159/RLK

29 Lu8-14317356 8 14317356 A/T −0.98 14.32 Lus10016612/RLP, Lus10016620/RLK

30 Lu8-15830073 8 15830073 C/T −0.82 8.48

31 Lu8-15837449 8 15837449 A/T −1.20 8.24

32 Lu8-15841885 8 15841885 T/C −1.15 8.35

33 Lu8-15963249 8 15963249 A/G −1.70 14.22

34 Lu8-16366918 8 16366918 C/T −1.38 10.90 Lus10022340/RLK, Lus10022345/RLK, Lus10022351/CNL

35 Lu8-17270785 8 17270785 C/G −1.08 9.59 Lus10000591/TM-CC

36 Lu8-17749357 8 17749357 G/A −1.23 10.16 Lus10011039/RLP, Lus10011064/RLP

37 Lu8-18251174 8 18251174 G/A −1.45 10.38 Lus10007812/TNL, Lus10007813/TNL, Lus10007814/TNL, Lus10007821/TNL,

Lus10007822/TNL, Lus10007823/OTHER, Lus10007825/TNL, Lus10007826/TNL,

Lus10007828/TNL, Lus10007829/OTHER, Lus10007830/NL, Lus10007831/TNL,

Lus10007836/TNL, Lus10007852/TX

38 Lu8-18447612 8 18447612 T/C −1.41 11.66 Lus10007790/TNL, Lus10007795/TM-CC, Lus10007808/TNL, Lus10007809/NL,

Lus10007810/TNL, Lus10007811/TNL, Lus10007812/TNL, Lus10007813/TNL,

Lus10008540/RLK

39 Lu8-23104696 8 23104696 C/A −1.80 16.53 Lus10018470/TX

40 Lu8-23142500 8 23142500 T/C −1.56 13.34 Lus10018459/RLK, Lus10018470/TX

41 Lu9-1258326 9 1258326 T/A −1.62 16.01

42 Lu9-1430465 9 1430465 G/C −0.69 10.76 Lus10004333/RLK

43 Lu9-1896658 9 1896658 G/A −1.94 17.12

44 Lu9-4333365 9 4333365 C/A −2.22 23.39 Lus10040315/TM-CC

45 Lu9-6270376 9 6270376 A/G −0.81 14.34 Lus10031043/RLK, Lus10031058/TM-CC

(Continued)
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TABLE 8 | Continued

QTL Tag QTN Chr Pos SNP Effect R2 Gene/annotation

46 Lu9-15527375 9 15527375 G/A −1.07 6.76

47 Lu9-16348319 9 16348319 C/T −0.37 4.64

48 Lu9-19857367 9 19857367 G/A −1.70 12.67 Lus10011917/RLK

49 Lu10-8700793 10 8700793 A/G −0.53 12.10 Lus10039958/RLP

50 Lu11-3330783 11 3330783 A/T −1.11 7.09 Lus10042097/TM-CC

51 Lu12-474480 12 474480 C/T 0.51 8.33 Lus10020016/CNL

52 Lu12-1621325 12 1621325 T/A −1.90 9.41 Lus10023391/RLK

53 Lu12-2719326 12 2719326 C/T −0.62 9.90 Lus10006971/TM-CC

54 Lu12-5552631 12 5552631 C/A 0.92 7.10

55 Lu12-5795458 12 5795458 A/G 0.54 9.67 Lus10037786/TM-CC

56 Lu12-5819991 12 5819991 C/G 0.35 6.90 Lus10037786/TM-CC

57 Lu12-15686833 12 15686833 A/G −1.65 13.90

58 Lu12-16056974 12 16056974 A/C −1.26 11.26 Lus10043083/RLK

59 Lu12-16358216 12 16358216 G/A 0.32 4.25 Lus10027856/RLP

60 Lu13-1919638 13 1919638 G/A −1.55 13.67 Lus10026845/TX

61 Lu13-2016767 13 2016767 C/G −0.38 5.12 Lus10026845/TX

62 Lu13-11860250 13 11860250 G/A −0.96 9.65

63 Lu13-13051094 13 13051094 G/C 0.68 7.96

64 Lu13-14299019 13 14299019 A/G 0.39 8.28 Lus10034637/RLK, Lus10034642/RLK

65 Lu15-976617 15 976617 T/A −1.65 16.08 Lus10011216/TX, Lus10011223/RLK, Lus10011229/TM-CC

66 Lu15-995626 15 995626 T/A −0.44 6.27 Lus10011216/TX, Lus10011223/RLK, Lus10011229/TM-CC

67 Lu15-8714776 15 8714776 C/G −0.98 15.04

RLK, receptor-like protein kinase; RLP, receptor-like protein; TM-CC, transmembrane coiled-coil protein; NBSl, nucleotide-binding site domain; LRR, leucine-rich repeat; Toll/interleukin-1

receptor-like domain; CNL, CC–NBS–LRR; TNL, TIR-NBS-LRRs; TN, TIR–NBS; TX, TIR–unknown.

