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ABSTRACT:

In the last decade, we have observed an increasing demand for indoor scene modeling in various applications, such as mobility inside
buildings, emergency and rescue operations, and maintenance. Automatically distinguishing between structural elements of buildings,
such as walls, ceilings, floors, windows, doors etc., and typical objects in buildings, such as chairs, tables and shelves, is particularly
important for many reasons, such as 3D building modeling or navigation. This information can be generally retrieved through semantic
labeling. In the past few years, convolutional neural networks (CNN) have become the preferred method for semantic labeling. Further-
more, there is ongoing research on fusing RGB and depth images in CNN frameworks. For pixel-level labeling, encoder-decoder CNN
frameworks have been shown to be the most effective. In this study, we adopt an encoder-decoder CNN architecture to label structural
elements in buildings and investigate the influence of using depth information on the detection of typical objects in buildings. For this
purpose, we have introduced an approach to combine depth map with RGB images by changing the color space of the original image to
HSV and then substitute the V channel with the depth information (D) and use it utilize it in the CNN architecture. As further variation
of this approach, we also transform back the HSD images to RGB color space and use them within the CNN. This approach allows for
using a CNN, designed for three-channel image input, and directly comparing our results with RGB-based labeling within the same
network. We perform our tests using the Stanford 2D-3D-Semantics Dataset (2D-3D-S), a widely used indoor dataset. Furthermore,
we compare our approach with results when using four-channel input created by stacking RGB and depth (RGBD). Our investigation
shows that fusing RGB and depth improves results on semantic labeling; particularly, on structural elements of buildings. On the 2D-
3D-S dataset, we achieve up to 92.1% global accuracy, compared to 90.9% using RGB only and 93.6% using RGBD. Moreover, the
scores of Intersection over Union metric have improved using depth, which shows that it gives better labeling results at the boundaries.

1. INTRODUCTION

Urbanization and population growth in the cities has increased
interest in generating detailed hierarchical models of urban areas,
including objects, such as buildings, roads, ponds, etc., described
by their geometry and semantics. Among these objects, buildings
have an important role as people perform most of their activities
indoors. This requires systems that provide improved support for
applications including but not limited to mobility inside build-
ings, emergency and rescue operations and maintenance tasks.
The realization of such systems depends on the structural ele-
ments defined within the level of detail (LoD) in building mod-
els, e.g. doors, windows, walls, etc., provided in the Geographi-
cal Information Systems (GIS) and Building Information Model
(BIM).

In literature, there are many ongoing research efforts on model-
ing building exterior (Becker, 2009, Tuttas and Stilla, 2011, Rip-
perda, 2008, Förstner and Korč, 2009), and interior (Del Pero
et al., 2012, Becker et al., 2015, Chen et al., 2015, Liu et al.,
2015, Armeni et al., 2016) using a number of remote sensing
sensors, such as cameras, LiDAR and RADAR. These sensors
provide high volume data which requires automation of interpre-
tation. Particularly, automatically distinguishing between struc-
tural elements of buildings, such as walls, ceilings, floors, win-
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dows, doors etc., and movable objects, such as chairs, tables and
shelves, is crucial for creating building models. This information
can be retrieved through a semantic labeling process. In the past
few years, convolutional neural networks (CNN) have become
the state-of-the-art approach for semantic labeling of image data
due their ability to learn and extract features at high performance.
For pixel-wise labeling, which is of particular interest for 3D re-
construction purposes, the encoder-decoder architecture (Badri-
narayanan et al., 2017) has been shown to be very effective. This
CNN architecture has been widely investigated for RGB data.
In order to incorporate depth in such networks, typically depth
channel (D) is stacked with RGB generating a four-channel in-
put, which leads to high number parameters to be estimated in
the training. In this paper, we investigate an alternative approach
to fuse depth with the RGB image through color space transfor-
mations and use this modified three-channel input for labeling.

