
DISPARITY REFINEMENT OF BUILDING EDGES USING ROBUSTLY MATCHED
STRAIGHT LINES FOR STEREO MATCHING

X. Huang 1, R. Qin 1, 2, *, M. Chen 3

1 Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 218B Bolz Hall, 2036 Neil Avenue,

Columbus, OH 43210, USA - (huang.3651, qin.324)@osu.edu
2 Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Labs, 2015 Neil Avenue, Columbus,

OH 43210, USA - qin.324@osu.edu
3 Lyles School of Civil Engineering, Purdue University, West Lafayette, 47907, USA - chen2422@purdue.edu

Commission I, WG I/2

KEY WORDS: Matched Straight Lines, Disparity Refinement, Support Window Definition, Edge Detection, Plane-based Adjustment

ABSTRACT:
Stereo dense matching has already been one of the dominant tools in 3D reconstruction of urban regions, due to its low cost and high
flexibility in generating 3D points. However, the image-derived 3D points are often inaccurate around building edges, which limit its
use in several vision tasks (e.g. building modelling). To generate 3D point clouds or digital surface models (DSM) with sharp
boundaries, this paper integrates robustly matched lines for improving dense matching, and proposes a non-local disparity refinement
of building edges through an iterative least squares plane adjustment approach. In our method, we first extract and match straight lines
in images using epipolar constraints, then detect building edges from these straight lines by comparing matching results on both sides
of straight lines, and finally we develop a non-local disparity refinement method through an iterative least squares plane adjustment
constrained by matched straight lines to yield sharper and more accurate edges. Experiments conducted on both satellite and aerial data
demonstrate that our proposed method is able to generate more accurate DSM with sharper object boundaries.

1. INTRODUCTION

The 3D reconstruction of urban regions is increasingly being
used in several smart applications such as virtual reality, 3D
modeling and navigation etc. There have been various
technologies about the 3D reconstruction including light
detection and ranging (LiDAR), stereo dense matching,
structured light, manual reconstruction, etc. Compared with other
technologies, stereo dense matching, which refers to the process
of searching for pixelwise correspondences between oriented
images, has a great potential in producing large-scale, dense 3D
measurements of urban objects (e.g. building, road, and
vegetation) with much lower cost. Current stereo dense matching
methods focus on formulating the dense matching problems as
the optimization of a global energy function (Hirschmuller, 2008;
Klaus, 2006; Kolmogorov and Zabih, 2001; Scharstein and
Szeliski, 2002), which is capable of obtaining robust matching
results. However, such global optimization may produce a large
amount of mismatches along building edges, appearing as
irregular edges in matching results.

Normally building edges in images appear to have large intensity
changes. To improve the building edges in matching results,
several researches adjust edges in matching results to edges in
images (also called edge refinement). Some of them refine per
pixel in edges, while others refine the whole edge non-locally,
therefore the edge refinement methods can be categorized into 1)
local edge refinement and 2) non-local edge refinement. Local
edge refinement methods (Gupta and Cho, 2010; Huang and
Zhang, 2016; Lin and Liu, 2015; Park et al., 2015; Wang et al.,
2013; Wu et al., 2016) adjust edge pixels in matching results to
edge pixels in images. Once all the pixels are adjusted, all the
edges in matching results are refined. These methods normally

* Corresponding author

give a support window centered at pixels around edges, and then
fully utilize the matching results of neighbor intensity-similar
pixels to refine the matching result of central pixel with the basic
assumption that pixels with similar intensities in the support
window share the same matching results. Considering
mismatches in the support window, such refinement is often
proceeded by averaging the matching results in the support
window (also called bilateral filter (Paris et al., 2008)) or picking
median of the matching results weighting by intensity differences
between the central pixel and neighbor pixels (also called
weighted median filter (Lin et al., 2002)). Local refinement
methods are simple and efficient in edge refinement, while they
fail in the case that a plenty of mismatches exist in the supporting
window. Non-local edge refinement methods (Hirschmuller,
2008; Li et al., 2015) refine the entire edge instead of single
pixels. They firstly segment images and formulate the edges as
the boundaries of each image segments, and then use plane
function to refine the matching results in each image segments
such that the matching results of these boundaries are also refined.
Non-local edge refinement methods are superior in obtaining
robust, sharp edges even though plenty of mismatches exist
locally, while they may reduce matching accuracies in the case
that the image segment does not satisfy the plane function (e.g.
curved regions). In addition, current edge refinement methods
(including local and non-local methods) do not consider
matching results of edges, while the matching of edges is
normally more robust than pixels. Hence, the edge refinement
results should be better if such matched edges are utilized in the
refinement.

