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ABSTRACT: 

 

Change detection represents a broad field of research being on demand for different applications (e.g. disaster management and land 

use / land cover monitoring). Since the detection itself only delivers information about location and date of the change event, it is 

limited against approaches dealing with the category, type, or class of the change objects. In contrast to classification, categorization 

denotes a feature-based clustering of entities (here: change objects) without using any class catalogue information. Therefore, the 

extraction of suitable features has to be performed leading to a clear distinction of the resulting clusters. 

In previous work, a change analysis workflow has been accomplished, which comprises both the detection, the categorization, and the 

classification of so-called high activity change objects extracted from a TerraSAR-X time series dataset. With focus on the features 

used in this study, the morphological differential attribute profiles (DAPs) turned out to be very promising. It was shown, that the DAP 

were essential for the construction of the principal components.  

In this paper, this circumstance is considered. Moreover, a change categorization based only on different and complementary DAP 

features is performed. An assessment concerning the best suitable features is given. 

 

 

1. INTRODUCTION 

The issue of change detection (CD) using remotely sensed 

imagery denotes a field of research being on demand for different 

applications. In case of detecting changes using time series data, 

the monitoring task is closely connected with CD. For this, it is 

significant to consider data acquired regularly at similar time of 

day to produce meaningful detection results. Focusing on this 

restriction, the acquisition of imagery using SAR satellites hold 

important advantages against the optical alternative. SAR is an 

active sensing technique, illuminating the scenery with 

microwaves of a wavelength much longer than the visible part of 

the electromagnetic spectrum. Hence, it can be used 

independently from atmospheric effects and the time of day. 

Since 2007, the German SAR satellite TerraSAR-X (TSX) 

delivers imagery with a geometrical resolution of less than one 

meter by applying the High Resolution SpotLight mode HS300 

(Airbus Defence and Space, 2014).  

For CD based on SAR imagery, several approaches exist without 

extracting detailed information concerning the type or class of the 

detected changes (Lê et al., 2015; Su et al., 2014). One example 

for a comprehensive change analysis is given in (Weihing et al., 

2010). There, the type of changes is determined with the help of 

a previously calculated land use / land cover (LULC) map of the 

investigated scene. 

In general, the task of LULC classification is more or less limited 

by the reference and training data applied in a supervised or 

unsupervised processing scheme. To cope with these drawbacks 

and to propose a robust and easy to use method, an innovative 

strategy is described in (Boldt, 2018) which mainly bases on a 

categorization of the detected changes. As changes, so-called 

High Activity Objects (HAOs, compare Section 1.2) are 
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considered. Each HAO is described by a feature vector 

comprising different complementary features. One such feature 

is given by the Morphological Differential Attribute Profiles 

(DAPs), representing an advancement of the concept of 

Morphological Profiles (see Section 2).  

This study deals with the investigation of different attributes for 

the DAPs and their influence on a suitable HAO categorization 

result. In the following two subsections, the workflow for the 

extraction of the HAOs is outlined. The concept of the DAPs is 

shortly described in Section 2, including the attributes considered 

in this work. Results are shown in Section 3. The last Section 4 

contains a concluding discussion of the study. 

 

1.1 Time Series Change Detection 

As input data, a time series consisting of 15 TSX HS300 

amplitude images showing the scenery of Stuttgart (GER) airport 

and its surroundings is applied. For CD, the well-known 

LogRatio (Dekker, 2005) method is utilized for each image pair 

in temporarily ascending order in combination with a variation of 

the unsupervised thresholding method of Rényi (Sahoo et al., 

2004). A stack of 14 binary ChangeMaps results, containing the 

change objects (Connected Components, CCs) at the foreground.  

 

1.2 High Activity Objects 

These binary maps are added leading to products called 

IndexMap (IM) and ActivityMap delivering information on the 

change frequency of imaged regions (Boldt, 2018). Basing on the 

IM, High Activity Areas (HAAs) can be identified which are 

characterized by the HAOs. HAOs are the CCs which were 

originally detected by the abrupt CD method and are located in 
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the HAAs. Some real-world examples for HAAs are parking lots 

or construction sites. 

 

2. DIFFERENTIAL ATTRIBUTE PROFILES 

The DAP approach (Dalla Mura et al., 2010) can be seen as an 

advancement of the concept of Morphological Profiles (MPs) 

which was introduced at the beginning of the current century 

(Benediktsson et al., 2001). Especially relating on the task of 

SAR change categorization, the benefit of DAPs has already been 

described in (Boldt et al., 2013). In that work, significant 

characteristics and some theoretical backgrounds of the DAP 

approach are given. Consequently, such items are not part of this 

paper. The focus is set on the analysis of different attributes used 

to calculate the DAPs and on their impact on a suitable separation 

of change categories. For this, the well-known Principal 

Component Analysis (PCA) is applied. 

First, a short overview on the basic concept of DAPs is given. 

 

2.1 Concept 

In contrast to MPs, DAPs base on the analysis of CCs contained 

in the specific image. Since no Structuring Element of fixed size 

and shape is considered, the DAPs denote a more flexible and 

precise way of image exploitation. Moreover, the DAP concept 

utilizes so-called attribute openings and closings (Boldt et al., 

2013). This means that the CCs are analyzed by regarding their 

properties with respect to different, previously chosen attributes. 

For this, multiple attributes are available that are able to 

characterize the CCs in a complementary way (e.g. statistics, 

shape, or radiometry). For each attribute, a sequence of values 

has to be defined which is used as threshold criterion for the CCs 

detected in the image. According to the principle of attribute 

filtering, this means that each CC is checked against the given 

attribute value sequence leading to its retention or deletion (Boldt 

et al., 2013).  

