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ABSTRACT: 
Stereo dense matching has already been one of the dominant tools in 3D reconstruction of urban regions, due to its low cost and high 
flexibility in generating 3D points. However, the image-derived 3D points are often inaccurate around building edges, which limit its 
use in several vision tasks (e.g. building modelling). To generate 3D point clouds or digital surface models (DSM) with sharp 
boundaries, this paper integrates robustly matched lines for improving dense matching, and proposes a non-local disparity refinement 
of building edges through an iterative least squares plane adjustment approach. In our method, we first extract and match straight lines 
in images using epipolar constraints, then detect building edges from these straight lines by comparing matching results on both sides 
of straight lines, and finally we develop a non-local disparity refinement method through an iterative least squares plane adjustment 
constrained by matched straight lines to yield sharper and more accurate edges. Experiments conducted on both satellite and aerial data 
demonstrate that our proposed method is able to generate more accurate DSM with sharper object boundaries. 
 
  
 

1. INTRODUCTION 

The 3D reconstruction of urban regions is increasingly being 
used in several smart applications such as virtual reality, 3D 
modeling and navigation etc. There have been various 
technologies about the 3D reconstruction including light 
detection and ranging (LiDAR), stereo dense matching, 
structured light, manual reconstruction, etc. Compared with other 
technologies, stereo dense matching, which refers to the process 
of searching for pixelwise correspondences between oriented 
images, has a great potential in producing large-scale, dense 3D 
measurements of urban objects (e.g. building, road, and 
vegetation) with much lower cost. Current stereo dense matching 
methods focus on formulating the dense matching problems as 
the optimization of a global energy function (Hirschmuller, 2008; 
Klaus, 2006; Kolmogorov and Zabih, 2001; Scharstein and 
Szeliski, 2002), which is capable of obtaining robust matching 
results. However, such global optimization may produce a large 
amount of mismatches along building edges, appearing as 
irregular edges in matching results.  
 
Normally building edges in images appear to have large intensity 
changes. To improve the building edges in matching results, 
several researches adjust edges in matching results to edges in 
images (also called edge refinement). Some of them refine per 
pixel in edges, while others refine the whole edge non-locally, 
therefore the edge refinement methods can be categorized into 1) 
local edge refinement and 2) non-local edge refinement. Local 
edge refinement methods (Gupta and Cho, 2010; Huang and 
Zhang, 2016; Lin and Liu, 2015; Park et al., 2015; Wang et al., 
2013; Wu et al., 2016) adjust edge pixels in matching results to 
edge pixels in images. Once all the pixels are adjusted, all the 
edges in matching results are refined. These methods normally 
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give a support window centered at pixels around edges, and then 
fully utilize the matching results of neighbor intensity-similar 
pixels to refine the matching result of central pixel with the basic 
assumption that pixels with similar intensities in the support 
window share the same matching results. Considering 
mismatches in the support window, such refinement is often 
proceeded by averaging the matching results in the support 
window (also called bilateral filter (Paris et al., 2008)) or picking 
median of the matching results weighting by intensity differences 
between the central pixel and neighbor pixels (also called 
weighted median filter (Lin et al., 2002)). Local refinement 
methods are simple and efficient in edge refinement, while they 
fail in the case that a plenty of mismatches exist in the supporting 
window. Non-local edge refinement methods (Hirschmuller, 
2008; Li et al., 2015) refine the entire edge instead of single 
pixels. They firstly segment images and formulate the edges as 
the boundaries of each image segments, and then use plane 
function to refine the matching results in each image segments 
such that the matching results of these boundaries are also refined. 
Non-local edge refinement methods are superior in obtaining 
robust, sharp edges even though plenty of mismatches exist 
locally, while they may reduce matching accuracies in the case 
that the image segment does not satisfy the plane function (e.g. 
curved regions). In addition, current edge refinement methods 
(including local and non-local methods) do not consider 
matching results of edges, while the matching of edges is 
normally more robust than pixels. Hence, the edge refinement 
results should be better if such matched edges are utilized in the 
refinement.  
 