To obtain sharp 3D building edges in the resulting DSM, this
paper presumes the availability of both oriented stereo images
and stereo dense matching results, and develops a new edge

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

77

refinement method that is able to detect and match straight lines
in images as potential building edges, and fully utilize these
matched straight lines to improve the refinement of building
edges through a plane-based adjustment method. In general, our
method formulates the refinement of building edges as the non-
local plane-based adjustment with the basic assumption that
pixels close to edges with similar intensities/colour share similar
matching results, where matched straight lines are used to
constraint the adjustment, termed as refinement of building edges
using matched straight lines (RBESL). Our method is capable of
obtaining sharp building edges in stereo matching.

The rest of the paper is organized as follows: Section 2 describes
the methodology of the proposed method in detail; Section 3
shows the experimental results; and Section 4 concludes the
manuscript.

2. METHODOLOGY

2.1 Overview

Given stereo images with accurate orientations, we firstly rectify
them into epipolar images such that correspondences are in the
same row between the two images, thereby the corresponding
pixels can be represented by the column coordinate differences,
termed as disparity or parallax. For a correspondence with
(��, ��) and (��, ��) being the left and right pixel coordinate in
epipolar images, the disparity between them is shown in Equation
(1). Most stereo dense matching methods compute disparities for
all pixels and produce a disparity map as matching result. In all
our experiments, we used semi-global matching (SGM)
(Hirschmuller, 2008) to produce an initial disparity map.

� = �� − �� (1)

where d = disparity of a pixel

Given epipolar stereo images and the corresponding initial
disparity map, our proposed method aims to refine disparity map
with sharp building edges. The workflow of our proposed method
includes: 1) Robust matching of straight lines: obtain matches
of straight lines in the basic image (e.g. left image in this paper)
by searching candidate matches of the straight lines using
epipolar constraints, then using an intensity gradient orientation
based operator to describe features of the straight lines and the
candidate matches, and finally deciding the match with the most
similar features; 2) Non-local plane-based adjustment for
disparity refinement: adjust edges in disparity map to align
straight lines in epipolar images using a plane-based adjustment
constrained by matched straight lines. The workflow is shown in
Figure 1.

Figure 1. Workflow of proposed method

2.2 Robust Matching of Straight Lines

Matching of straight lines are normally more robust than
matching results of corresponding points. Hence, the object edge
in the DSM should be improved if such matched straight lines are
utilized. However, due to inaccurate locations of line endpoints,
fragmentation of line, etc. (Fan et al., 2010; Chen and Shao,
2013), straight line matching is still a challenge task. In this paper,
we consider an epipolar constraint in the straight line matching
and propose a robust straight line matching method for epipolar
images. The workflow of our method is as follows.

Firstly, straight lines are detected from the input epipolar images
by using the state-of-the-art line segment detector (LSD) (Von
Gioi et al., 2012).

Secondly, the straight lines in the left image and the potential
corresponding lines in the right image (also called candidate
matches) are extracted based on epipolar constraint.
For example in Figure 2, p1 and p2 are two endpoints of the
straight line Li in the basic image (e.g. left image in this paper).
ep1 and ep2 are the two corresponding epipolar lines of p1 and p2.
The two points p1' and p2' corresponding to p1 and p2 can be
found according to the disparity of p1 and p2. Two local regions
R1 and R2 surrounding p1' and p2' are set to overcome the errors
from the epipolar image and the initial disparity map. There are
two thresholds te and td indicating the epipolar and disparity
errors respectively. The straight lines in right image are potential
correspondences of the straight line Li in left images if and only
if these straight lines in right images going through the two local
regions R1 and R2 (not limited by the two endpoints of straight
lines), and at least one endpoint is located in R1 or R2. Yellow
lines in Figure 2 show the scope of potential correspondences of
Li.

1p

2p

iL

1'p

2 'p

1pe

2pe

2 dt

2 et
1R

2R

Figure 2. Candidate matches computation.

Then, line descriptors are constructed for each pair of candidate
matches as follows:

1) Given a straight line Li in the left image, the endpoints of
potential corresponding line may not the correspondences of
endpoints of Li, as shown in Figure 3. Li' is the potential
corresponding line of Li. To solve the problem of line
fragmentation, Li' is aligned horizontally to Li by computing two
intersections (denoted as q1, q2) between Li' and ep1, ep2, and the
segment q1q2 is used for matching computation.

