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Non-destructive and rapid estimation of canopy variables is imperative for predicting
crop growth and managing nitrogen (N) application. Hyperspectral remote sensing can
be used for timely and accurate estimation of canopy physical and chemical properties;
however, discrepancies associated with soil and water backgrounds complicate the
estimation of crop N status using canopy spectral reflectance (CSR). This study
established the quantitative relationships between dynamic canopy nitrogen (CN) status
indicators, leaf dry weight (LDW), leaf N concentration (LNC), leaf N accumulation
(LNA), and CSR-derived new hyperspectral vegetation indices (HVIs), and to access the
plausibility of using these relationships to make in-season estimations of CN variables at
the elongation (EL), booting (BT), and heading (HD) stages of rice crop growth. Two-year
multi-N rate field experiments were conducted in 2015 and 2016 in Hubei Province,
China, using the rice cultivar Japonica. The results showed that the sensitive spectral
regions were negatively correlated with CN variables in the visible (400–720 nm and
560–710 nm) regions, and positively correlated (r > 0.50, r > 0.60) with red and NIR
(720–900 nm) regions. These sensitive regions are used to formulate the new (SR777/759,
SR768/750) HVIs to predict CN variables at the EL, BT, and HD stages. The newly
developed stepwise multiple linear regression (SMLR) models could efficiently estimate
the dynamic LDW at the BT stage and LNC and LNA at the HD stage. The SMLR models
performed accurately and robustly when used with a validation data set. The projected
results offer a suitable approach for rapid and accurate estimation of canopy N-indices
for the precise management of N application during the rice growth period.
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INTRODUCTION

Nitrogen (N) is an essential nutrient for crop growth and
productivity. It is an indispensable constituent of chlorophyll,
as well as proteins associated with leaf color, plant vigor, plant
N status, crop yield, and quality. Nitrogen insufficiency in rice
leads to major issues such as small leaf size, lower chlorophyll
and protein content, lower dry matter accumulation, and leaf
expansion (Ata-Ul-Karim et al., 2013, 2014, 2016, 2017a; Wang
et al., 2014). However, an excessive N supply leads to lower N use
efficiency, creating health and environmental hazards (Liu et al.,
2013; Bodirsky et al., 2014). In-season efficient N management,
both in term of rates and stage of application, is vital for rice
crop production and environmental sustainability (Tahir Ata-
Ul-Karim et al., 2016). Therefore, precise N management and
accurate estimation of crop N status has been the most prominent
issue in modern crop production; not only for economic reasons,
but also to curtail the environmental hazards associated with
over-applying N fertilizer (Zhao et al., 2016).

The traditional destructive methods for measuring biophysical
and biochemical parameters of crop are laborious and time
consuming. CMR have become a standard for real time
non-destructive diagnosis of crop N status. However, it is not
practical to apply this method across large fields (Zhao et al.,
2018). Additionally, the CMR are actually based on absorption by
chlorophyll instead of N. Several factors, such as leaf thickness,
leaf position on the plant, leaf specific weight, measurement
location on a leaf, plant growth, cultivar (Muñoz-Huerta et al.,
2013), as well as environmental stress and solar radiation (Ata-
Ul-Karim et al., 2016; Yuan et al., 2016) can affect the CMR
considerably. The success of precision N management requires
the development of rapid, non-destructive technology to monitor
and estimate crop N status throughout the growing season (Li
et al., 2018).

Remote sensing has also been widely used as a rapid and
non-destructive tool to monitor biophysical and biochemical
parameters and to estimate in-season crop N status. Optical
remote sensing has a long history with N estimation. However,
estimation of biochemical parameters is difficult at the resolution
of individual leaves; therefore, estimation of integrated
biochemical and biophysical properties at the canopy level
are preferred (Jones et al., 2007). Crop canopy sensors have
been used effectively in precision agriculture for estimation of
crop growth, chlorophyll content, and crop N status (Samborski
et al., 2009; Diacono et al., 2013). Active canopy sensors

Abbreviations: AT, after transplanting; BT, booting; CMR, chlorophyll meter
readings; CN, canopy nitrogen; CSR, canopy spectral reflectance; DD, double
difference index; EL, elongation; FRTM, field-spectro-radiometer; HD, heading;
HVIs, hyperspectral vegetation indices; LDW, leaf dry weight; LNA, leaf
N accumulation; LNC, leaf N concentration; MCARI, modified chlorophyll
absorption in reflectance index; MSR, modified simple ratio; MT, maturity; MTCI,
The MERIS terrestrial chlorophyll index; N, nitrogen; ND, normalized difference;
NDI, normalized difference index; NDVI, normalized difference vegetation index;
NIR, near infrared; PNC, plant nitrogen content; PP, pre-planting; RMSE, root
mean square error; RMSEcal, root mean square error of calibration; RMSEval, root
mean square error of validation; RMSEV, root mean square error of validation;
SMLR, stepwise multiple linear regression; SR, simple ratio index; SSP, single super
phosphate; TL, tillering.

that have their own light sources are weather independent.
Moreover, hyperspectral canopy sensors provide effective
information for the estimation of N status in field crops
(Freek et al., 2012). Hyperspectral reflectance assessment
of the crop canopy offers direct and instant information
for in-season N application (Xavier et al., 2006). Extraction
and identification of sensitive bands from hyperspectral
reflectance, that particularly contains information about plant
N distribution has the potential for construction of HVI
(Stroppiana et al., 2009). Active canopy sensor provides the
facility to select suitable bands (red, red edge, and NIR region)
for construction of HVIs having great potential for estimation of
rice biomass and nitrogen accumulation across different growth
stages.