The paper is organized as follows. Section 1.1 briefly presents
the concept of convolutional neural networks for image segmen-
tation and labeling as well as the most relevant studies on this
topics. Then, in Section 2, we introduce our approach for fusion
of imaging and depth sensors as a three-channel data and use it
for labeling within an encoder-decoder CNN architecture. In Sec-
tion 3, we describe the Stanford 2D-3D-Semantics Dataset (2D-
3D-S) (Armeni et al., 2017) which we use in our experiments.
Following this, we present our experimental setup and the results
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in Section 4. Finally, we discuss our results in Section 5 and con-
clude out work in Section 6.

1.1 Related Work

Image segmentation, interpretation and semantic understanding
of images are typical problems in many computer vision and
mapping applications. Strictly speaking, these problems typically
have no exact solution, while the human solves them relatively
efficiently and without much effort. Neural networks mimic this
behavior by defining a layered network topology consisting of
nodes, also called neurons, and activation functions attached to
these neurons. In the last decade, deep neural networks, in par-
ticular, the convolutional network structures, have been success-
fully applied to solve various labeling problems on aerial, indoor
and outdoor images. Generally, these problems can be catego-
rized into three classes. The first attempts by the computer vision
community were to recognize and label an entire image, claim-
ing that, convolutional neural networks compete with humans in
image recognition problems, see ILSVCR (Russakovsky et al.,
2015, Karpathy, 2014). Algorithms in the second group extract
regions from images representing various objects, and label these
image regions; see, for instance, R-CNN (Girshick et al., 2013,
Toth and Koppanyi, 2017). Finally, algorithms in the third class,
which is the focus of this study, label all pixels on the images,
also referred as pixel-wise or pixel-level segmentation.

Prior to deep networks, predicting the central pixel label in a
patch of pixels (Shotton et al., 2008), and, later on, all the pixels
in a patch using Random Forest (Kontschieder et al., 2011) were
among the most successful methods for pixel-wise segmentation.
In 2015, (Long et al., 2015) presented an end-to-end, pixel-to-
pixel fully connected convolutional neural network (CNN) struc-
ture for semantic segmentation for RGB images. Later, (Badri-
narayanan et al., 2017) introduced an encoder-decoder-based net-
work structure called SegNet. The encoder-decoder structure uti-
lizes a set of pooling layers that downsamples the original im-
age to a smaller feature raster, and then it upsamples back to
the original size, where each pixel represents a label category.
Segmentation results were later improved by transferring max-
pooling indices to the decoder. (Yu and Koltun, 2015) design a
context module to enhance the performance of dense prediction
architectures by means of dilated convolutions. Similar to dilated
convolutions, Deeplab (Chen et al., 2018) uses upsampled filters
that are referred to as atrous convolution, to control the field of
view. They also exploit atrous spatial pyramid pooling (ASPP) to
segment objects at multiple scales and then a conditional random
fields (CRF) method is applied to localize the object boundaries.
(Zhao et al., 2017) use the global context information as clues for
scene parsing via a pyramid scene parsing network.

The use of depth information along with RGB data is not straight-
forward as it needs a special care for fusion of the depth to RGB
images. (Gupta et al., 2014) propose to use Horizontal Height
Angle (HHA) which encodes depth into three channels: hori-
zontal disparity, height above ground, and the angle between lo-
cal surface normal and the inferred gravity direction. (Zeng et
al., 2017) state that HHA does not provide any notable perfor-
mance improvement compared to that of VGG when trained on
only RGB images. An alternative approach to use second branch
for depth shows promising results (Hazirbas et al., 2016, Sherrah,
2016, Schneider et al., 2017), it generates, however, an architec-
ture which is more difficult to train.

In this paper, we present an approach that uses RGB and depth
data in a convolutional neural network (CNN) for labeling struc-

tural elements of buildings. In particular, we adopt the encoder-
decoder network architecture introduced in (Badrinarayanan et
al., 2017) and hypothesize that the depth information encoded in
the color channels improve the semantic labeling result. In or-
der to realize this, our algorithm converts the RGB color space
to hue, saturation, value (HSV) color space, and replaces the in-
tensity encoded in the V component with depth information. We
show that two variations of the proposed approach outperform
the RGB based encoder-decoder framework on the Stanford 2D-
3D-Semantics Dataset (2D-3D-S) indoor dataset (Armeni et al.,
2017). We compare this approach also with the a CNN imple-
mentation using a four-channel RGBD input.