1p

2p

iL

1q

2q

1pe

2pe

iL'

Figure 3. Line descriptor construction. The blue line is the
straight line in the left image. The green line is one of potential
corresponding lines in right image.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

78

2) Rectangular support windows centred at Li and Li' are built,
and a feature descriptor is designed to describe the features of
these support windows. We firstly divide the support window
into four sub-regions on each side of straight lines, as shown in
Figure 3. In each sub-regions, a gradient orientation (8-
orientation) histogram is computed for describing the features in
such sub-region, where the direction of straight line is regarded
as the orientation of each sub-region such that the orientation
histogram is robust to image rotation. Considering discontinuities
in disparity edges, we describe the features of each side (left side
and right side) respectively by combining the 8-orientation
histograms of sub-regions on the same side to form 32-
dimensional feature vectors. Finally, the 32-dimensional feature
vector are combined to form a 64-dimensional descriptor to
describe the features of the support window, as follows:

���� = �
�����

������
� (2)

where �����, ������ = feature vectors in the support window

Desc is a 64-dimensional descriptor

3) Finally, we compare the features of each candidate match and
select the candidate match with most similar features as the final
straight line matching result. The similarity of the features is
measured by nearest neighbor distance ratio (NDSR) strategy,
and the candidate match with the shortest distance is adopted, as
shown in Equation (3).

����������
= max {||����� − ��

����||, ||������ − �′�����||}
(3)

where �′����, �′����� = feature vectors in right images

2.3 Non-local Plane-based Adjustment for Disparity
Refinement

Building edges often appear as great disparity changes in
disparity map as well as great intensity changes in images. Hence,
we define matched straight lines in section 2.2 as potential
building edges. However, due to textures in images, not all
straight lines are building edges. Hence, we firstly detect the
edges from these straight lines by comparing disparities on both
sides of straight lines. As the disparities of pixels around straight
lines may not be accurate, we need to define rectangular region
centred at each straights line as support window to guarantee
enough accurate disparities involved in the disparity comparison.
Only straight lines with great disparity changes (normally larger
than 1 pixel) are defined as building edges. Then, we compute
disparity planes for both sides of support window by plane-based
adjustment, where matched straight line is used as constraints in
the adjustment of the side that contains it, and finally use the
disparity plane to refine disparities in both sides of the support
window such that the building edges in disparity map are sharp.
In general, we organize this sub-section by firstly introducing the
support window of straight lines (section 2.3.1), then the edge
detection (section 2.3.2) and finally the plane-based adjustment
optionally constrained by matched straight lines (section 2.3.3).

2.3.1 Support Window of Straight Lines
In order to guarantee enough accurate disparities used in the
disparity refinement, we define a support window centered at
straight line in the basic image (e.g. left image) with its length
parallel to the straight line and its width perpendicular to straight
line, as shown in Figure 4. The four corners (c1, c2, c3 and c4) of

the support window are computed from the two endpoints (e, e')
of the straight line and the width of the support window, as shown
in Equation (4).

Figure 4. Support window definition. White straight line is an
edge of a roof. Green rectangle is a support window centered at
the straight line. S1, S2 are sets of pixels in both sides of the
support window. (e, e') are endpoints of the straight line. c1, c2,
c3 and c4 are four corners of the support window.

�� = �� − � ∙ �� �� = �� − � ∙ ��
�� = �� + � ∙ �� �� = �� + � ∙ ��

�� = ��′ − � ∙ �� �� = ��′ − � ∙ ��
�� = ��′ + � ∙ �� �� = ��′ + � ∙ ��

(4)

where (xi, yi) = image coordinates of the four corners ci

(ex, ey), (ex', ey') = image coordinates e and e'
r = half of the width of support window
(nx, ny) = an unit vector perpendicular to the straight line

Given a support window, we record pixels and their attributes
(intensities or color, image coordinates and disparities) in the
both sides (e.g. S1 and S2 in Figure 4) respectively for disparity
refinement. The choice of the width of the support window is
important for the final disparity enhancement result. Support
window with a too small width (< 10 pixels) may not include
sufficient number of pixels with accurate disparities, leading to
failure of disparity refinement, while support window with a too
large width (> 40 pixels) may not satisfy the plane assumption of
the local surface. In our experiments, we chose width = 20 pixels
as a sufficiently large number to recover erroneous edges, while
not too large to violet the local plane assumption.

2.3.2 Edge Detection
Building edges in disparity map often appear as straight lines in
images, while not all straight lines are building edges. Some of
the straight lines are only textures in a plane, where global stereo
dense matching methods (e.g. SGM (Hirschmuller, 2008), graph
cuts (Kolmogorov and Zabih, 2001)) normally handle such case
well, while utilizing such edges is necessary and may break the
smoothness on the plane. Therefore, we tend to filter out such
lines by detecting geometric edges through comparing disparities
on both sides of support window. Straight lines are located by
identifying those with obvious disparity changes on both sides (>
1 pixel). However, due to potential mismatches in the support
window, the disparity comparison result may not be accurate.
Based on the fact that the intensities of mismatches are often
highly different from the one of major pixels in the support
window (intensities difference larger than 10), we reduce the
impact of these mismatches by firstly computing a major
intensity (the intensity of major pixels) and then only considering
pixels with intensities similar to the major intensity (≤10) in the
edge detection.