As a key plant organ, the leaf plays a vital role in
photosynthesis; thus, leaf N status, rather than that of the
whole canopy, is more reliable and suitable for N management
(Jongschaap and Booij, 2004; Mistele and Schmidhalter, 2008).
The association between the plant canopy and solar radiation
give the spectral response, providing a basis for construction
of several vegetation indices for the successful estimation of
PNC. Unfortunately, factors like soil background, atmospheric
resistance, and vegetation canopy structure complicate studies of
plant CSR.

Most vegetation indices perform poorly due to saturation
and loss of sensitivity of above ground biomass, especially
for closed canopies (Mokhele and Ahmed, 2010). HVIs
using NIR and red bands have been widely used to resolve
canopy saturation issues. The hyperspectral indices account
for reflectance information from all possible combinations
rather than relying on specific bands. Indices based on the
green, (500–570 nm) red, far red (650–680 nm), red edge
(700–720 nm), and NIR bands have been used to predict
the chlorophyll content, N status, N rate, LNC, and PNC
at the leaf level (Xue et al., 2004; Zhao et al., 2005a).
Vegetation indices based on 530–560, 630–660, and 760–900 nm
bands have been strongly correlated to N status in rice
(Serrano et al., 2000). Kooistra et al. (2005) showed that the
hyperspectral reflectance in the red-edge, visible, and NIR regions
might provide additional information about chlorophyll and
N estimation. Extraction and identification of sensitive bands
from hyperspectral reflectance, particularly those that contain
information about canopy variables, is the basis for construction
of reliable vegetation indices (Stroppiana et al., 2009). Simple
statistical analysis always suffers from the problem of over-
fitting due to the number of bands (Xu et al., 2013). To
overcome the problems of over-fitting and co-linearity, and
to improve model accuracy, a SMLR analysis is commonly
applied. Li et al. (2014) found that the stepwise linear regression
analysis successfully extracts the important bands related to plant
N-status. In order to deal with the complicated phenomenon
of high dimensionality and redundancy in the processing of
hyperspectral data, it is necessary to extract the sensitive bands
for in-season estimation of LDW, LNC, and LNA in rice. More
specifically, few studies have been carried out to analytically
investigate the published indices for CN status indicators (LDW,
LNC, and LNA) collectively at the critical EL, BT, and HD
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stages of rice growth, rice being a crop that is subject to
significant soil and standing water backgrounds. The standing
water background expand the spectral reflectance range for
rice.

The objectives of the present study were to identify the specific
spectral bands for CN status indicators (LNA, LNC, and LDW),
to develop new HVIS based on newly identified sensitive spectral
regions for estimation of CN variables, and to monitor dynamic
CN status indicators across phenological stages of rice growth
using static and dynamic models based on HVIS under different
N-rates.

MATERIALS AND METHODS

Experiment Site, Design, and Crop
Management
Field experiments were conducted at the experimental station of
Huazhong Agricultural University in Wuxue, China (30◦060N,
115◦350E) in 2015 and 2016. The region has an annual average
temperature of 17.7◦C and annual average precipitation of
1903 mm, with a subtropical moist monsoon climate. Summer
is the driest season and autumn the wettest for the area around
the experimental station.

Two multi-N rate (0–293 kg N ha−1 as Urea) field experiments
were conducted using Japonica rice cultivar Shenliangyou 5814
(Table 1). Treatments were laid out in a randomized complete
block design (RCBD), with three replicates. The fertilizers, SSP
(P2O5 content 12%) @ 90 kg ha−1 and potassium (K2O content

TABLE 1 | Basic information about the two field experiments conducted during
2015 and 2016.

Experiment-1 (2015)

N (kg ha−1) N distribution (%)
and stages

Sensing and
sampling stage

Sensing and
sampling dates

N0 (0) PP (20%) AT 11-July

N1 (45) AT (25%) TL 20-July

N2 (83) BT (55%) EL 31-July

N3 (128) BT 15-August

N4 (165) HD 30-August

N5 (210) MT 15-September

N6 (248)

N7 (293)

Experiment-2 (2016)

N0 (0) PP (20%) AT 10-July

N1 (45) AT (25%) TL 19-July

N2 (83) BT (55%) EL 28-July

N3 (128) BT 11-August

N4 (165) HD 28-August

N5 (210) MT 11-September

N6 (248)

N7 (293)

Nitrogen (N) fertilizer were applied 20, 25, and 55% at PP, AT, and BT, respectively,
as Pre-planting (PP), After Transplanting (AT), Tillering (TL), Elongation (El), Booting
(BT), Heading (HD), Maturity (MT).

60%) @ 180 kg ha−1, were applied before transplantation.
The area of each plot was 20 m2. A 40 cm wide ridge
covered with plastic film was inserted to a soil depth of up
to 30 cm to separate the plots and avoid any exchange of
water or fertilizer. Thirty-day-old seedlings were planted with
spacing of 0.24 m × 0.30 m to maintain a planting density
of approximately 26 hills per m2. Weeds, insects, and diseases
were strictly monitored throughout the growing period. No
major attacks of weeds, disease, pests, or inclement of weather
were recorded during the growing season. Weeds were removed
manually and due to low insect pressure no pesticide was
required.

Measurements and Sampling
Canopy Spectral Reflectance Data Collection
Spectral reflectance measurements were acquired using a portable
FRTM, an analytical spectral device (ASD, Boulder, CO,
United States) that covers the 350–2500 nm spectral range,
between 10:00 and 14:00 h China Standard Time (UTC+8)
under clear and cloudless skies (Table 1). Three spectral
measurements, two at plot corners and one at plot centers, in
both 2015 and 2016, were recorded with the spectro-radiometer
sensor head one meter above the rice hills, with a nadir of
25◦. Spectral calibration was carried out using radiance from
a Spectralon reference panel (BaSO4), and was conducted
every 30 min. For each plot, thirty spectra were exported
and averaged using RS2 (ASD, Boulder, CO, United States)
software.