Evaluation of the Flax Core Collection With
QTL
Based on the 67 core QTL of the flax collection, bi-
dimensional cluster analyses were conducted using tag QTNs
as representatives of the QTL. The 370 accessions grouped
into four clusters (Figure 6). Cluster 1 with 269 accessions
and Cluster 2 with 35 were mostly susceptible to pasmo
(PS ratings of 6.6 ± 1.0 and 6.5 ± 1.1, respectively). Most
accessions (243) of Cluster 1 and all accessions of Cluster 2 were
linseed type. Cluster 3 comprised 40 moderately susceptible
(PS ratings of 5.0 ± 1.1) accessions including 11 of linseed.
Cluster 4 contained 26 accessions, of which, 25 were fiber
type and only one was a linseed; they were resistant to pasmo
(PS ratings of 3.7 ± 1.1). The number of PQTL were 14.2 ±

4.0, 14.2 ± 1.7, 27.7 ± 5.8, and 47.1 ± 6.7 for Clusters 1–4,
respectively. The 26 resistant accessions of Cluster 4 represent an
important germplasm for PR breeding. This resistant germplasm
included 14 of the 23 accessions in Figure 3 and CN101114,
CN101115, CN101119, CN101237, CN101241, CN101296,
CN101367, CN101395, CN101396, CN18987, CN98150, and
CN98903.

The 67 QTL were clustered into four sub-groups. Group
1 included 13 QTL widely distributed across the germplasm
(68.27% of the accessions) but with relatively low QTL effects
(average R2 of 8.31%, ranging from 3.32 to 10.85%) (Figure 6;
Table S7). Groups 2 and 3 contained 7 and 11 QTL, respectively.
Present in 31.08% of the accessions, these QTL had an average

R2 of 9.23%, ranging from 4.64 to 16.17%. The 36 QTL of
Group 4 had an average R2 of 11.93%, ranging from 6.61 to
23.39% and contributing to the majority of the PR. These QTL
were mostly found in the resistant accessions of Cluster 4 which
amounts to a mere 9.70% of the germplasm. CN101367 with
43 QTL and CN19001 with 49 are good examples of resistant
germplasm.

Resistance Gene Analogs Co-localized
With QTL
Among the 67 stable and large-effect QTL, 45 co-localized with
85 RGAs within the pre-defined 200Kb QTL flanking window.
Four types of RGAs were harbored at these loci: receptor like
protein (RLP), receptor like kinase (RLK), nucleotide-binding
site (NBS) coding genes (including TNL, TX, CNL, NL, TN, NBS,
and others), and transmembrane- coiled coil protein (TM-CC)
(Sekhwal et al., 2015). The majority of the RGAs were RLKs with
36.47%, followed by TNLs with 22.35% (Figure 7), including a
TNL cluster associated with QTL 37 and 38 on chromosome 8
(Table 8). Additional TNL-type RGA clusters co-localized with
QTL 13 and 14 on chromosome 4 and QTL 15 and 16 on
chromosome 5. An RLP gene (Lus10039958) located only 56
bp downstream of QTN Lu10-8700793 (QTL 49) exemplifies
close linkage between the RGA and the QTL identified in this
study. A TNL gene (Lus10007812) located 99Kb downstream
of QTN Lu8-18251174 (QTL 37) was the farthest RGA from its
QTL.

Frontiers in Plant Science | www.frontiersin.org 9 January 2019 | Volume 9 | Article 1982

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


He et al. GWAS for Flax Pasmo Resistance

FIGURE 3 | QTL genotypes, pasmo resistance and severity, and morphotypes of two extreme subsets representing 23 resistant and 23 susceptible accessions,

respectively.

DISCUSSION

Pasmo Resistance in the Core Collection
Pasmo is widespread throughout all flax growing regions (Halley
et al., 2004), but no flax cultivars are truly resistant to pasmo
(Diederichsen et al., 2008). Evaluation of pasmo disease response
revealed a range of resistance levels in the core collection
(You et al., 2017) and, consistent with previous observations,
no immune or highly resistant flax varieties were identified.
However, some accessions displayed a relatively high level of
resistance to pasmo and had high NPQTL (Figure 3; Table S1).
For example, CN19001, a fiber type from the Netherlands, and
CN101367, a linseed accession from Georgia, had respective 5-
years average PS ratings of 2.0 and 1.8 and possessed 49 and
43 NPQTL, respectively. These accessions of fiber and linseed
lineages are good parents for improvement of flax resistance
through direct hybridization with elite varieties. Moderately
resistant and moderately susceptible lines accounted for 6.49–
21.35 and 20.81–42.16% of all accessions in the association panel

depending on the years, respectively. Due to the quantitative

nature of the disease, this germplasm also holds potential in

breeding through the pyramiding of QTL with smaller effects, a

strategy that has been successful in improving FHB resistance in

wheat (Buerstmayr et al., 2009).