In this paper, the major intensity is computed by selecting the
median value of intensities of all pixels. However, it is possible
that the intensities of edge pixels are not similar to either side of

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

79

the support window, which may impact on the median values, as
shown in Figure 5. Figure 5(a) is a satellite image of a roof.
(enlarged region of the red shown in Figure 5(b)). We record the
intensities of pixels along the green arrow in Figure 5(b) to check
the intensity changes (Figure 5(c)). The intensity of upper region
in (b) is 70, and the intensity of lower region is 7. However, the
transitional intensities between the two dashed lines in Figure 5(c)
are similar to neither 70 nor 7. These transitional intensities are
actually the noises in the mid-value selection. Hence, we remove
these transitional intensities before the selection. In all our
experiments, we only remove intensities of pixels whose distance
to the straight line is less than 2 pixels.

r

Intensity

pixel

(a) (b)

(c)

Intensity

Figure 5. Intensity changes in edges. In (b), the white line is the
straight line, and the green arrow is perpendicular to the straight
line. In (c), the green line represent the intensities of pixels along
the green arrow in (b).

Then, on each side, we only select disparities of pixels with
intensities similar to the major intensity for disparity comparison,
while it is possible that the pixels with similar intensities are still
noises. In this paper, we combine the disparity selection and the
noise elimination together, and formulate the combination as a
median filter weighted by intensities of pixels in each side. The
basic idea of the weighted median filter is to record more
disparities with intensities similar to the major intensity (higher
weights) and less disparities with intensities less similar to major
intensity (lower weights), and then find the median value from
all recorded disparities such that those noises can be removed, as
shown in Equation (5). In this paper, we use Gaussian kernel to
define the weight, which is inversely proportional to the absolute
difference between the intensity of pixels and the major intensity
of the side.

��(�) = med
�∈�

{�(�)|[� ∙ ���(�), �(�)�]} (5)

where S = a set of pixels in the same side of support window

��(�) = the mid-value of disparities in S
Med = median filter operation
p = a pixel in S
d(p) = the disparity of p
�(�) = the intensity of p
�(�) = the mid-value of intensities in S
�(�(�), �(�)) = the weight of p
M = a predefined coefficient
[� ∙ �] = the number of recorded �(�)
[] = Rounding operator

In this paper, ��(�) is termed as major disparity, and �(�) is
termed as major intensity. After weighted median filter in
Equation (5), the major disparities in both sides of support

window are then compared. Only the straight line with obvious
disparity changes (> 1 pixel) are selected as edges.

2.3.3 Plane-based Adjustment Optionally Constrained by
Matched Straight Lines

We use plane functions (Equation (6)) to adjust the disparities in
both sides of support window such that the selected edges are
sharp.

� = �� + �� + � (6)

where d = disparity of a pixel
 (x, y) is the image coordinate of a pixel
 a, b, c are parameters of plane function.

Our task is to accurately compute the plane parameters by
leveraging the inconsistent disparities (e.g. mismatches).

To compute the optimal plane parameters, we applied a weighted
least squares method. For both sides of a building edge, normally
only one side contains the edge. Hence, we deal with the two
sides separately. For side with no edge, we only apply a plane-
based least squares method to refine it, while for side that
contains the edge, we additionally introduce a matched straight
line based constraint in the least squares adjustment to improve
the refinement result. Hence, we firstly compute the disparity of
the straight line by averaging the disparities of the two endpoints
and then judge which side contains the matched straight line by
comparing the disparity of matched straight line and the major
disparity of each side, as follows:

� �
∈ � �� |��(�) − �(�)| ≤ �
∉ � ��ℎ������

 (7)

where L = the straight line in the basic image (e.g. left image)
 d(L) = disparity of L
 S = a side of support window
 � = a threshold

� is used to measure the difference between the disparity of
straight line and the major disparity of S. The straight line L
belongs to side S as long as the disparity difference is smaller
than �. In all our experiment, � is set as 3 pixels.

For computation purposes in the adjustment, straight line L is
formulated as a linear equation (Equation (8)). The
corresponding line in the other image is defined as L'. It is worth
noting that the endpoints of horizontal straight lines (parallel to
image row directions) may not be correspondences. The
disparities of such straight lines are unreliable. Hence, we do not
consider such straight lines as the additional constraint in
adjustment, and formulate the non- horizontal straight lines as
linear equations with row direction as independent variable and
column direction as dependent variable:

� = �� + ℎ (8)

where x = image column coordinate
 y = image row coordinate
 k, h = parameters of the linear equation.