Pre-processing of Hyperspectral Reflectance
Noise and background water absorption affect the absorption
of canopy spectra; therefore, the raw spectra were reduced in
different sections (1341–1439, 1791–1959, and 2401–2500 nm)
(Abdel-Rahman et al., 2010). In the current study, we focused
on the spectral regions (350–1000 nm) that contained key
information on rice growth. Every fifth waveband was averaged
into one spectral band variable to reduce the hyperspectral
dimension over all the hyperspectral bands.

Leaf Nitrogen Indicators Measurements
For analysis of N indicators, the above ground parts of
the rice plants were sampled after every spectral reflectance
measurements at Tillering (TL), EL, BT, HD, and maturity (MT)
stages. Samples of five hills per plot were collected in both 2015
and 2016. After washing, roots were clipped and the samples were
divided into their plant organs, leaves, stems, and heads. The
samples were dried at 105◦C for half an hour and then at 70◦C
in a WGL forced air drying oven (WGL-125B), until a constant
weight was achieved. Once dry, all of the samples from tilling
to maturity stages were weighed for LDW and LNC analysis.
LNC were determined using a Flow Injection Analyzer (AA3HR,
AutoAnalyzer, SEAL, Norderstedt, Germany) system and LNA
were calculated as the product of N concentration per unit dry
weight in tissue and dry weight per unit ground area by the
following formula:

LNA = LNC × LDW (1)
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TABLE 2 | Descriptions and formulas of vegetation indices investigated for leaf nitrogen status indictor (LDW, LNC, and LNA) during 2015 and 2016.

Indices Formulas Reference

SR768,750 R768/R750 This Study

SR777,750 R777/R550 This Study

SR810,560 R810/R560 Xue et al., 2004

SR777,759 R777/R759 Xue et al., 2004

SR810,660 R810/R660 Chu et al., 2014

SR750,705 R750/R705 Gitelson and Merzlyak, 1994b

ND860,560 R860–R560 Chu et al., 2014

ND860,720 R860–R720 Fava et al., 2009

ND759,732 R759–R732 Hansen and Schjoerring, 2003

DD (R750 – R720) – (R700 – R670) Le Maire et al., 2004

NDI780 (R780 – R710)/(R780 – R680) Datt, 1998

NDI850 (R850 – R710)/(R850 – R680) Datt, 1998

NDVI800 (R800 – R700)/(R800 + R700) Gitelson and Merzlyak, 1994a

NDVI780 (R780 – R550)/(R780 + R550) Gitelson et al., 1996

NDVI760 (R760 – R708)/(R760 + R708) Steddom et al., 2003

ND705 (R750 – R705)/(R750 +R705) Sims and Gamon, 2002

MTCI (R750 – R710)/(R710 – R680) Dash and Curran, 2004

MCARI [(R750 – R705) – 0.2∗(R750 –R550)](R750/R705) Wu et al., 2008

MSR (R750/R705 – 1)/SQRT(R750/R705 + 1) Wu et al., 2008

DD/MSAVI DD/MSAVI Haboudane et al., 2008

Simple Ratio (SR), Normalized difference (ND), Double difference index (DD), Normalized difference index (NDI), Normalized difference vegetation index (NDVI), Normalized
difference vegetation index 705 (ND705), The MERIS terrestrial chlorophyll index (MTCI), Modified chlorophyll absorption in reflectance index (MCARI), Modified simple
ratio (MSR), Modified soil adjusted vegetation index (MSAVI), DD/MSAVI.

Hyperspectral Vegetation Indices
Raw reflectance data were used to calculate the HVIs listed in
Table 2.

Statistical Analysis
The data on CN status indicators at different growth stages
from each sensing and sampling date were subjected to
analysis of variance (ANOVA) using the GLM procedure
in IBM SPSS Version19.0 (IBM Corporation, Armonk, NY,
United States). The means were compared for difference in
treatments using a least significant difference (LSD) test at
the 5% level of significance. The coefficient of correlation
(r) for the relationships between canopy spectral region
(400–900 nm) and CN status indicators at each growth stage
were calculated to identify the sensitive spectral ranges using
Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA,
United States). The univariate non-linear regression (Power)
between HVIs and CN status indicators were developed using
Origin 8.0 (Originlab Corporation, United States). Coefficients
of determination (R2) from regression analyses were used to
identify HVIs for predicting CN status indicators at each growth
stage.

Development and Validation of Dynamic
Models
A correlation and univariate non-linear regression might be
insufficient due to interrelation of dynamic CN status indicators
over phenology. SMLR were used to identify and quantify the
relationships of HVIs and CN status indicators. Observations

were made of the experimental plots (n = 48) in both 2015
and 2016. The two year data set was divided into calibration
data (70%), used in the SMLR model for estimation, and
validation data (the remaining 30%). Forward selection and
backward elimination were combined in the SMLR method.
The HVIs and CN status indicators were input in SMLR to
predict SMLR models for each phenological stage, using the
calibration data set. The best phenological stage for predicting
CN status indicators throughout the growth period, and
corresponding most accurate SMLR model, were calculated
using MATLAB and Statistics Toolbox Released 2009b, (The
Mathworks, Inc., Natick, MA, United States). Vasques et al.
(2009) reported that the SMLR method had the potential
for effective selection and analysis of hyperspectral reflectance
data.

The validation was based on the root mean squared error
(RMSE) and coefficient of determination (R2). The RMSE
constitutes how good the regression models (best-fit function)
are at capturing the relationship between biophysical and
biochemical parameters and HVIS (Yao et al., 2010). Higher
R2 and lower RMSE will indicate that the model works with
precision and accuracy for the prediction of CN status indicators.