2. SENSOR FUSION WITH CNN

Fusing RGB and depth sensor data within a CNN architecture
can be performed in several ways. Typically, the three-channel
RGB and one-channel depth inputs are stacked generating a four-
channel RGBD input. This approach results in higher number
of parameters to be estimated in the training and increases the
time for training. At the same time, the RGB can be transformed
to other color spaces, such as hue, saturation and value (HSV),
where V, representing the brightness, is strongly illumination and
view dependent. Therefore, we hypothesize that this channel of
the HSV color space does not contribute to the image classifi-
cation, and can be considered redundant and replaced by depth.
This approach enables to keep the number of estimated parame-
ters equal to using RGB only and to use a SegNet based encoder-
decoder network.

2.1 Network Architecture

We build our method by adopting the SegNet (Badrinarayanan et
al., 2017) architecture, which is an encoder-decoder type network
design. The first 13 layers in the VGG16 network (Simonyan
and Zisserman, 2014) comprise the encoder network in SegNet.
Each layer is 3× 3 convolution, which are stacked on each other.
The encoder receives three channel image input to generate a low
dimensional representation which is passed onto the decoder that
classifies pixels in the image.

Figure 1. SegNet based encoder-decoder architecture for
semantic labeling using RGB and depth images.

The decoder is the mirror of the encoder, such that for each layer
in the decoder network there is a corresponding layer in the en-
coder network. Class labels are generated in the last layer of the
decoder using a softmax classifier, which predicts pixel labels.

The breakdown of the encoder is as follows:

1. Generate feature maps from various filters
2. Batch normalize the generated feature maps
3. Apply rectified linear unit (ReLU)
4. Perform max-pooling with 2× 2 window + stride of size 2
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5. Downsize the output by a factor of 2

The breakdown of the decoder is as follows:

1. Generate sparse feature maps using max-pooling indices
from the corresponding encoder layer

2. Generate dense feature maps by convolving sparse feature
maps with trainable filters

3. Batch normalize generated feature maps
4. Predicts pixel labels through a multi-class softmax function

It is noteworthy that, although excessive use of max-pooling may
result in translation invariance and therefore better labeling per-
formance, the network loses accuracy on pixels residing on object
boundaries. Since, our goal is to label pixels within an image, it
is crucial to have accurate boundary information after labeling.

2.2 Fusing Depth with RGB

It is a reasonable expectation that extending the color information
with depth data of the scene increases the segmentation accuracy.
RGB is a widely used color space for images, which contains red,
blue, and green channels. As opposed to RGB, HSV is another
representation of the color space that uses hue, saturation, and
value. In the human visual system, colors are perceived when
cone cells are excited, while luminance is perceived when rod
cells are excited. Similar to how the rod and cone cells work for
humans to perceive colors, separation of the luminance compo-
nent of a pixel color from its chrominance components is adopted
by the HSV model. Colors are represented by hue, and saturation
gives a measure of the amount of gray in the color (Vadivel et
al., 2005). Note that RGB representation allows for retrieving
shapes, edges of object boundaries from one color channel. This
indicates that RGB channels carry redundant information.

We fuse the RGB and depth information by combining the depth
with the reduced color space. We perform this fusion in two
different ways: first by transforming RGB image to HSV color
space and replacing the value component with depth (fusion F1);
and second, by transforming this HSD image back to RGB color
space (fusion F2).

Fusion F1: Let r, g and b be the values of the RGB images
normalized to [0,1], cmax = max(r, g, b) the maximal value and
cmin = min(r, g, b) the minimum value of those three compo-
nents. We generate images consisting of three channels HSD,
where their two first components are calculated as

H =


0, for cmax = 0

60◦ g−b
cmax−cmin

mod6, for cmax = r

60◦ b−r
cmax−cmin

+ 2, for cmax = g

60◦ r−g
cmax−cmin

+ 4, for cmax = b,

(1)

S =

{
0, for cmax = 0
cmax−cmin

cmax
, otherwise,

(2)

and the third component D is generated from depth values nor-
malized to [0,1]. Practically, H is also normalized to values [0,1]
to be consistent with S and D.