To obtain sharp 3D building edges in the resulting DSM, this 
paper presumes the availability of both oriented stereo images 
and stereo dense matching results, and develops a new edge 
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refinement method that is able to detect and match straight lines 
in images as potential building edges, and fully utilize these 
matched straight lines to improve the refinement of building 
edges through a plane-based adjustment method. In general, our 
method formulates the refinement of building edges as the non-
local plane-based adjustment with the basic assumption that 
pixels close to edges with similar intensities/colour share similar 
matching results, where matched straight lines are used to 
constraint the adjustment, termed as refinement of building edges 
using matched straight lines (RBESL). Our method is capable of 
obtaining sharp building edges in stereo matching.  
 
The rest of the paper is organized as follows: Section 2 describes 
the methodology of the proposed method in detail; Section 3 
shows the experimental results; and Section 4 concludes the 
manuscript. 
 

2. METHODOLOGY 

2.1 Overview 

Given stereo images with accurate orientations, we firstly rectify 
them into epipolar images such that correspondences are in the 
same row between the two images, thereby the corresponding 
pixels can be represented by the column coordinate differences, 
termed as disparity or parallax. For a correspondence with 
(��, ��) and (��, ��) being the left and right pixel coordinate in 
epipolar images, the disparity between them is shown in Equation 
(1). Most stereo dense matching methods compute disparities for 
all pixels and produce a disparity map as matching result. In all 
our experiments, we used semi-global matching (SGM) 
(Hirschmuller, 2008) to produce an initial disparity map.  
 

� = �� − �� (1) 
 
where     d = disparity of a pixel 
 
Given epipolar stereo images and the corresponding initial 
disparity map, our proposed method aims to refine disparity map 
with sharp building edges. The workflow of our proposed method 
includes: 1) Robust matching of straight lines: obtain matches 
of straight lines in the basic image (e.g. left image in this paper) 
by searching candidate matches of the straight lines using 
epipolar constraints, then using an intensity gradient orientation 
based operator to describe features of the straight lines and the 
candidate matches, and finally deciding the match with the most 
similar features; 2) Non-local plane-based adjustment for 
disparity refinement: adjust edges in disparity map to align 
straight lines in epipolar images using a plane-based adjustment 
constrained by matched straight lines. The workflow is shown in 
Figure 1.  
 

 
 

Figure 1. Workflow of proposed method 
 

2.2 Robust Matching of Straight Lines 

Matching of straight lines are normally more robust than 
matching results of corresponding points. Hence, the object edge 
in the DSM should be improved if such matched straight lines are 
utilized. However, due to inaccurate locations of line endpoints, 
fragmentation of line, etc. (Fan et al., 2010; Chen and Shao, 
2013), straight line matching is still a challenge task. In this paper, 
we consider an epipolar constraint in the straight line matching 
and propose a robust straight line matching method for epipolar 
images. The workflow of our method is as follows. 
 
Firstly, straight lines are detected from the input epipolar images 
by using the state-of-the-art line segment detector (LSD) (Von 
Gioi et al., 2012).  
 
Secondly, the straight lines in the left image and the potential 
corresponding lines in the right image (also called candidate 
matches) are extracted based on epipolar constraint.  
For example in Figure 2, p1 and p2 are two endpoints of the 
straight line Li in the basic image (e.g. left image in this paper). 
ep1 and ep2 are the two corresponding epipolar lines of p1 and p2. 
The two points p1' and p2' corresponding to p1 and p2 can be 
found according to the disparity of p1 and p2. Two local regions 
R1 and R2 surrounding p1' and p2' are set to overcome the errors 
from the epipolar image and the initial disparity map. There are 
two thresholds te and td indicating the epipolar and disparity 
errors respectively. The straight lines in right image are potential 
correspondences of the straight line Li in left images if and only 
if these straight lines in right images going through the two local 
regions R1 and R2 (not limited by the two endpoints of straight 
lines), and at least one endpoint is located in R1 or R2. Yellow 
lines in Figure 2 show the scope of potential correspondences of 
Li.  
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Figure 2. Candidate matches computation. 
 