RMSE =

√√√√ 1
n
×

n∑
i=1

(yi − ŷi)2 (2)

where, yi and yi are the measured and predicted, values of the
variables, and, n is the number of samples (Feng et al., 2014).
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RESULTS

Variations in Canopy Nitrogen Status
Indicators (LDW, LNC, and LNA) Over
Phenology of Rice Under Varied N Rates
The leaf N status indicators were more variable during the EL, BT,
and HD stages, than during the TL and MT stages. As shown in
Figures 1A,B,E,F, a higher N rate resulted in higher LDW and
LNA. The stages LDW and LNA in particular varied substantially
in response to varying N rates. In each growing season,

minimum variations in the ranges of LDW and LNA were
observed during the vegetative stage, with maximum variation
observed during the reproductive stage. LNC varied markedly
across the growth stages (Figures 1C,D), and was minimal at the
early stages of crop growth before tiller initiation in both 2015
and 2016. The LNC was negatively affected after the initiation of
tiller, especially from EL to MT, showing a significant decrease
during this period. LDW, LNC, and LNA under varied N rates, at
TL and HD, respectively, showed values of 29.86–247.70 g m−2

(Figure 1A), 2.45–1.99% (Figure 1C), and 0.86–6.07 g m−2

FIGURE 1 | Variation in leaf nitrogen status indicator leaf dry weight (LDW) (A,B), leaf nitrogen concentration (C,D) and leaf nitrogen accumulation (E,F) in 2015 and
2016, respectively, over phenology of rice.
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for 2015 (Figure 1E). The same variables showed values of
34.79–257.22 g m−2 (Figure 1B), 2.48–2.02 % (Figure 1D), and
1.03–6.46 g m−2 for 2016 (Figure 1F). LDW and LNA improved
from tillering, elongation, and heading. For particular growth
stages, LDW and LNA increases were pronounced at booting
and heading, respectively. LDW and LNA values increased from
194.55 to 247.70 g m−2, and 4.96 to 6.07 g m−2, respectively, in
2015, and from 204.58 to 257.22 g m−2, and 5.32 to 6.45 g m−2,
respectively, in 2016, but declined after that, during the grain
filling stages. LNC decreased from BT and HD in both 2015 and
2106, with average LNC values falling from 2.16 to 1.99 and from
2.17 to 2.02, respectively.

Changes in CSR Under Varied N Rates
and Growth Stages
Marked variation in CSR was recorded under different N rates
in present study (Figures 2A,B). The significant changes in CSR
were recorded at the EL, BT, and HD stages in both 2015 and
2016. The behavior of different spectrum regions changed in a
manner analogous to variations observed for other green plants
under varied N rates. Reflectance increased in the NIR region
(>720 nm), while it decreased in the visible (400–720 nm) and
ultraviolet (350–400 nm) regions of the spectrum as N varied
from 0 to 293 kg N/ha during crop development. The variations
in reflectance in the NIR region (780–900 nm) under N rates
over different growth stages were quite obvious in both 2015
and 2016 (Figures 3A,B). At critical growth stages the CSR was
not constant, but consistently changed as N rates varied. The
decreasing trend in the visible region and the increasing trend
in the NIR region of CSR, were apparent in 2016 from the
elongation to the heading stages (Figure 3B), with the exception
of the BT stage in 2015, which had more reflectance in NIR region
than the EL and HD stages (Figure 3A). The decline of CSR
in the visible region at early (TL) and late (MT) stages in 2015
(Figure 3A) was the reason that these two stages were excluded
from 2016 (Figure 3B) CSR observation. Similar patterns of

decreased CSR in the visible region and increased CSR in the NIR
region were observed at the EL, BT, and HD stages in both years
(Figures 3A,B). The crop phenological stages, up to senescence,
can be clearly identified based on the behavior of the red and
green parts of the visible spectrum. In this study CSR exhibited
prominent negative variation in the visible (530–560 nm), and
red edge (700–780 nm) region. However, positive variation in the
NIR region (680–900 nm) specifically at 780, 800, and 850 nm
wavebands, under different N application provides the basis for
the construction of HVIs for different N applications.

Relationships Between CSR and Canopy
Nitrogen Status Indicators (LDW, LNC,
and LNA) During Rice Growth Under
Varied N Rates
The CSR responded to the wide variation in CN status indicators
(LDW, LNC, and LNA) across the various stages of rice growth.
The correlation coefficient (r) between all the CSR bands and
CN status indicators were plotted over rice growth periods under
varied N rates (Figures 4A–C).

The results showed that CSR exhibited negative correlations
(r < –0.30 to < –0.40) with LDW, LNC, and LNA in the
visible (400–720 nm) and (560–710 nm) regions, while positive
correlations (r > 0.50 to r > 0.60) were expressed in the red
and NIR region (720–900 nm). In the visible spectrum, blue
(400–480 nm), green (500–560 nm), red (600–730 nm), and red
edge (740–760 nm) regions were negatively correlated (r < –0.30
to –0.70) while NIR (760–780 nm) and (780–900 nm) regions
were positively (r > 0.50) correlated to LDW over the growing
period (Figure 4A). LNC in the blue (400–480 nm), green
(500–560 nm), and red (600–730 nm) parts of visible spectrum
were negatively (r < –0.5 to < –0.65) correlated, while the
red edge (740–760 nm) and NIR (760–900 nm) regions were
positively correlated (r < 0.50 to 0.55) to CSR over the growth
period in both 2015 and 2016 (Figure 4B). For LNA in the
visible region the blue bands (400–480 nm) exhibited the lowest

FIGURE 2 | Change in canopy reflectance spectra under different nitrogen (N) fertilization rates of rice in 2015 (A) 2016 (B).
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FIGURE 3 | Variation in canopy spectral reflectance (CSR) over growth stages of rice in 2015 (A) and 2016 (B).