Fusion F2: In the second variation of the depth fusion, we use
the representation from F1 and transform it back to RGB color
space. Let c1 be primary color defined as integer component of
H/60. We perform colors space back transformation as follows

(Rd, Gd, Bd) =



(D, c, a), for c1 = 0

(b,D, a), for c1 = 1

(a,D, c), for c1 = 2

(a, b,D), for c1 = 3

(c, a,D), for c1 = 4

(D, a, b), for c1 = 5

(3)

where

a =
D(cmax − cmin)

1− cmax
, (4)

b =
D(cmax − cmin)(H/60− c1)

1− cmax
, (5)

c =
D(cmax − cmin)(H/60− c1)

cmax + 1
. (6)

3. DATASET AND PREPROCESSING

To test the proposed approach, we used the Stanford 2D-3D-
Semantics Dataset (2D-3D-S) (Armeni et al., 2017), which con-
tains RGB images as well as the corresponding depth images for
11 types of indoor scenes. Most of the dataset are office rooms
and hallways, but there is also a small part of other room types,
such as lobby and auditorium. The data is collected using the
Matterport Camera, which combines 3 structured-light sensors
to capture RGB and 360-degree depth images. Each 360 de-
gree sweep is performed in increments of 60 degrees. The sensor
provides a reconstructed 3D textured mesh and the raw RGB-D
images. The dataset consist of 6 indoor areas. It also contains
semantic annotations. The annotations are pixel-wise, and corre-
spond to 13 object classes, including ceiling, floor, wall, column,
beam, window, door, table chair, bookcase, sofa, board, and clut-
ter.

In order to use this data in our experiments as input for SegNet
based network, preprocessing steps are required. These steps in-
cludes resizing, depth filtering, depth thresholding and normal-
ization.

Resizing: Original image size in the dataset is 1080 × 1080.
Large images require larger neural network architecture, and thus,
the training is time consuming. In addition, larger image size
does not necessarily mean more accurate results. Therefore,
many authors (Hazirbas et al., 2016, Badrinarayanan et al., 2017)
suggest resizing the images to 224×224 for indoor scales. Thus,
the images are resized to this dimensions for network training and
testing.

Depth filtering: Depth images in the dataset have missing pix-
els. These missing pixels can significantly influence the training
and validation of the semantic labeling, therefore depth interpo-
lation is performed using the Inpainting method (Garcia, 2010,
Wang et al., 2012). In this approach, first rough initial guesses
of the missing depth value are calculated by local statistical anal-
ysis. Then an iterative scheme continuously estimates missing
depth values using discrete cosine transform (DCT) until conver-
gence.
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Depth thresholding and normalization: RGB values are nor-
malized to 0 to 255 range, while HSV values range from 0 to
1. Depth depends on the scene and the range of the sensor. For
indoor scene we can accept values up to few meters. Also, typi-
cal depth cameras operate in this range. Therefore, we perform a
normalization of depth values based on these knowledge by set-
ting 0 [m] to minimum and 10 [m] as maximum possible values.
All values, which are larger than 10 [m] are set to 10 [m]. Then,
the depth values are rescaled to 0 to 1 and fused with the HSV
images.

Class weighting: In the preprocessing step, we also look at the
dataset and the distribution of the classes. In order to measure this
distribution, we calculate the class frequency, which is defined as

f =
nc

N
, (7)

where nc = number of pixels of the class,
N = number of all pixels in the dataset.