Then, line descriptors are constructed for each pair of candidate 
matches as follows: 
 
1) Given a straight line Li in the left image, the endpoints of 
potential corresponding line may not the correspondences of 
endpoints of Li, as shown in Figure 3. Li' is the potential 
corresponding line of Li. To solve the problem of line 
fragmentation, Li' is aligned horizontally to Li by computing two 
intersections (denoted as q1, q2) between Li' and ep1, ep2, and the 
segment q1q2 is used for matching computation.  
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Figure 3. Line descriptor construction. The blue line is the 
straight line in the left image. The green line is one of potential 
corresponding lines in right image.  
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2) Rectangular support windows centred at Li and Li' are built, 
and a feature descriptor is designed to describe the features of 
these support windows. We firstly divide the support window 
into four sub-regions on each side of straight lines, as shown in 
Figure 3. In each sub-regions, a gradient orientation (8-
orientation) histogram is computed for describing the features in 
such sub-region, where the direction of straight line is regarded 
as the orientation of each sub-region such that the orientation 
histogram is robust to image rotation. Considering discontinuities 
in disparity edges, we describe the features of each side (left side 
and right side) respectively by combining the 8-orientation 
histograms of sub-regions on the same side to form 32-
dimensional feature vectors. Finally, the 32-dimensional feature 
vector are combined to form a 64-dimensional descriptor to 
describe the features of the support window, as follows:  
 

���� = �
�����

������
� (2) 

 
where     �����, ������ = feature vectors in the support window 

Desc is a 64-dimensional descriptor 
 
3) Finally, we compare the features of each candidate match and 
select the candidate match with most similar features as the final 
straight line matching result. The similarity of the features is 
measured by nearest neighbor distance ratio (NDSR) strategy, 
and the candidate match with the shortest distance is adopted, as 
shown in Equation (3).  
 

����������
= max {||����� − ��

����||, ||������ − �′�����||} 
(3) 

 
where    �′����, �′����� = feature vectors in right images 

 
2.3 Non-local Plane-based Adjustment for Disparity 
Refinement 

Building edges often appear as great disparity changes in 
disparity map as well as great intensity changes in images. Hence, 
we define matched straight lines in section 2.2 as potential 
building edges. However, due to textures in images, not all 
straight lines are building edges. Hence, we firstly detect the 
edges from these straight lines by comparing disparities on both 
sides of straight lines. As the disparities of pixels around straight 
lines may not be accurate, we need to define rectangular region 
centred at each straights line as support window to guarantee 
enough accurate disparities involved in the disparity comparison. 
Only straight lines with great disparity changes (normally larger 
than 1 pixel) are defined as building edges. Then, we compute 
disparity planes for both sides of support window by plane-based 
adjustment, where matched straight line is used as constraints in 
the adjustment of the side that contains it, and finally use the 
disparity plane to refine disparities in both sides of the support 
window such that the building edges in disparity map are sharp. 
In general, we organize this sub-section by firstly introducing the 
support window of straight lines (section 2.3.1), then the edge 
detection (section 2.3.2) and finally the plane-based adjustment 
optionally constrained by matched straight lines (section 2.3.3). 
 
2.3.1 Support Window of Straight Lines 
In order to guarantee enough accurate disparities used in the 
disparity refinement, we define a support window centered at 
straight line in the basic image (e.g. left image) with its length 
parallel to the straight line and its width perpendicular to straight 
line, as shown in Figure 4. The four corners (c1, c2, c3 and c4) of 

the support window are computed from the two endpoints (e, e') 
of the straight line and the width of the support window, as shown 
in Equation (4).  
 

 
 
Figure 4. Support window definition. White straight line is an 
edge of a roof. Green rectangle is a support window centered at 
the straight line. S1, S2 are sets of pixels in both sides of the 
support window. (e, e') are endpoints of the straight line. c1, c2, 
c3 and c4 are four corners of the support window. 
 

�� = �� − � ∙ �� �� = �� − � ∙ �� 
�� = �� + � ∙ �� �� = �� + � ∙ �� 

�� = ��′ − � ∙ �� �� = ��′ − � ∙ �� 
�� = ��′ + � ∙ �� �� = ��′ + � ∙ �� 

(4) 

 
where    (xi, yi) = image coordinates of the four corners ci  

(ex, ey), (ex', ey') = image coordinates e and e' 
r = half of the width of support window 
(nx, ny) = an unit vector perpendicular to the straight line 

 
Given a support window, we record pixels and their attributes 
(intensities or color, image coordinates and disparities) in the 
both sides (e.g. S1 and S2 in Figure 4) respectively for disparity 
refinement. The choice of the width of the support window is 
important for the final disparity enhancement result. Support 
window with a too small width (< 10 pixels) may not include 
sufficient number of pixels with accurate disparities, leading to 
failure of disparity refinement, while support window with a too 
large width (> 40 pixels) may not satisfy the plane assumption of 
the local surface. In our experiments, we chose width = 20 pixels 
as a sufficiently large number to recover erroneous edges, while 
not too large to violet the local plane assumption. 
 