FIGURE 4 | Coefficient of correlation between leaf nitrogen status indicators [LDW, (A), LNC, (B) and LNA, (C)] and CSR over rice growth in 2015 and 2016.
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correlation (r < –0.40) with CSR. The green (500–560 nm)
and red (600–730 nm) regions of CSR had correlation values
of r < –0.50 and r < –0.55, respectively. The coefficient of
correlation was positively (r < 0.50) related for the red edge
(740–760 nm), and significantly associated (r> 0.50–0.60) for the
NIR (760–900 nm) region of CSR for LNA in both 2015 and 2106
(Figure 4C).

Relationship Between HVIs and Canopy
Nitrogen Status Indicators (LDW, LNC,
and LNA) Over Growth Stages Under
Varied N Rates
Comprehensive correlation analyses were conducted at three
phenological stages to evaluate the performance of twenty HVIs

with CN status (LDW, LNC, and LNA indicators (Table 3).
Marked variation in LDW over growth from TL to MT
resulted in a similar pattern of fluctuation in coefficient of
correlation (r) between HVIs and LDW. The performance
of HVIs varied with CN status indicators. Top ten HVIs
showed the highest coefficient of correlation (r) for LDW
among the twenty indices used in this study. Overall, at
three critical stages (EL, BT, and HD) the four HVIs, MTCI,
MSR, NDVI800, and SR810/560 had better correlations for LDW.
Generally, a gradual decrease in coefficient of correlation at the
three stages was noted, but some HVIs expressed inconsistent
behavior for LDW over phenology. For LNC among the twenty
HVIs, eight HVIs had a superior relationship with LNC at
early (EL), rather than BT and HD stages. The decreasing
trend in coefficient of correlation was observed over three

TABLE 3 | Correlation coefficient (r) between leaf N status indicators (LDW, LNC, and LNA) over growth stages of rice in 2015 and 2016.

Coefficient of correlation (r)

LDW LNC LNA

HVls Year EL BT HD EL BT HD EL BT HD

SR768/750 2015 – – – 0.91 0.91 0.87 0.85 0.79 0.77

2016 – – – 0.90 0.87 0.80 0.84 0.81 0.75

SR 777/750 2015 – – – – – – 0.84 0.79 0.77

2016 – – – – – – 0.84 0.81 0.75

SR777/759 2015 0.74 0.61 0.58 – – – – – –

2016 0.79 0.64 0.46 – – – – – –

SR810/560 2015 0.73 0.50 0.54 0.91 0.80 0.82 0.85 0.74 0.70

2016 0.81 0.73 0.62 0.90 0.82 0.72 0.83 0.64 0.71

SR810/660 2015 0.66 0.41 0.51 0.89 0.75 0.80 0.84 0.56 0.55

2016 0.78 0.54 0.49 0.92 0.64 0.58 0.79 0.56 0.70

ND860-560 2015 0.70 0.46 0.54 – – – 0.82 0.74 0.70

2016 0.81 0.73 0.62 – – – 0.82 0.61 0.71

ND860-720 2015 – – – – – – 0.75 0.75 0.55

2016 – – – – – – 0.65 0.77 0.71

ND759-732 – – – – 0.76 0.84 0.79 – – –

– – – – 0.86 0.83 0.65 – – –

NDI850 – 0.70 0.61 0.56 0.88 0.82 0.84 – – –

– 0.76 0.71 0.67 0.90 0.82 0.78 – – –

NDVI780 2015 – – – – – – 0.79 0.71 0.70

2016 – – – – – – 0.79 0.64 0.69

NDVI800 – 0.69 0.60 0.57 0.88 0.82 0.84 – – –

– 0.76 0.72 0.67 0.90 0.82 0.78 – – –

MTCI 2015 0.75 0.60 0.61 0.91 0.86 0.87 0.86 0.76 0.79

2016 0.81 0.75 0.70 0.92 0.85 0.82 0.84 0.73 0.77

MCARI 2015 0.67 0.61 0.66 0.84 0.87 0.82 0.78 0.75 0.63

2016 0.70 0.75 0.54 0.88 0.85 0.66 0.75 0.77 0.76

MSR 2015 0.72 0.56 0.57 0.90 0.83 0.85 0.83 0.73 0.75

2016 0.73 0.73 0.67 0.90 0.82 0.78 0.81 0.68 0.74

DD/MSAVI 2015 0.70 0.52 0.46 0.82 0.67 0.73 0.80 0.70 0.73

2016 0.78 0.69 0.70 0.92 0.79 0.77 0.74 0.56 0.60

Hyperspectral vegetation indices (HVIs), Leaf dry weight (LDW), Leaf nitrogen concentration (LNC), Leaf nitrogen accumulation (LNA), Elongation (EL), Booting (BT),
Heading (HD). Simple Ratio (SR), Normalized difference (ND), Normalized difference index (NDI), Normalized difference vegetation index (NDVI), The MERIS terrestrial
chlorophyll index (MTCI), Modified chlorophyll absorption in reflectance index (MCARI), Modified simple ratio (MSR), Double difference index (DD), Modified soil adjusted
vegetation index (MSAVI), DD/MSAVI.
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critical stages (EL, BT, and HD) for LNC over two years.
For LNA, among eleven HVIs, the top five HVIs, SR768/750,

SR777/750, SR810−560, ND860−720, and MTCI performed quite
well (r > 0.80 – >0.60) at three critical stages (EL to HD) for
LNA.

Stepwise Multiple Linear Regression
Analysis
Power regression was used to develop a static model between
CN status indicators and HVIs as shown in the supplementary
Table 1. SMLR was used to develop the dynamic models between
CN status indicators and HVIs (Table 4).

The simple ratio, SR777/759, and DD/MSAVI showed a good
estimation for LDW at the EL stage. At BT, SR810/660, SR810/560,
and ND860−560, along LDW of EL estimate LDW better. The
indices for the red and NIR regions (ND860−720, SR777/759, and
SR810/660) at BT along LDW of booting provides the best estimate
of LDW at heading. The SMLR model indicated that 93% to
87% of variability in LDW (at BT and HD, respectively) could be
explained using 2–3 band based HVIs. For EL and BT, the first
sensitive band chosen was red, followed by NIR and red edge.
For HD, or across growth stages, NIR was always the first band
chosen, followed by the red edge bands.