This class frequency f is depicted in Fig. 2

As shown in Fig. 2, the class frequency in 2D-3D-Semantics
Dataset is unbalanced. In ideal case, the number of samples used
for training should be the same for each class. For the pixelwise
segmentation tasks, however, this is usually not possible, as some
objects always occupy a bigger region in an image. In order to
overcome this problem, we use class weighting of the training
data defined as:

Figure 2. Class frequency in the training data.

w =
median(nc

n
)

nc
n

, (8)

where nc = number of pixels of the class,
n = total number of pixels in images,
that had an instance of the class.

This approach helps reduce the problem of unbalanced pixel
number, but it does not handle extreme cases. In 2D-3D-S dataset
sofa is defined as a separate class. In Area 1, however, the amount
of pixels labeled as sofa is negligible compared to other classes.
Therefore, we discard this class for our tests and treat it as clutter.

4. EXPERIMENTS

We test semantic labeling with the Stanford 2D-3D-Semantics
Dataset described in Section 3. For our experiments, we select
Area 1 that covers over 965 square meters and 2,850 cubic meters.
This area contains 10,327 images and all the 13 object classes so
that it is sufficient to represent a typical indoor scene.

After the data preprocessing, we fuse RGB and depth to create
two new datasets: HSD images, and HSD images transformed
back to RdGdBd. Example for those images can be seen in Fig. 3.

(a) (b)

(c) (d)

Figure 3. An exemplary image from the dataset: a) RGB; b)
depth; c) HSD; d) RdGdBd.

4.1 Experiment Setup

We conduct two experiments using the test dataset.

Test T1: First test shows the general performance of our ap-
proach. In this experiment we take 50% of the images for training
(5164 images) and the other 50% for validation (5163 images).

Test T2: Then, we test the ability of our approach to label a
scene based on the training in another scene. For this purpose, we
select six rooms: three offices, two hallways and one conference
room, which is about 10% of the data (1047 images). While se-
lecting the training dataset, we payed attention that all 13 classes
are included. In this test, the remaining 90% of the data is used a
the test set.

Hyper-parameters and Training: The hyper-parameters of
the CNN were the same for all tests. We used stochastic gradient
decent solver with momentum, where the momentum was 0.9 and
the weight decay was 0.0005. We used batch size of 10 and the
input data was randomly shuffled after every epoch. The learn-
ing rate of 0.001 was set constant over the entire training, which
ended after 100 epochs. Weights for our network are initialized
based on VGG16 weights.
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Figure 4. Results of the label prediction.
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4.2 Evaluation

Results of the labeling on typical images are presented in Fig. 4.
We evaluate our result of label prediction based on the confu-
sion matrix elements, where TP denotes true positive, FP denotes
false positive, FN denotes false negative samples and N denotes
the total number of annotated pixels. For this evaluation, we use
three metrics. First metrics, called global accuracy, represents the
percentage of the correctly classified pixels and is defined as

GlobAcc =
1

N

∑
TPc. (9)

Second metrics is called mean accuracy and denotes the average
accuracy over all classes. It is defined as

MeanAcc =
1

K

∑ TPc

TPc + FPc
, (10)

where c ∈ {1, 2, ...,K} denotes the class index and K denotes
the number of classes. Finally, we use for evaluation also In-
tersection over Union (IoU), which is the average value of the
intersection of the prediction and ground truth over the union of
them. It is defined as

IoU =
1

K

∑ TPc

TPc + FPc + FNc
. (11)

First we evaluate the results of test T11. The evaluation metrics
for the experiments are presented in Tab. 1. Here, it can be shown
that our fusion F2 (RdGdBd) delivers the best results in terms of
all three metrics: global accuracy, mean accuracy and IoU among
three-channel inputs. In term of global accuracy and IoU, the
four-channel RGBD input delivers better results.

Channels GlobalAcc MeanAcc Mean IoU
RGB 90.9% 92.5% 81.2%
HSD 91.4% 92.5% 82.0%
RdGdBd 92.1% 93.5% 83.2%
RGBD 93.6% 92.8% 86.3%

Table 1. Results on semantic labeling in test T1 (using 50% of
the dataset for training and 50% for testing)

We also investigate the metrics per class, which is presented in
Tab. 2 and Tab. 3. Particularly, we investigate the accuracy of
labeling structural elements of buildings: ceiling, floor, wall, col-
umn and beam.