2.3.2 Edge Detection 
Building edges in disparity map often appear as straight lines in 
images, while not all straight lines are building edges. Some of 
the straight lines are only textures in a plane, where global stereo 
dense matching methods (e.g. SGM (Hirschmuller, 2008), graph 
cuts (Kolmogorov and Zabih, 2001)) normally handle such case 
well, while utilizing such edges is necessary and may break the 
smoothness on the plane. Therefore, we tend to filter out such 
lines by detecting geometric edges through comparing disparities 
on both sides of support window. Straight lines are located by 
identifying those with obvious disparity changes on both sides (> 
1 pixel). However, due to potential mismatches in the support 
window, the disparity comparison result may not be accurate. 
Based on the fact that the intensities of mismatches are often 
highly different from the one of major pixels in the support 
window (intensities difference larger than 10), we reduce the 
impact of these mismatches by firstly computing a major 
intensity (the intensity of major pixels) and then only considering 
pixels with intensities similar to the major intensity (≤10) in the 
edge detection.  
 
In this paper, the major intensity is computed by selecting the 
median value of intensities of all pixels. However, it is possible 
that the intensities of edge pixels are not similar to either side of 
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the support window, which may impact on the median values, as 
shown in Figure 5. Figure 5(a) is a satellite image of a roof. 
(enlarged region of the red shown in Figure 5(b)). We record the 
intensities of pixels along the green arrow in Figure 5(b) to check 
the intensity changes (Figure 5(c)). The intensity of upper region 
in (b) is 70, and the intensity of lower region is 7. However, the 
transitional intensities between the two dashed lines in Figure 5(c) 
are similar to neither 70 nor 7. These transitional intensities are 
actually the noises in the mid-value selection. Hence, we remove 
these transitional intensities before the selection. In all our 
experiments, we only remove intensities of pixels whose distance 
to the straight line is less than 2 pixels. 
 

r

Intensity

pixel

(a) (b) 

(c) 

Intensity

 
 
Figure 5. Intensity changes in edges. In (b), the white line is the 
straight line, and the green arrow is perpendicular to the straight 
line. In (c), the green line represent the intensities of pixels along 
the green arrow in (b). 
 
Then, on each side, we only select disparities of pixels with 
intensities similar to the major intensity for disparity comparison, 
while it is possible that the pixels with similar intensities are still 
noises. In this paper, we combine the disparity selection and the 
noise elimination together, and formulate the combination as a 
median filter weighted by intensities of pixels in each side. The 
basic idea of the weighted median filter is to record more 
disparities with intensities similar to the major intensity (higher 
weights) and less disparities with intensities less similar to major 
intensity (lower weights), and then find the median value from 
all recorded disparities such that those noises can be removed, as 
shown in Equation (5). In this paper, we use Gaussian kernel to 
define the weight, which is inversely proportional to the absolute 
difference between the intensity of pixels and the major intensity 
of the side. 
 

��(�) = med
�∈�

{�(�)|[� ∙ ���(�), �(�)�]} (5) 

 
where     S = a set of pixels in the same side of support window 

��(�) = the mid-value of disparities in S  
Med = median filter operation 
p = a pixel in S 
d(p) = the disparity of p 
�(�) = the intensity of p  
�(�) = the mid-value of intensities in S  
�(�(�), �(�)) = the weight of p  
M = a predefined coefficient 
[� ∙ �] = the number of recorded �(�) 
[ ] = Rounding operator 

 
In this paper, ��(�) is termed as major disparity, and �(�) is 
termed as major intensity. After weighted median filter in 
Equation (5), the major disparities in both sides of support 

window are then compared. Only the straight line with obvious 
disparity changes (> 1 pixel) are selected as edges. 
 
2.3.3 Plane-based Adjustment Optionally Constrained by 
Matched Straight Lines 
 
We use plane functions (Equation (6)) to adjust the disparities in 
both sides of support window such that the selected edges are 
sharp. 
 

� = �� + �� + � (6) 
 
where  d = disparity of a pixel 
  (x, y) is the image coordinate of a pixel 
 a, b, c are parameters of plane function. 
 
Our task is to accurately compute the plane parameters by 
leveraging the inconsistent disparities (e.g. mismatches).  
 