Among all the HVIs, SR810/660 estimated LNC best at EL.
At BT, LNC was best estimated with MCARI, SR768/750, and
DD/MSAVI along the LNC of EL. At HD, MCARI, SR810/560,
NDI850, and ND759−732 gave the best explanation of LNC
estimation along the LNC of elongation and booting. Overall,
it was determined that 98 to 94% of the dynamic LNC (at BT
and HD, respectively) was explained by SR810/560, SR768/750,
ND759−732, and MTCI based on the green, red edge, and NIR
regions. LNA variability at EL (72%) was explained in the HVIs
sensitive in the blue, red, and NIR bands (SR810/660, MCARI).
Variability at BT and HD (99%) was explained in the green, red,
red edge, and NIR-based bands: SR810/660, ND860−560, NDVI780,
and MCARI along LNA of EL and BT. Among all the HVIs,

ND860−560 in the green and NIR regions along LNA of EL best
fit the SMLR model for LNA estimation at BT.

Validation of Dynamic Models
The models used above to describe the relationship between
HVIs and CN status indicators were evaluated further using
the validation data (Table 5). The SMLR models predicted
LDW differently across three growth stages. The validation of
the SMLR model for BT and HD performed better (R2 0.86
and 0.84, respectively) than those for EL (R2 0.82, RMSEV
39.04). At BT and HD, the SMLR models SR810/660, SR810/560,
and ND860−560, and SR777/759, ND860−720, SR810/660 performed
better than SR777/759 and DD/MSAVI did for estimating LDW.
Our results showed that the LDW might be better estimated
at all phenological stages, particularly BT, with a dynamic
model using HVIs (Figure 5). The validation results indicated
that the SMLR model and some HVIs (SR810/560, SR768/750,
difference indices ND759−732, MCARI, and DD/MSAVI) could
better predict LNC across all the growth stages. The SMLR model
using HVIs (SR768/750, MCARI, and DD/MSAVI) along LNC of
EL performed better (R2

val = 0.93 and RMSEV = 0.36) at BT.
Therefore, the relationship between the estimated and observed
LNC at BT was more prominent than at EL and HD (Figure 6).
The validation results showed that at BT, the SMLR model and
some HVIs (ND860−560, LNA of EL) were strongly correlated
(R2

val = 0.98, RMSEV = 0.65) with prediction of LNA. For specific
growth stages, the SMLR models performed better at BT and HD
(R2

val = 0.98 and 0.98, RMSEV = 0.65 and 0.66, respectively) than
at EL (R2

val = 0.60, RMSEV = 2.99) (Figure 7). The validation
results confirm this observation.

DISCUSSION

In-season estimation of crop growth and N status are essential
indicators for the precise management of N levels and grain

TABLE 4 | Stepwise multiple linear regression models for estimation of leaf nitrogen status indicators (LDW, LNC, and LNA) over growth stages of rice.

Stage Y Regression equation R2
C RMSEC

Elongation LDW Y = 295.12 × SR777/759 + 104.851 × DD/MSAVI-2924.72 0.78 48.86

LNC Y = 0.15298 × SR810/660 – 2.0902 0.78 0.58

LNA Y = 0.616 × SR810/660 – 4.031 × MCARI-7.0435 0.72 2.63

Booting LDW Y = 4.496× SR810/660 + 0.543× LDWE• + 11.09× SR810/560 –
5.596 × ND860−560 – 20.151

0.93 28.20

LNC Y = –0.332 × MCARI+0.596 × LNCE∗ + 26.516
× SR768/750 – 23.141 × DD/MSAVI-27.907

0.94 0.33

LNA 1.0276 × LNAE† + 0.0495 × ND860−560 – 0.5751 0.99 0.56

Heading LDW Y = 260.954 × ND860−720 + 0.939 × LDWB• –
2738.59 × SR777/759 + 3.673 × SR810/660 + 2715.49

0.87 0.45

LNC Y = 0.221×MCARI+ 0.477× LNCE∗ + 0.162× SR810/560 –
6.842 × NDI850 + 0.512 × LNCB∗

0.352 × ND759−732 + 3.337

0.98 0.21

LNA Y = 0.476 × LNAE† + 0.4197 × SR810/560 –
12.084 × NDVI780 + 0.510 × LNAB†

+ 5.917
0.99 0.45

Leaf dry weight at elongation and booting • (LDWE) and (LDWB), Leaf nitrogen concentration at elongation and booting, ∗ (LNCE), and (LNCB), Leaf nitrogen accumulation
at elongation and booting† (LNAE) and (LNAB).
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TABLE 5 | Validation of SMLR models for estimation of leaf nitrogen status indicators (LDW, LNC, and LNA) over growth stages of rice.

Stage Y Modeling set (n = 32) R2
V RMSEV

Elongation LDW SR777/759, DD/MSAVI 0.82 39.04

LNC SR810/660 0.80 0.70

LNA SR810/660, MCARI 0.60 2.99

Booting LDW SR810/660, LDWE•, SR810/560, ND860−560 0.86 40.04

LNC MCARI, LNCE, SR768/750, DD/MSAVI 0.93 0.36

LNA LNAE†, ND860−560 0.98 0.65

Heading LDW ND860−720, LDWB•, SR777/759, SR810/660 0.84 36.6

LNC MCARI, LNCE∗, SR810/560, NDI850, LNCB∗, ND759−732 0.90 0.45

LNA LNAE, LNAB†, SR810/560, NDVI780 0.98 0.66

Leaf dry weight at elongation, booting, and heading • (LDWE), (LDWB), and (LDWH), Leaf nitrogen concentration at elongation, booting, and heading ∗ (LNCE), (LNCB),
and (LNCH), Leaf nitrogen accumulation at elongation, booting, and heading † (LNAE), (LNAB), and (LNAH).