The linear parameters k and h can be computed easily by the two
endpoints of the straight line. After deciding which side contains
the straight line, we introduce an iterative least square method
with variable weights to compute optimal plane of each side. We
utilize a matched straight line based constraint in the adjustment

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

80

of the side containing the straight line, and do not use such
constraint for the side with no straight line. Given the set of n
pixels in one side of support window S = {(x1, y1, d1, I(x1, y1)),
(x2, y2, d2, I(x2, y2)), …, (xn, yn, dn, I(xn, yn))} with x: column
coordinate, y: row coordinate, d: disparity, I: intensity or color,
we can list a set of disparity plane functions:

�� = ��� + ��� + �
�� = ��� + ��� + �

⋮
�� = ��� + ��� + �

(9)

For side with no straight line, we only use Equation (9) to
compute the disparity plane parameters, and transform the
equation in a matrix form:

� = �� − � (10)

where V = a vector of least square residuals
 X = an 3x1 unknown vector containing {a, b, c}
 A = a nx3 coefficient matrix as follows:

� = �

�� �� 1
�� �� 1

⋮
�� �� 1

�

 L = a nx1 constant vector as follows:

� = (��, ��, … , ��)�

For side containing straight line, we use matched straight line
based constraint in the adjustment. Combining Equation (6) and
(8), we can deduce a disparity function along the straight line:

� = (�� + �)� + (�ℎ + �) = �� + � (11)

where m and t are parameters of the disparity function along
straight line.

Given image coordinates and disparities of endpoints of straight
lines, these parameter m and t can be computed easily. Hence, we
can get two new constraints based on matched straight line:

� = �� + �
� = �ℎ + �

(12)

Add Equation (12) into Equation (9), and then transform them in
matrix form, and we can get new forms of A and L for side
containing straight line:

� =

⎝

⎜
⎛

�� �� 1

⋮
�� �� 1
� 1 0
ℎ 0 1⎠

⎟
⎞

� = (��, ��, … , ��, �, �)�

(13)

After deciding A and L, we need to evaluate the reliability of the
matching result of each pixel such that we can reduce the
contribution of unreliable pixels (e.g. mismatches) in the
adjustment. This helps us to compute an optimal plane. In general,
we give each pixel a weight that measures the reliability of this
pixel. A large weight means high reliability of the pixel which
must contribute more to the error function in the adjustment, and
vice versa. As matched straight lines are always more reliable

than pixels, we use matched straight lines as controls with high
weight (Chen and Shao, 2013).

In this paper, we apply a iterative least square method to solve
the plane parameters, and the computation of weights of each
pixel is different in the first iteration and the later iteration of the
least squares. In the initial iteration, we assume that the major
disparity is reliable, and give high weights to pixels whose
disparities are close to the major disparity. Based on this
assumption, we define the weight of each pixel as the difference
between the original disparity of this pixel and the major disparity
in the initial iteration:

��(�, �) = exp (−|�(�, �) − ��(�)|/��) (14)

where ��(�, �) = an initial weight of pixel (�, �)
 �(�, �) = an original disparity of pixel (�, �)
 ��(�) = a predominant intensity of the side S
 �� = a smoothing factor

�� controls the difference between the two disparities. When the
disparity of pixel is similar to the major disparity, the weight ��
is high, and vice versa. In all our experiments, �� is set as 3.

After then, plane parameters can be computed by least squares
method (least squares method will be described later). In the later
iteration, the weight of each pixel is computed by considering the
difference between the original disparity of pixel and the
disparity computed from plane parameters (Equation (15)).

��(�, �) = ��� (−|��(�, �) − ����(�, �)|/��′) (15)

where �� = a weight in the i th iteration
 �� = the original disparity of pixel
 ���� = refinement results in the i – 1 th iteration
 ��′ = a disparity smoothing factor

��′ is adjusted adaptively according to the least squares result in
the previous iteration. In this paper, we define ��′ as the the 1.5
times of the standard deviation of the least squares results in the
previous iteration.

For straight lines, the weight of them are set as 1, due to their
high reliability. After deciding the weights of all pixels and
straight lines, we combine all weights as a weight matrix in each
iteration.

For the side with no straight line, the weight matrix is a nxn
matrix as follows:

� = �

�(��, ��) 0 … 0

0 �(��, ��) … 0
⋮

0 0 … �(��, ��)

� (16)

where W is a weight matrix
 � is a weight of a pixel in the support window

The choice of w is different during iteration. It is �� (Equation
(14)) in the initial iteration and �� (Equation (15)) in the ith
iteration.