To compute the optimal plane parameters, we applied a weighted 
least squares method. For both sides of a building edge, normally 
only one side contains the edge. Hence, we deal with the two 
sides separately. For side with no edge, we only apply a plane-
based least squares method to refine it, while for side that 
contains the edge, we additionally introduce a matched straight 
line based constraint in the least squares adjustment to improve 
the refinement result. Hence, we firstly compute the disparity of 
the straight line by averaging the disparities of the two endpoints 
and then judge which side contains the matched straight line by 
comparing the disparity of matched straight line and the major 
disparity of each side, as follows: 
 

� �
∈ � �� |��(�) − �(�)| ≤ �
∉ �              ��ℎ������         

 (7) 

 
where  L = the straight line in the basic image (e.g. left image)  
 d(L) = disparity of L  
 S = a side of support window 
  � = a threshold  
 
�  is used to measure the difference between the disparity of 
straight line and the major disparity of S. The straight line L 
belongs to side S as long as the disparity difference is smaller 
than �. In all our experiment, � is set as 3 pixels. 
 
For computation purposes in the adjustment, straight line L is 
formulated as a linear equation (Equation (8)). The 
corresponding line in the other image is defined as L'. It is worth 
noting that the endpoints of horizontal straight lines (parallel to 
image row directions) may not be correspondences. The 
disparities of such straight lines are unreliable. Hence, we do not 
consider such straight lines as the additional constraint in 
adjustment, and formulate the non- horizontal straight lines as 
linear equations with row direction as independent variable and 
column direction as dependent variable: 
 

� = �� + ℎ (8) 
 
where  x = image column coordinate 
 y = image row coordinate 
 k, h = parameters of the linear equation.  
 
The linear parameters k and h can be computed easily by the two 
endpoints of the straight line. After deciding which side contains 
the straight line, we introduce an iterative least square method 
with variable weights to compute optimal plane of each side. We 
utilize a matched straight line based constraint in the adjustment 
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of the side containing the straight line, and do not use such 
constraint for the side with no straight line. Given the set of n 
pixels in one side of support window S = {(x1, y1, d1, I(x1, y1)), 
(x2, y2, d2, I(x2, y2)), …, (xn, yn, dn, I(xn, yn))} with x: column 
coordinate, y: row coordinate, d: disparity, I: intensity or color, 
we can list a set of disparity plane functions: 
 

�� = ��� + ��� + � 
�� = ��� + ��� + � 

⋮ 
�� = ��� + ��� + � 

(9) 

 
For side with no straight line, we only use Equation (9) to 
compute the disparity plane parameters, and transform the 
equation in a matrix form: 
 

� = �� − � (10) 
 
where  V = a  vector of least square residuals 
 X = an 3x1 unknown vector containing {a, b, c} 
 A = a nx3 coefficient matrix as follows: 
 

� = �

��   ��   1
��   ��   1

⋮
��   ��   1

� 

 
 L = a nx1 constant vector as follows: 
 

� = (��, ��, … , ��)� 
 
For side containing straight line, we use matched straight line 
based constraint in the adjustment. Combining Equation (6) and 
(8), we can deduce a disparity function along the straight line: 
 

� = (�� + �)� + (�ℎ + �) = �� + � (11) 
 
where  m and t are parameters of the disparity function along 
straight line. 
 
Given image coordinates and disparities of endpoints of straight 
lines, these parameter m and t can be computed easily. Hence, we 
can get two new constraints based on matched straight line: 
 

� = �� + � 
� = �ℎ + � 

(12) 

 
Add Equation (12) into Equation (9), and then transform them in 
matrix form, and we can get new forms of A and L for side 
containing straight line: 
 

� =

⎝

⎜
⎛

�� �� 1

⋮
�� �� 1
� 1 0
ℎ 0 1⎠

⎟
⎞

 

� = (��, ��, … , ��, �, �)� 

(13) 

 
After deciding A and L, we need to evaluate the reliability of the 
matching result of each pixel such that we can reduce the 
contribution of unreliable pixels (e.g. mismatches) in the 
adjustment. This helps us to compute an optimal plane. In general, 
we give each pixel a weight that measures the reliability of this 
pixel.  A large weight means high reliability of the pixel which 
must contribute more to the error function in the adjustment, and 
vice versa. As matched straight lines are always more reliable 

than pixels, we use matched straight lines as controls with high 
weight (Chen and Shao, 2013).  
 