FIGURE 5 | Relationship between predicted and observed LDW (g m−2) over phenological stages of rice.

yield (Ata-Ul-Karim et al., 2016, 2017b). The results of this
study support the hypothesis that heterogeneous discrepancies in
CSR over different phenological stages formulate several narrow
band HVIs that have the potential to estimate crop growth and
in-season N status.

Taking into account all the data from the two experiments
in the present study, the significant effect of the N fertilizer
on the CN status indicators (LDW, LNC, and LNA) has
been widely reported (Chu et al., 2014; Yao et al., 2014; Ata-
Ul-Karim et al., 2017a). The LDW increased when the rice
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FIGURE 6 | Relationship between predicted and observed leaf nitrogen concentration (%) over phenological stages of rice.

studied in the present work was in the BT and HD stages
(Figures 1A,B), in consensus with previous studies (Brandao
et al., 2015; Guo et al., 2017). Our work revealed that LDW
improved in EL, BT, and HD, but significant increases were
observed at booting and heading in 2015 and 2016. The elevated
N fertilization rate generally demonstrated higher LNC, yet
a decline in the LNC was seen as LDW increased during
the growth period (Figures 1C,D). The LNC was negatively
affected by incremental N fertilization, with the advances in
plant growth followed by tiller initiation to EL and MT.
The decline in LNC during vegetative growth was attributable
to the decrease in N concentration per unit leaf area for
shaded leaves, in agreement with Wang et al. (2009). This
is because the availability of LNC was influenced by the
total N concentration in the paddy surface water and the N
fertilization rate. Moreover, the proportion of self-shaded leaves
with low N concentrations increased, and the proportion of
the uppermost leaves with high N concentrations declined,
optimizing canopy photosynthesis during canopy development
corresponding to an optimization of N allocation in relation

to light distribution (Ogawa et al., 2016). LNA is the product
of LDW and LNC; therefore, plants with high LNC and low
LDW at earlier growth stages may have similar LNA as those
with low LNA and higher biomass at later growth stages.
Thus, the growth stage is an important reference factor that
must be taken into consideration when using LNA as an
indicator for estimating crop N levels. LNA was significantly
higher in rice that was more highly fertilized; this might be an
effective way to regulate LNA, which was significantly affected
by radiation absorption and CSR under different N rates in our
study.

It was also revealed that LNA increased with increasing
N fertilization along growth stages (Figures 1E,F). LNA was
significantly higher in 2016 than the 2015 under same N
application, because the field experiment had just begun in
2015. The actual soil fertility might compromise the dilution
effect of concentrated plant N, ultimately affecting LNA during
the crop growth stages. Wei et al. (2017) found similar
responses, indicating that a higher LNA trend might be
due to increased precipitation and radiation levels, and that

Frontiers in Plant Science | www.frontiersin.org 11 January 2019 | Volume 9 | Article 1883

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01883 January 11, 2019 Time: 17:6 # 12

Din et al. Dynamic Rice Hyperspectral VI Estimation

FIGURE 7 | Relationship between predicted and observed leaf nitrogen accumulation (g m−2) over phenological stages of rice.

this increased the dry matter and leaf area index, thereby
increasing relative LNA levels. When this occurs during the
crucial periods for leaf N uptake, from initiation of TL to
end of HD, there is an improvement in crop yield and N
accumulation from stem elongation. The increased N uptake
at higher N fertilization levels might be a result of increased
root growth and the subsequent absorption of more N from
the soil, leading to the higher N accumulation reported
by Fan et al. (2010). The application of more N at the
seedling stage did not result in a higher N uptake. Zhang
et al. (2007) found that the critical period for N uptake was
from the initiation of tillering to the end of the heading
stage, and similar results were observed in the current study.
The effective regulation of N accumulation at booting to
heading stages improved LNA at higher N fertilization rates
that influence primarily the canopy spectral absorption and
reflectance.

Variation in CSR during different phenological stages might
be due to differences in N content. The rapid growth
from the EL to the BT stage boosts N absorption, which
leads to a higher reflectance relative to the high level of

leaf N in the grain from the HD to the MA stages and
N-remobilization from leaves to grain, which leads to leaf
senescence. Strong absorption in the red region was relative
to leaf chlorophyll levels, and reflectance in this region is
also closely associated with leaf N status, and high reflectance
in the NIR region is associated with the mesophyll structure
in growing plants. Our previous work (Din et al., 2017)
showed that at the vegetative stages (EL and BT) of rice,
the canopy reflectance in the infrared (>760 nm) and
visible (524–534, 583, 687, and 707 nm) regions were very
prominent for leaf characterization. Variations (e.g., green-
yellow) in leaf color and N remobilization might be the
reason for incremental changes in reflectance in the short-
wave NIR at the BT stage under different N rates. The
character of the leaves and the canopy was significantly related
to biomass, about which the spectral reflectance provides
important information. Everard et al. (2012) noted that
biomass estimation was more accurate in the 800–1680 nm
spectral range than in the 450–950 nm range. The NIR band
centered at 810–860 nm mainly carried information on LDW
estimation.