The fiber accessions were generally more resistant to pasmo

than the linseed accessions, not surprisingly considering that

fiber flax is cultivated for its stem fibers whose quality is greatly

affected by the disease. From flowering to maturity, the dark

brown to black bands that appear on the stems of infected

plants can reduce the quality of the fiber (Colhoun and Muskett,

1943). The relatively higher level of resistance of the fiber type is

likely a reflection of artificial selection and possibly independent

domestication of the fiber flax lineage (Fu et al., 2012). The
transfer of PR from fiber to linseed types can be considered,
particularly in schemes where faster recovery of the recurrent
linseed types can be achieved bymarker-assisted backcrossing for
example.
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FIGURE 4 | Box plots of the number of QTL with positive-effect alleles (NPQTL) in relation to pasmo severity during 2012-2016 (A–E) and average pasmo severity

across 5 years (F); ** indicates statistical significance at the 1% probability level.

FIGURE 5 | Box plots of pasmo severity (A) and the number of QTL with

positive-effect alleles (NPQTL) (B) in relation to morphotypes.

Pasmo resistance levels also varied significantly among
genotypes from different geographical origins (You et al., 2017).
Rainfall accumulation from June to August was significantly
and positively associated with pasmo incidence and severity
(Halley et al., 2004). Therefore, natural selection might be the
main evolutionary pressure resulting in geographic variation.
Accessions from India and Pakistan were the most susceptible
of the core collection; this is not surprising considering that the

environmental conditions of the flax growing regions of India are
not conducive to the disease development (Diederichsen et al.,
2008). On the other hand, accessions from Europe were the
most resistant, a reflection of the fiber type predominance of
the European germplasm (You et al., 2017) that have historically
been under higher selection pressure for PR. North America
appears to have the largest proportion of moderately susceptible
and susceptible accessions (63 and 55) of the diversity panel,
in agreement with its almost exclusive linseed germplasm (You
et al., 2017). The most resistant Canadian linseed breeding
line, CN101536, is only moderately resistant with an average
PS of 4.4. Therefore, the incorporation of PR from linseed
accession CN101367 from Georgia, as earlier noted, would
benefit the improvement of PR in linseed. Interestingly, the East
Asian mixed fiber and linseed germplasm is globally moderately
resistant, in agreement with the long history of domestication for
PR (Millam et al., 2005).

The PS of moderately resistant and susceptible accessions
varied considerably across years, indicating a strong genotype
× environment interaction. The low but significant correlations
between the phenotypic data from any 2 years suggest the
presence of interactions. In addition, the variance component
analysis showed that the genotype × environment interaction
accounted for a large proportion of the total variation. The
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FIGURE 6 | Cluster analysis of the association panel based on a set of 67 stable large-effect QTL. The accessions were grouped into four clusters and the QTL were

assigned to four sub-groups. Tag QTNs of QTL were chosen for analysis. QTL with positive-effect alleles (PQTL) in the accessions are indicated in red; blue indicates

the absence of PQTL. NPQTL, the number of QTL with positive-effect alleles.

FIGURE 7 | Class distribution of resistance gene analogs (RGAs) located

within 200Kb flanking regions of QTL.

interaction partially resulted in different QTL identified in
datasets from different years. QTL contribution to PR might
marginally differ from year to year, stressing the need for multi-
environment phenotyping to identify environment-specific QTL.

Methods Comparison
In this study, few QTL were detected by the single-locus methods
MLM and GEMMA, likely as a consequence of the stringent
corrected probability threshold (1.93 × 10−7); the third single-
locus method GLM and the multi-locus methods identified

greater numbers of QTL. The numbers of QTL identified by GLM
and mrMLM methods were similar while FarmCPU detected
comparatively fewer. The phenotypic variance explained by
the QTL (R2) is also an important criterion of comparison.
Both single and multi-locus methods identified some QTL with
large effects (Table 4). However, most small-effect QTL were
detected only when multi-locus methods were used. Although
few QTL were common between methods, a large proportion
of common QTL was observed among mrMLM methods. Thus,
the complementarity between different methods is significant,
and, in light of our results, the combined utilization of various
statistical models is highly recommended for the identification of
all potential QTL with both large and small effects.