In this paper, we apply a iterative least square method to solve 
the plane parameters, and the computation of weights of each 
pixel is different in the first iteration and the later iteration of the 
least squares. In the initial iteration, we assume that the major 
disparity is reliable, and give high weights to pixels whose 
disparities are close to the major disparity. Based on this 
assumption, we define the weight of each pixel as the difference 
between the original disparity of this pixel and the major disparity 
in the initial iteration: 
 

��(�, �) = exp (−|�(�, �) − ��(�)|/��) (14) 
 
where  ��(�, �) = an initial weight of pixel (�, �) 
  �(�, �) = an original disparity of pixel (�, �) 
  ��(�) = a predominant intensity of the side S 
  �� = a smoothing factor  
 
�� controls the difference between the two disparities. When the 
disparity of pixel is similar to the major disparity, the weight �� 
is high, and vice versa. In all our experiments, �� is set as 3. 
 
After then, plane parameters can be computed by least squares 
method (least squares method will be described later). In the later 
iteration, the weight of each pixel is computed by considering the 
difference between the original disparity of pixel and the 
disparity computed from plane parameters (Equation (15)).  
 

��(�, �) = ��� (−|��(�, �) − ����(�, �)|/��′) (15) 
 
where  �� = a weight in the i th iteration 
  �� = the original disparity of pixel 
  ���� = refinement results in the i – 1 th iteration 
  ��′ = a disparity smoothing factor  
 
��′ is adjusted adaptively according to the least squares result in 
the previous iteration. In this paper, we define ��′ as the the 1.5 
times of the standard deviation of the least squares results in the 
previous iteration.  
 
For straight lines, the weight of them are set as 1, due to their 
high reliability. After deciding the weights of all pixels and 
straight lines, we combine all weights as a weight matrix in each 
iteration.  
 
For the side with no straight line, the weight matrix is a nxn 
matrix as follows: 
 

� = �

�(��, ��)          0        …      0

0                 �(��, ��) …      0
⋮

0                 0 …      �(��, ��)

� (16) 

 
where  W is a weight matrix 
  � is a weight of a pixel in the support window 
 
The choice of w is different during iteration. It is �� (Equation 
(14)) in the initial iteration and ��  (Equation (15)) in the ith 
iteration. 
 
For side containing straight line, the weight of each straight line 
is high, and the weight matrix is a (n+2)x(n+2) matrix as follows: 
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� =

⎝

⎜
⎛

�(��, ��)          0        …      0

0                 �(��, ��) …      0
⋮

0                 0 …                 1  0
0                 0 …                 0  1⎠

⎟
⎞

 (17) 

 
In each iteration, we use least squares method to compute the 
plane parameters: 
 

� = (����)��(����) (18) 
 
Then, we use the plane parameters to compute weights of each 
pixel, and reassign low weights to unreliable pixel in the next 
iteration to further refine the parameters. The refinement 
proceeds iteratively until the weighted average distance between 
original disparity and the disparity computed by plane parameters 
is below a predefined threshold: 
 

� ≤ �� 

� = � ��(�, �) ∙ |��(�, �) − ��(�, �)|

(�,�)∈�

/� (19) 

 

where  � is the average distance 
  �� is an original disparity 
  �� is refinement results in the ith iteration 
  �� is a predefined distance threshold 
 
After deciding plane parameters, we use these plane parameters 
to refine the disparities of pixels in the same side. However, these 
refined disparities may not consistent with disparities beyond 
support window. In order to acquire smooth continuous 
refinement results, we develop a weighted fusion between 
original disparities and the refined disparities in the support 
window with distance from pixel to the straight line as weights, 
as shown in Equation (20). The weight of original disparities 
become high with the longer distances such that the disparities 
are continuous between pixels in/beyond support window.  
 

�′(�, �)
= �′(�, �) ∙ ��(�, �) + (1 − �′(�, �)) ∙ ��(�, �) 

 
��(�, �)
= exp (−|��(�, �) − ��(�, �)|/σ) ∙ ���(�, �, �) 

(20) 

 
where  �′ = the final disparity 
  �� = the disparity computed by plane paraemters 
  �′ = the weight for fusion 
  � = a smooth factor  
  ���(�, �, �) = distance from pixel (x, y) to L 
 
� is used to measure the difference between �� and ��. 
 