We also calculate the dataset metrics for structural elements of
buildings, more specifically of ceiling, floor, wall, column and
beam (Tab. 4). Here, we calculate the MeanAcc and Mean IOU
as average value for those classes (contained individually Tab. 2
and Tab. 3 ) and the GlobalAcc by treating other classes all as
clutter.

Next, we evaluate the results of test T2, where selected rooms
where used for training and other rooms for testing the approach.
The metrics for the dataset are presented in Tab. 5

For test T2, we also present the metrics per class in Tab. 6 and
Tab. 7 with special attention paid to structural elements. Also for
test T2, we present the results on labeling of structural building
elements which is presented in Tab. 8.

1Tests with RGB, HSD and RdGdBd were conducted using a SegNet-
based MATLAB implementation, while RGBD test were performed using
a Pytorch implementation using the same hyper parameters

Class RGB HSD RdGdBd RGBD
ceiling 95.8% 96.8% 97.2% 97.0%
floor 92.1% 96.0% 96.3% 95.7%
wall 87.7% 89.0% 89.4% 94.9%
column 92.3% 89.4% 93.4% 83.9%
beam 94.9% 95.6% 96.0% 94.5%
window 97.1% 97.6% 97.6% 96.6%
door 92.9% 93.5% 93.1% 95.5%
table 93.5% 91.3% 92.7% 92.7%
chair 90.0% 89.7% 91.6% 84.9%
bookcase 93.4% 92.8% 92.7% 91.9%
board 95.6% 94.0% 95.5% 94.6%
clutter 85.1% 84.7% 86.2% 87.8%

Table 2. Accuracy per class in test T1 (50% of the dataset for
training and 50% for testing).

Class RGB HSD RdGdBd RGBD
ceiling 90.2% 91.0% 92.5% 93.6%
floor 84.2% 87.2% 88.8% 90.4%
wall 84.5% 85.1% 86.1% 88.9%
column 76.0% 79.0% 80.1% 79.3%
beam 85.0% 85.6% 86.5% 90.7%
window 90.2% 90.1% 90.0% 92.3%
door 85.2% 86.6% 87.2% 90.5%
table 69.7% 70.4% 72.0% 76.1%
chair 65.0% 68.6% 71.0% 75.8%
bookcase 81.9% 81.2% 82.4% 85.7%
board 90.0% 87.9% 87.4% 90.0%
clutter 72.3% 71.8% 74.0% 79.0%

Table 3. IoU per class in test T1 (50% of the dataset for training
and 50% for testing).

5. DISCUSSION AND OUTLOOK

Our investigations showed that incorporating depth improves
slightly the labeling results in an indoor scene. For structural
elements of buildings, this improvement is even more significant,
which was shown in both tests T1 and T2. Here it is noticeable
that RdGdBd representation delivers better results than HSD rep-
resentation. This can be related to the periodic nature of the defi-
nition of hue in the HSV representation. Another explanation can
be the fact, that the utilized network was designed for RGB in-
put and VGG16 weight come also from training on RGB images,
which is closer to RdGdBd rather than to HSD representation. An
alternative would have been generation of a more complicated
dual network architecture (Siamese networks) for the treatment
of depth and color information on parallel networks that can be
merged using a final fully connected layer to generate the labels
through a decoder network. An added benefit is a simpler net-
work architecture, resulting in faster learning and fewer hyper-
parameters used to setup the network.

Comparing the results across the RGB-based method and two
variations of RGB and depth fusion, it can be observed that the
boundaries of structural elements are better delineated in IoU
measurements as tabulated in Tab. 7. This improvement in bound-
ary detection is exemplified in Fig. 5. We have also observed re-
duction in performance when the training set is reduced to 10%
of the data. We should also note that data used for our experi-
ments contains biased training samples across classes. The class
frequency shown in Fig. 2 suggests that a random sampling of
{image-label} pair will create biased training set where wall,
ceiling and door will have better representation than other labels,
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Channels GlobalAcc MeanAcc Mean IoU
RGB 92.2% 92.6% 84.0%
HSD 92.8% 93.4% 85.6%
RdGdBd 93.4% 94.5% 86.8%
RGBD 94.7% 94.2% 89.4%

Table 4. Results on semantic labeling of structural elements of
buildings in test T1 (50% of the dataset for training and 50% for

testing).