Evaluation of Pasmo QTL in the Core
Collection and Breeding Applications
Identification of QTL associated with PR can potentially facilitate
their incorporation into elite germplasm, especially in North
America where linseed is the main type for production (You
et al., 2017). Several large-effect QTL/tag QTNs were noted,
including QTL 44/Lu9-4333365 (R2 = 23.39%), QTL 43/Lu9-
1896658 (R2 = 17.12%), QTL 39/Lu8-23104696 (R2 = 16.53%),
and QTL 1/Lu1-9232234 (R2 = 16.17%). These were mostly
present in resistant accessions as PQTL (Table 8) and they hold
potential for MAS.

Although the large-effect QTL may be useful for MAS, a large
number of small-effect QTL would be beneficial for genomic
prediction (GP). GP using genome-wide markers to predict
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breeding values of target traits is a promising alternative method
to MAS for low heritability traits including PR (Lipka et al.,
2015; Poland and Rutkoski, 2016). Compared to conventional
phenotypic selection, GP can accelerate genetic gains for early
selection (Newell and Jannink, 2014). The accuracy and efficiency
of GP models for flax PS were evaluated with three sets of
QTL: 500 (SNP-500QTL), 134 (SNP-134QTL), and 67 (SNP-
67QTL) which are developed in this study (He et al., 2018).
The GP model built with SNP-500QTL achieved a prediction
accuracy of 0.92 while the use of 134 and 67 QTL yielded
accuracies of 0.75 and 0.76, respectively (He et al., 2018). The
similar accuracies of the two smaller sets were expected because
SNP-67QTL is essentially a non-redundant set of SNP-134QTL.
These predictions serve as additional validation of the QTL
identified herein and simultaneously illustrate the effectiveness
of prediction models that include a full complement of large and
small-effect QTL including environment-specific QTL.

Candidate Genes for Pasmo Resistance
Functional annotation of the QTL identified herein revealed
85 RGAs co-located with 45 large-effect QTL. Of them, two
RGAs, Lus10031043/RLK and Lus10020016/CNL corresponding
to QTL 45/Lu9-6270375 and QTL 51/Lu12-474480, respectively,
may be associated with two orthologous resistance genes in
Arabidopsis (Xiang et al., 2008; Saijo et al., 2009). The RLK
gene Lus10031043 is an ortholog to AT5G20480.1 in Arabidopsis,
which encodes a predicted leucine-rich repeat receptor kinase
(LRR-RLK) and functions as the receptor for bacterial pathogen-
associated molecular patterns (PAMPs) EF-Tu (EFR). The LRR-
RLK EFR recognizes the bacterial epitopes elf18, derived from
elongation factor-Tu, and triggers the plant’s immune response
(Saijo et al., 2009). The Pseudomonas syringae effector AvrPto
is reported to bind receptor kinases, including Arabidopsis EFR
(LRR-RLK EFR), to inhibit plant PAMP-triggered immunity and,
to subsequently trigger strong immune responses (Xiang et al.,
2008). The flax CNL gene Lus10020016 (RPM1) is orthologous
to RPM1 (AT3G07040.1) in Arabidopsis. RPM1 contains an
N-terminal tripartite nucleotide binding site and a C-terminal
tandem array of leucine-rich repeats and confers resistance to P.
syringae strains that carry the avirulence genes avrB and avrRpm1
(https://www.arabidopsis.org/). The RPM1 gene enables dual
specificity to pathogens expressing either of two unrelated P.
syringae avirulence genes (Grant et al., 1995). The above findings
hint at Lus10031043 and Lus10020016 as potential candidate
genes for PR.

CONCLUSION

Using 10 statistical methods, a total of 500 QTL, including
67 stable and large-effect QTL and many additional small

effect and environment-specific QTL were identified for PS,
using a diversity panel of 370 flax accessions genotyped with
258,873 genome-wide SNPs and phenotyped in the field during
5 consecutive years. The large number of QTL identified in
this study illustrates the complex genetic basis for PR in flax
through a demonstration of its quantitative genetic nature and
its sensitivity to environments. Multi-locus methods were able
to detect small-effect QTL whereas the single-locus methods
tended to identify fewer QTL of large effect. Various statistical
methods identified mainly different sets of QTL, indicating the
value of employing different statistical methods and multiple
environment phenotypic data to capture themost comprehensive
set of QTL: large, small and environment-specific. Combined
utilization of multiple statistical methods is advantageous to
identify QTL with small effects for traits with a complex
genetic base and low heritability. The high correlation observed
between PS and flax morphotype indicated that the fiber
germplasm contains most of the PS QTL and constitutes
an important genetic resource for flax PR breeding. The 67
large-effect QTL have potential in MAS and the 500 QTL
set can be exploited for effective GP for improving pasmo
resistance.
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