3. EXPERIMENTS 

We evaluate our proposed method on satellite images and aerial 
image, particular on urban scenes with dense urban objects. The 
ground truth data are available as LiDAR (Light detection and 
Ranging) based DSM. Before applying our proposed method, we 
rigorously rectified both image pairs into epipolar images. Then, 
we utilized RSP software (Qin et al., 2014) to compute initial 
disparity maps from these epipolar images, and applied our 
proposed method to obtain sharp disparity map. The originally 
matched disparity maps and the sharp disparity maps were then 
used to generate digital surface models (DSM) by triangulation. 
To accurately evaluate the improvement of our proposed method, 
we compare the results with LiDAR derived DSM. Finally, we 

compared the initial disparity map derived DSM (iDSM) and the 
sharp disparity map derived DSM (sDSM) with the LiDAR 
derived DSM (lDSM) to evaluate the improvement of our 
proposed method. Both of these two datasets are from ISPRS 
Benchmark, including Wordview-1 stereo images of Terressa 
with a GSD (ground sampling distance) of 0.5 meters (Figure 
6(a)) and a stereo pair of Vaihingen aerial images with an average 
of 9 cm GSD (Figure 6(b)). The evaluation of satellite data is 
shown in section 3.1, and the evaluation of aerial data is shown 
in section 3.2. 
 

            
(a) Satellite dataset                (b) Aerial dataset  

Figure 6. The experimental dataset.  
 
3.1 Evaluation on Satellite Data 

We used WorldView-1 epipolar images in Terrassa (Figure 6(a)) 
and the corresponding LiDAR points provided by Singapore-
ETH Centre for Global Environmental Sustainability (SEC) to 
test the edge refinement of our proposed method. 21454 straight 
lines are matched and 8346 of them are identified as edge lines. 
We generated iDSM and lDSM from these data, and then applied 
our proposed method to generate sDSM. The ground sampling 
distance (GSD) of iDSM and sDSM is 0.5m, and the GSD of 
lDSM is 1m. The sDSM and the iDSM were compared with the 
ground truth lDSM. To give a quantitative evaluation on our 
proposed method, we only considered points from support 
window into the accuracy measurement. In this paper, we defined 
the accuracy as the average of absolute differences between 
elevations in lDSM and iDSM/sDSM of pixels from all identified 
building edges. The accuracy of iDSM is only 4.83 m, while the 
accuracy of sDSM is improved to be 4.33 m after the refinement. 
The accuracy improvement shows that our proposed method can 
refine some mismatches around building edges, resulting in 
sharper and more accurate DSM.  
 
To make a more comprehensive evaluation on our proposed 
method, we also selected several buildings with erroneous edges 
in iDSM, and then compared them with our refinement results, 
as shown in Figure 7. Figure 7(a-1) and (b-1) are buildings in 
images with very clear edges. Figure 7(a-2) and (b-2) are 
buildings in lDSM, while the edges are not clear, due to the low 
GSD of lDSM. Figure 7(a-3) and (b-3) are buildings in iDSM 
with overestimated edges (e.g. red circle in Figure 7(a-3)) and 
underestimated edges (e.g. blue circle in Figure 7(b-3)).  
 

 
(a-1) image 
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        (a-2) lDSM               (a-3) iDSM             (a-4) sDSM 

(a) Case 1: overestimated edges 
 

 
(b-1) image 

   
      (b-2) lDSM                  (b-3) iDSM              (b-4) sDSM 

(b) Case 2: underestimated edges 
 

Figure 7. Examples of buildings in different DSMs from 
satellite images and corresponding LiDAR points. White lines 
in (a-1) and (b-1) are extracted straight lines. Red circle in (a-3) 
is over-estimated edge. Blue circle in (b-3) is underestimated 
edge.  
 
Building edges in Figure 7(a-2) and (b-2) were mosaic, due to the 
low resolution of lDSM or LiDAR points. The edges in Figure 
7(a-3) and (b-3) are erroneous with over-estimated or 
underestimated cases, which are common in global matching. 
Our results in Figure 7(a-4) and (b-4) show that our method is 
capable of adjusting both over-estimated edges and 
underestimated edges to the straight lines in images, thus 
computing sharper edges than iDSM. As the GSD of sDSM is 
higher than lDSM, the refined building edges are even sharper 
than lDSM.However, not all edges in sDSM are sharp, since not 
all the edge lines were extracted and matched, and those edges 
without corresponding straight lines cannot be refined by our 
proposed method.  
 