For side containing straight line, the weight of each straight line
is high, and the weight matrix is a (n+2)x(n+2) matrix as follows:

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

81

� =

⎝

⎜
⎛

�(��, ��) 0 … 0

0 �(��, ��) … 0
⋮

0 0 … 1 0
0 0 … 0 1⎠

⎟
⎞

 (17)

In each iteration, we use least squares method to compute the
plane parameters:

� = (����)��(����) (18)

Then, we use the plane parameters to compute weights of each
pixel, and reassign low weights to unreliable pixel in the next
iteration to further refine the parameters. The refinement
proceeds iteratively until the weighted average distance between
original disparity and the disparity computed by plane parameters
is below a predefined threshold:

� ≤ ��

� = � ��(�, �) ∙ |��(�, �) − ��(�, �)|

(�,�)∈�

/� (19)

where � is the average distance
 �� is an original disparity
 �� is refinement results in the ith iteration
 �� is a predefined distance threshold

After deciding plane parameters, we use these plane parameters
to refine the disparities of pixels in the same side. However, these
refined disparities may not consistent with disparities beyond
support window. In order to acquire smooth continuous
refinement results, we develop a weighted fusion between
original disparities and the refined disparities in the support
window with distance from pixel to the straight line as weights,
as shown in Equation (20). The weight of original disparities
become high with the longer distances such that the disparities
are continuous between pixels in/beyond support window.

�′(�, �)
= �′(�, �) ∙ ��(�, �) + (1 − �′(�, �)) ∙ ��(�, �)

��(�, �)
= exp (−|��(�, �) − ��(�, �)|/σ) ∙ ���(�, �, �)

(20)

where �′ = the final disparity
 �� = the disparity computed by plane paraemters
 �′ = the weight for fusion
 � = a smooth factor
 ���(�, �, �) = distance from pixel (x, y) to L

� is used to measure the difference between �� and ��.

3. EXPERIMENTS

We evaluate our proposed method on satellite images and aerial
image, particular on urban scenes with dense urban objects. The
ground truth data are available as LiDAR (Light detection and
Ranging) based DSM. Before applying our proposed method, we
rigorously rectified both image pairs into epipolar images. Then,
we utilized RSP software (Qin et al., 2014) to compute initial
disparity maps from these epipolar images, and applied our
proposed method to obtain sharp disparity map. The originally
matched disparity maps and the sharp disparity maps were then
used to generate digital surface models (DSM) by triangulation.
To accurately evaluate the improvement of our proposed method,
we compare the results with LiDAR derived DSM. Finally, we

compared the initial disparity map derived DSM (iDSM) and the
sharp disparity map derived DSM (sDSM) with the LiDAR
derived DSM (lDSM) to evaluate the improvement of our
proposed method. Both of these two datasets are from ISPRS
Benchmark, including Wordview-1 stereo images of Terressa
with a GSD (ground sampling distance) of 0.5 meters (Figure
6(a)) and a stereo pair of Vaihingen aerial images with an average
of 9 cm GSD (Figure 6(b)). The evaluation of satellite data is
shown in section 3.1, and the evaluation of aerial data is shown
in section 3.2.

(a) Satellite dataset (b) Aerial dataset

Figure 6. The experimental dataset.

3.1 Evaluation on Satellite Data

We used WorldView-1 epipolar images in Terrassa (Figure 6(a))
and the corresponding LiDAR points provided by Singapore-
ETH Centre for Global Environmental Sustainability (SEC) to
test the edge refinement of our proposed method. 21454 straight
lines are matched and 8346 of them are identified as edge lines.
We generated iDSM and lDSM from these data, and then applied
our proposed method to generate sDSM. The ground sampling
distance (GSD) of iDSM and sDSM is 0.5m, and the GSD of
lDSM is 1m. The sDSM and the iDSM were compared with the
ground truth lDSM. To give a quantitative evaluation on our
proposed method, we only considered points from support
window into the accuracy measurement. In this paper, we defined
the accuracy as the average of absolute differences between
elevations in lDSM and iDSM/sDSM of pixels from all identified
building edges. The accuracy of iDSM is only 4.83 m, while the
accuracy of sDSM is improved to be 4.33 m after the refinement.
The accuracy improvement shows that our proposed method can
refine some mismatches around building edges, resulting in
sharper and more accurate DSM.

To make a more comprehensive evaluation on our proposed
method, we also selected several buildings with erroneous edges
in iDSM, and then compared them with our refinement results,
as shown in Figure 7. Figure 7(a-1) and (b-1) are buildings in
images with very clear edges. Figure 7(a-2) and (b-2) are
buildings in lDSM, while the edges are not clear, due to the low
GSD of lDSM. Figure 7(a-3) and (b-3) are buildings in iDSM
with overestimated edges (e.g. red circle in Figure 7(a-3)) and
underestimated edges (e.g. blue circle in Figure 7(b-3)).