Channels GlobalAcc MeanAcc Mean IoU
RGB 65.0% 61.8% 45.2%
HSD 61.0% 55.7% 40.0%
RdGdBd 65.7% 60.1% 45.4%
RGBD 69.4% 64.0% 49.2%

Table 5. Results on semantic labeling in test T2 (10% of the
dataset for training and 90% for testing).

which can be considered a typical class distribution for most in-
door scenes.

Figure 5. Improvement of the labeling at the boundaries using
depth on example of class column (yellow). The images

represent: ground truth (left), RGB based label prediction
(middle), RdGdBd based label prediction

In our experiments, we compared our approach with utilization
of stacked RGB and depth input (RGBD). It was observed, that
using RGBD input up to 2% higher accuracy can be achieved.
Analyzing the accuracy per class for structural elements, we can
observe that significantly better accuracy was achieved only for
wall, windows and door classes. In our dataset, wall was the
most dominant class, therefore high accuracy for this class results
in high global accuracy. Remarkable is also that using stacked
RGBD input improves IoU for almost all classes compared to
RGB and RdGdBd input.

6. CONCLUSION

In this study, we investigated the influence of using fused RGB
with depth information to label indoor scenes within an encoder-
decoder CNN framework and compared it with the performance
of an RGB-based labeling. We use the same, three-channel-
based, CNN architecture for RGB and fused RGB and depth. In
order to do so, we proposed a fusion of RGB and depth infor-
mation in two variations by taking advantage of the redundancy
in information of the three color channels, used in the RGB rep-
resentation. Our results showed that using depth shows better
overall accuracy of the labeling. Also Intersection over Union
metric can be improved by the RGB-depth fusion, which proves
that this approach gives better labeling results at the boundaries.

In summary, we showed that depth particularly improves label-
ing on structural elements of buildings, such as ceilings, walls,
floors, which was the focus of our study. These elements are the

Class RGB HSD RdGdBd RGBD
ceiling 86.3% 85.6% 89.7% 89.5%
floor 85.5% 88.4% 92.1% 90.2%
wall 70.7% 73.0% 76.7% 86.2%
column 12.8% 11.3% 14.4% 9.9%
beam 59.2% 38.8% 66.1% 54.4%
window 87.4% 74.7% 78.6% 89.8%
door 80.9% 70.2% 77.8% 74.6%
table 74.7% 60.0% 67.1% 76.5%
chair 52.1% 55.0% 59.1% 57.1%
bookcase 29.3% 28.0% 28.8% 30.1%
board 49.8% 39.1% 20.6% 61.4%
clutter 52.7% 44.5% 50.7% 48.0%

Table 6. Accuracy per class in test T2 (10% of the dataset for
training and 90% for testing).

Class RGB HSD RdGdBd RGBD
ceiling 64.5% 62.5% 79.1% 75.4%
floor 71.4% 72.3% 80.5% 78.5%
wall 55.6% 53.3% 56.4% 60.4%
column 10.0% 8.8% 10.9% 8.6%
beam 42.1% 31.4% 48.0% 41.1%
window 64.1% 63.8% 69.1% 73.0%
door 61.4% 56.5% 56.8% 61.3%
table 42.2% 35.3% 45.7% 46.0%
chair 32.9% 20.0% 25.0% 38.3%
bookcase 23.9% 24.6% 24.4% 25.7%
board 44.5% 26.8% 18.2% 49.0%
clutter 29.3% 24.7% 30.4% 33.3%

Table 7. IoU per class in test T2 (10% of the dataset for training
and 90% for testing).

main components of Building Information Models (BIM), and
thus identifying them in images is important for tasks such as re-
construction of building models and and coregistration of images
with these models.
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