3.2 Evaluation on Aerial Data 

In this experiment, we applied our method on aerial images in 
Vaihingen (Figure 6(b)). The images were captured by an 
Intergraph / ZI DMC camera. The corresponding LiDAR points 
were captured by a Leica ALS50 system. Both data were 
provided by the German Society for Photogrammetry, Remote 
Sensing and Geoinformation (DGPF) (http://www.ifp.uni-
stuttgart.de/dgpf/ DKEP-Allg.html). We generated iDSM from 
epipolar images and lDSM from corresponding LiDAR points, 
and then applied our proposed method to generate sDSM. The 
GSD of iDSM and sDSM is 0.087m, and the GSD of lDSM is 
0.25m. 12372 straight lines were matched and 5950 straight lines 
are identified as edges in our method. The accuracy of iDSM is 
only 3.41 m, while the accuracy of sDSM is improved to be 3.17 
m after the refinement, on average 0.24-0.5 meters of 
improvement. The accuracy improvement shows that our 
proposed method is also capable of sharpening building edges in 
aerial datasets.  

 
Similar to experiments in section 3.1, we also illustrated visual 
comparisons of lDSM, iDSM and sDSM. Cases of different 
buildings in lDSM, iDSM and sDSM are shown in Figure 8.  

 

(a-1) Image

(a-3) iDSM(a-2) IDSM (a-4) sDSM  
(a) Case 1: different types of edges 

 

 
(b-1) images 

    
                 (b-2) iDSM                           (b-3) sDSM 

(b) Case 2: building ridge 
 

Figure 8. Examples of buildings in different DSMs from aerial 
images and corresponding LiDAR points. White lines in (a-1) 
and (b-1) are extracted straight lines. Red circle in (a-3) is an 
overestimated edge. Blue circle in (a-3) is an underestimated 
edge. 
 
Figure 8(a) shows the case of overestimated and underestimated 
edges in iDSM from aerial data, where edges in lDSM (Figure 
8(a-2)) are irregular due to the low GSD of lDSM. Figure 8(a-3) 
shows that the over-estimated edges (red circle) and 
underestimated edges (blue circle) are obvious in iDSM 
regardless of high GSD of iDSM. The sDSM in Figure 8(a-4) is 
sharp, which shows that our proposed method can also be applied 
to aerial images and compute sharp edges of buildings. We also 
draw the profile maps along the yellow line in (a-2) for each DSM, 
as shown in Figure 9. 
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Figure 9. Profile maps of the three DSMs. The three profiles of 
LDSM, iDSM and sDSM are corresponding to the yellow line in 
Figure 8(a-2).  
 
The yellow line in 8(a-2) is a gable roof with disparity jumps in 
both sides, while the profile of iDSM (green line) is continuous 
in the left side of the roof. The profiles of lDSM and sDSM are 
similar with disparity jumps in both sides. In general, sDSM is 
sharper, due to higher GSD. 
 
Figure 8(b-1) shows that several ridges of gable roofs are 
extracted as straight lines. These building ridges are also irregular 
in iDSM (Figure 8(b-2)). For gable roofs, the disparities of both 
sides of the ridges are not consistent. Hence, our proposed 
method also detected these ridges as edges and refined these 
ridges to sharper ones. The refinement results of our proposed 
method is shown in Figure 8(b-3).  
 

4. CONCLUSION 

In this paper, we propose a disparity refinement method for 
building edges using robustly matched straight lines, to refine 
building edges to sharper ones. We formulate the refinement of 
building edges as the non-local plane-based least squares 
adjustment constrained by matched straight lines. The main 
contributions of our method include: 1) we develop a robust 
matching method of straight lines constrained by epipolar 
geometry; 2) we fully utilize the robustly matched straight lines 
and design a new matched straight line based constraint in the 
disparity refinement; and finally 3) we develop an iterative least 
squares method with variable weights to solve the disparity 
refinement robustly. Experiments on satellite and aerial images 
demonstrated that our proposed method is able to compute sharp 
building edges as well as ridges. We also observed that there were 
still inconsistent disparities around boundaries of support 
window after the weighted fusion. In our future work, we plan to 
address such case by considering more edge-aware filtering 
methods.  
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