(a-1) image

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

82

 (a-2) lDSM (a-3) iDSM (a-4) sDSM

(a) Case 1: overestimated edges

(b-1) image

 (b-2) lDSM (b-3) iDSM (b-4) sDSM

(b) Case 2: underestimated edges

Figure 7. Examples of buildings in different DSMs from
satellite images and corresponding LiDAR points. White lines
in (a-1) and (b-1) are extracted straight lines. Red circle in (a-3)
is over-estimated edge. Blue circle in (b-3) is underestimated
edge.

Building edges in Figure 7(a-2) and (b-2) were mosaic, due to the
low resolution of lDSM or LiDAR points. The edges in Figure
7(a-3) and (b-3) are erroneous with over-estimated or
underestimated cases, which are common in global matching.
Our results in Figure 7(a-4) and (b-4) show that our method is
capable of adjusting both over-estimated edges and
underestimated edges to the straight lines in images, thus
computing sharper edges than iDSM. As the GSD of sDSM is
higher than lDSM, the refined building edges are even sharper
than lDSM.However, not all edges in sDSM are sharp, since not
all the edge lines were extracted and matched, and those edges
without corresponding straight lines cannot be refined by our
proposed method.

3.2 Evaluation on Aerial Data

In this experiment, we applied our method on aerial images in
Vaihingen (Figure 6(b)). The images were captured by an
Intergraph / ZI DMC camera. The corresponding LiDAR points
were captured by a Leica ALS50 system. Both data were
provided by the German Society for Photogrammetry, Remote
Sensing and Geoinformation (DGPF) (http://www.ifp.uni-
stuttgart.de/dgpf/ DKEP-Allg.html). We generated iDSM from
epipolar images and lDSM from corresponding LiDAR points,
and then applied our proposed method to generate sDSM. The
GSD of iDSM and sDSM is 0.087m, and the GSD of lDSM is
0.25m. 12372 straight lines were matched and 5950 straight lines
are identified as edges in our method. The accuracy of iDSM is
only 3.41 m, while the accuracy of sDSM is improved to be 3.17
m after the refinement, on average 0.24-0.5 meters of
improvement. The accuracy improvement shows that our
proposed method is also capable of sharpening building edges in
aerial datasets.

Similar to experiments in section 3.1, we also illustrated visual
comparisons of lDSM, iDSM and sDSM. Cases of different
buildings in lDSM, iDSM and sDSM are shown in Figure 8.

(a-1) Image

(a-3) iDSM(a-2) IDSM (a-4) sDSM
(a) Case 1: different types of edges

(b-1) images

 (b-2) iDSM (b-3) sDSM

(b) Case 2: building ridge

Figure 8. Examples of buildings in different DSMs from aerial
images and corresponding LiDAR points. White lines in (a-1)
and (b-1) are extracted straight lines. Red circle in (a-3) is an
overestimated edge. Blue circle in (a-3) is an underestimated
edge.

Figure 8(a) shows the case of overestimated and underestimated
edges in iDSM from aerial data, where edges in lDSM (Figure
8(a-2)) are irregular due to the low GSD of lDSM. Figure 8(a-3)
shows that the over-estimated edges (red circle) and
underestimated edges (blue circle) are obvious in iDSM
regardless of high GSD of iDSM. The sDSM in Figure 8(a-4) is
sharp, which shows that our proposed method can also be applied
to aerial images and compute sharp edges of buildings. We also
draw the profile maps along the yellow line in (a-2) for each DSM,
as shown in Figure 9.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

83

Figure 9. Profile maps of the three DSMs. The three profiles of
LDSM, iDSM and sDSM are corresponding to the yellow line in
Figure 8(a-2).

The yellow line in 8(a-2) is a gable roof with disparity jumps in
both sides, while the profile of iDSM (green line) is continuous
in the left side of the roof. The profiles of lDSM and sDSM are
similar with disparity jumps in both sides. In general, sDSM is
sharper, due to higher GSD.

Figure 8(b-1) shows that several ridges of gable roofs are
extracted as straight lines. These building ridges are also irregular
in iDSM (Figure 8(b-2)). For gable roofs, the disparities of both
sides of the ridges are not consistent. Hence, our proposed
method also detected these ridges as edges and refined these
ridges to sharper ones. The refinement results of our proposed
method is shown in Figure 8(b-3).