Frontiers in Plant Science | www.frontiersin.org 12 January 2019 | Volume 9 | Article 1883

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01883 January 11, 2019 Time: 17:6 # 13

Din et al. Dynamic Rice Hyperspectral VI Estimation

In our study, the CSR sensitive spectral ranges 530–560,
680–700, and 700–780 nm were mainly reported for LDW
estimation. The dense canopy led to a higher reflectance in the
NIR regions, causing an increase in the green pigment, especially
in leaves in the early stage. The CSR in the red edge (680–760 nm)
regions proved to be effective for estimating chlorophyll content,
total N, and total yield (Sharabian et al., 2014). The CSR, red
edge, and NIR regions were found to be suitable to use to
estimate LNC for different phenological stages, in agreement
with previous research (Feng et al., 2014). Combining the CSR
green band with red edge and NIR regions could result in a
better index for correlating the LNC of rice, compared to the
blue, red, and SWIR (Chen et al., 2010). Effective regulation of
canopy N accumulation caused positive correlation of LNA in
the NIR (720–900 nm) region. However, the red (670–790 nm)
region predicted LNA better under varied N rates. Li et al. (2012)
also found that red-edge indices were more sensitive for plant N
estimation. LNA estimation sensitive bands were located in range
of visible (550–750 nm) and NIR (750–860 nm) regions. Leaf
irradiance correlated to photosynthesis would make it possible to
investigate and estimate LNA in a non-destructive manner (Frak,
2002).

The dynamic pattern of LDW showed that the LDW increased
linearly from the mid-vegetation to the mid-maturity period. As
the biomass increased with growth stages, the number of HVIs
were affected due to saturation that reduced the performance
of univariate non-linear regression models constructed on these
HVIs to estimate LDW. Several studies reported that SMLR
using an increased number of wavebands could significantly
improve the estimation of biophysical parameters compared
to a single vegetation index (Dalponte et al., 2009; Miao
et al., 2009; Yu et al., 2013). Using SMLR with HVIs provides
increased flexibility and should achieve better results compared
to HVIs using regression analysis, as in our study (Table 5).
The use of canopy spectra for HVIs construction for N
assessment depends mostly on the relationship between N and
chlorophyll contents of the plant. Although the best performing
HVIs increased the R2 for LNA estimation using univariate
non-linear regression models, limitation still exist compared
to SMLR models that produced the best estimates at the EL,
BT, and HD stages. The SMLR model was capable of better
predictions at heading by keeping the dynamic LNC and LNA
over the phenological stages. The results agree with Huang
et al. (2004), who reported that an SMLR provides reasonable
information with which to extract leaf biochemistry information
from leaf reflectance. Inconsistencies in the temporal pattern
of rice canopy development showed again that phenology
has a pronounced influence on the performance of HVIs
used to estimate N concentrations, and have an especially
larger influence in LNC and LNA (Bridhikitti and Overcamp,
2012).

At EL, the variation in biomass and canopy structure was
less than that at BT and HD because the N in the top canopy
leaves can be remobilized from shaded leaves at the bottom to
the leaves above (Lemaire et al., 2008). Thus, greater variation
in LNC and LNA was explained by the HVIs at the booting
and heading stage. The influence of the N dilution effect

made it difficult to support N related physiological parameters
using only two band HVIs in univariate non-linear regression
analysis. Therefore, SMLR models with a number of HVIs are
required to provide a detailed illustration of LNC and LNA
over phenology. The newly modified SR768/750 responded quite
well to estimating dynamic LNC over phenology in SMLR
models, in a manner similar to the method used by Campbell
et al. (2007) study, who found that SR predominant for LNC
estimations over the growth period. Our results confirmed
findings by Grossman et al. (1996), who stated that SMLR could
be successfully used for dynamic estimation of crop nutrient
(N, P) status using hyperspectral reflectance. The NIR and
red edge bands used to construct the HVIs, the NIR band
sensitivity for leaf structure, and biomass were already reported.
The single band analysis showed that the NIR bands had the
best correlation with biomass and leaf N uptake, especially at
heading and across growth period. Physiologically, canopy leaves
respond to increased soil N supply by accumulating leaf N,
which disturbed the chlorophyll pigment and photosynthetic
enzymes to enhance the carbon assimilation in plant growth
(Zhao et al., 2005b). Zhan et al. (2013) utilized SMLR to evaluate
the relationship of phenanthrene uptake and root morphological
and compositional characteristics in a manner similar to the
methods we used in our study. The patterns of plant N uptake
differ considerably between N fertilization over the EL, BT, and
HD stages, and could successfully quantify the dynamic pattern
for estimating CN status indicators over phenology using SMLR
models.

CONCLUSION

The CSR in the NIR (720–900 nm), visible (400–720 nm),
and (560–710 nm) regions demonstrated the construction of
functional HVIs that could characterize rice leaves and estimate
LDW, LNC, and LNA primarily at three phenological stages. The
current study formulates the new SR777/759, SR768/750 HVIs to
predict LDW, LNC and LNA at the elongation, booting, and
heading stages, based on these sensitive regions. The SMLR
model efficiently estimates fluctuations in the LDW, LNC, and
LNA over the latter two phenological stages under different N
rates. It also showed a significantly better performance compared
to univariate non-linear regression models, as the R2 and
RMSE values were 0.93 and 28.20 for LDW; 0.98 and 0.21
for LNC; 0.99 and 0.45 for LNA estimates, respectively, over
mid-vegetative and early reproductive stages in the life cycle of
a rice plant.

Moreover, as LDW progressed from heading to maturity, there
was a prominent negative decrease in LNC from elongation to
maturity, and improvement in LNA, from tillering to booting
under N fertilization rates, could be predicted efficiently using an
SMLR model. The dynamic LDW during elongation and booting
and the pattern of LDW over phenological stages are successfully
quantified using HVIs when compared to univariate non-linear
regression models that can only estimate LDW at a specific stage.
The SMLR model more effectively predicted the dynamic LNC
and LNA over the growth period across the phenological stages,
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including the heading stage, compared to the univariate
non-linear regression model at each stage.

Our research shows that SMLR models have the potential
to estimate the dynamic LNA, LNC, and LDW at different
phenological stages using specific HVIs, when compared to
univariate non-linear regression using a number of HVIs. The
findings of this study could be used as a direct theoretical and
practical reference for using hyperspectral remote sensing to
conduct non-destructive monitoring and precise estimation of
N-indices during production of rice.
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