4. CONCLUSION

In this paper, we propose a disparity refinement method for
building edges using robustly matched straight lines, to refine
building edges to sharper ones. We formulate the refinement of
building edges as the non-local plane-based least squares
adjustment constrained by matched straight lines. The main
contributions of our method include: 1) we develop a robust
matching method of straight lines constrained by epipolar
geometry; 2) we fully utilize the robustly matched straight lines
and design a new matched straight line based constraint in the
disparity refinement; and finally 3) we develop an iterative least
squares method with variable weights to solve the disparity
refinement robustly. Experiments on satellite and aerial images
demonstrated that our proposed method is able to compute sharp
building edges as well as ridges. We also observed that there were
still inconsistent disparities around boundaries of support
window after the weighted fusion. In our future work, we plan to
address such case by considering more edge-aware filtering
methods.

ACKNOWLEDGEMENTS

The study is partially supported by the ONR Basic Research
Grant (Award No. N000141712928). We would like to thank the
ISPRS benchmark, German Society for Photogrammetry,
Remote Sensing and Geoinformation (DGPF) and the Singapore-
ETH Centre for Global Environmental Sustainability (SEC) for
providing the WorldView-1 dataset of Terressa and Vaihingen
data set.

REFERENCES

Chen M., Shao Z., 2013. Robust Affine-Invariant Line Matching
for High Resolution Remote Sensing Images. Photogrammetric
Engineering & Remote Sensing, 79(8), pp. 753-760.

Fan, B., Wu, F., Hu, Z., 2010. Line matching leveraged by point
correspondences. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 390–397.

Gupta, R. K., & Cho, S. Y., 2010. A color-based approach for
disparity refinement. In: International Conference on Control
Automation Robotics & Vision, pp.664-667.

Hirschmuller, H., 2008. Stereo processing by semiglobal
matching and mutual information. IEEE Transactions on pattern
analysis and machine intelligence, 30(2), pp. 328-341.

Huang, X., & Zhang, Y., 2016. An O(1) disparity refinement
method for stereo matching. Pattern Recognition, 55, pp. 198-
206.

Klaus, A., Sormann, M., Karner, K., 2006. Segment-based stereo
matching using belief propagation and a self-adapting
dissimilarity measure. In: Proceedings of the Pattern Recognition,
2006. ICPR 2006. 18th International Conference on, pp. 15-18.

Kolmogorov, V., Zabih, R., 2001. Computing visual
correspondence with occlusions using graph cuts. In:
Proceedings of the Computer Vision, 2001. In: ICCV 2001.
Proceedings. Eighth IEEE International Conference on, pp. 508-
515.

Li, H., Zhang, X. G., & Sun, Z., 2015. A line-based adaptive-
weight matching algorithm using loopy belief propagation.
Mathematical Problems in Engineering, 2015(3), pp. 1-13.

Lin, C. H., & Liu, C. W., 2015. Accurate stereo matching
algorithm based on cost aggregation with adaptive support
weight. Journal of Photographic Science, 63(8), pp. 423-432.

Lin, Y., Yang, R., Gabbouj, M., & Neuvo, Y., 2002. Weighted
median filters: a tutorial. IEEE Transactions on Circuits &
Systems II Analog & Digital Signal Processing, 43(3), pp. 157-
192.

Paris, S., 2008. Bilateral filtering : theory and applications.
Foundations & Trends® in Computer Graphics & Vision, 4(1),
pp. 1-74.

Park, S. H., Park, M. G., & Yoon, K. J., 2015. Confidence-based
weighted median filter for effective disparity map refinement. In:
International Conference on Ubiquitous Robots and Ambient
Intelligence, pp. 573-575.

Qin, R., Gruen, A., & Fraser, C., 2014. Quality Assessment of
Image Matchers for DSM Generation - A Comparative Study
Based on UAV Images. Asian Conference on Remote Sensing.

Scharstein, D. and Szeliski, R., 2002. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms.
International Journal of Computer Vision, 47(1/2/3), pp. 7-42.

Von Gioi R. G., Jakubowicz J., Morel J.-M, et al., 2012. LSD: A
fast line segment detector with a false detection control. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
32(4), pp. 722-732.

Wang, Y. C., Tung, C. P., & Chung, P. C., 2013. Efficient
disparity estimation using hierarchical bilateral disparity
structure based graph cut algorithm with a foreground boundary
refinement mechanism. IEEE Transactions on Circuits &
Systems for Video Technology, 23(5), pp. 784-801.

Wu, W., Li, L., & Jin, W., 2016. Disparity refinement based on
segment-tree and fast weighted median filter. In: IEEE
International Conference on Image Processing, pp.3449-3453.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-1-77-2018 | © Authors 2018. CC BY 4.0 License.

84