Subsequently, the attributes used in this study including their 

value sequences are explained. 

 

2.2 Attributes and Pre-Processing 

Different attributes are considered in this study which are 

outlined in the following. For each attribute, a sequence of five 

values is defined to model each HAO, leading to a 10-

dimensional DAP vector. The sequence intervals are subdivided 

into four equally spaced divisions.  

 

2.2.1 SAR-Specific Attributes 

Two SAR-specific attributes are chosen. The first is given by the 

Coefficient of variation (Cov), denoting a measure of local 

homogeneity in the amplitude image, calculated by the ratio of 

standard deviation and mean in a moving window. The second 

one represents the normalized radar cross section, given by the 

Sigma Nought (Sig0) coefficient scaled to decibels [dB]. 

Concerning the choice of a value sequence for the Cov attribute, 

we refer to (Schulz et al., 2012), where suitable thresholds for 

Cov image layers are extracted in a simulation-based way, 

leading to a reasonable scaling of the image content. Here, the 

explained scaling interval is adapted to characterize the local 

homogeneity of HAOs. The sequence 𝜒𝐶𝑜𝑣 is given with: 

 

𝜒𝐶𝑜𝑣 = [0; 0.5; 1; 1.5; 2],   (1) 

 

consisting of five sequence values. 

For the attribute sequence of the second SAR attribute, Sig0, a 

maximum value of +10 dB was chosen according to (Klausing et 

al., 2000). Focusing on the minimum edge of the interval, the 

sensor-specific value representing the background noise of the 

system can be applied. With different backscatter analyses of 

asphalt surfaces, it was found that a value of -22 dB can be 

applied as an adequate threshold, coinciding with the Noise 

Equivalent Sigma Zero of current X- and C-Band SAR sensors 

(Schulz et al., 2012). Consequently, the value sequence is defined 

with: 

 

𝜒𝑆𝑖𝑔0 = [−22; −14; −6; 2; 10] [𝑑𝐵].  (2) 

 

2.2.2 Shape-Specific Attributes 

Six shape parameters are considered in total: Moment of inertia 

(Moi), area (Ar), the diagonal of the bounding box of the HAO 

(Diag), roundness (Round), compactness (Comp), and density 

(Dens).  

The Moi is the so-called Hu-moment of first order (Hu, 1962), 

which can be interpreted as mass moment of inertia, representing 

the extension of a CC according to its centroid or center of mass. 

Hence, the centroid of a CC can be seen as origin for a rotation 

axis and its gray values can be taken as density values. The Hu-

moment of first order is defined as (Huang et al., 2010): 

 

𝑀𝑜𝑖 = 𝑛20 + 𝑛02,    (3) 

 

with the scale invariants 

 

𝑛𝑖𝑗 =
𝑚𝑖𝑗

𝑚00

(1+
𝑖+𝑗

2
)
,     (4) 

 

and the central moments 

 

𝑚𝑖𝑗 = ∑ ∑ (𝑥 − �̅�)𝑖(𝑦 − �̅�)𝑗𝐼(𝑥, 𝑦)𝑃
𝑦=1

𝑃
𝑥=1 , (5) 

 

with the image coordinates 𝑥 and 𝑦 of the current HAO, the HAO 

centroid coordinates (�̅�, �̅�), the count of HAO pixels 𝑃, and the 

gray value 𝐼(𝑥, 𝑦) of the input image 𝐼.  

With these formulas, it is observable that line-shaped HAOs 

produce higher Moi values than more compact HAOs. Moreover, 

concerning the HAO gray values, constantly high gray values 

lead to relatively high Moi values. Useful attribute values can be 

extracted by considering the shape and radiometry of HAOs. For 

example, a rectangular HAO with edge lengths 10 and 40 pixels 

lead to a Moi of approximately 400 (HAO with constant bright 

gray level, 𝐼(𝑥, 𝑦) = 255, ∀ 𝑥, 𝑦 ∈ 𝐼). If this HAO is converted 

into a line-shaped structure, the Moi gets higher (HAO with edge 

lengths 8 and 50 pixels: 𝑀𝑜𝑖 ≈ 700). From these considerations, 

the value sequence is extracted to be: 

 

𝜒𝑀𝑜𝑖 = [0; 200; 400; 600; 800].  (6) 

 

Focusing on the Ar attribute, representing the count of pixels of 

each HAO, the value sequence is deduced from the scope of our 

change analysis, which aims on the detection of small-sized 

objects like vehicles or smaller construction sites. In general, it 

should be kept in mind that the count of pixels of such objects 

always depends on the pixel size of the available image data. 

Here, the sequence is chosen with:  

 

𝜒𝐴𝑟 = [8; 106; 204; 302; 400].  (7) 

 

From the Ar attribute sequence, the length of the diagonal of the 

bounding box surrounding the HAO can be easily derived. The 

maximum area of 400 pixels can be exemplary arranged in a 

HAO with the edge lengths 133 and 3 leading to a very elongated 

shape. For this rather theoretical HAO representation, a Diag 

value of 133 (pixels) results. The minimum size of a HAO can be 
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modeled by a Diag length of 5 pixels. From this, the sequence 

results as: 

 

𝜒𝐷𝑖𝑎𝑔 = [5; 28.75; 52.5; 76.25; 100 ].  (6) 

 

Another shape attribute is given by the roundness parameter 

Round, which serves to evaluate the similarity of a HAO with its 

minimal approximating ellipse. It is defined with: 

 

𝑅𝑜𝑢𝑛𝑑 =
∆(𝑓𝑜𝑐𝐴,𝑓𝑜𝑐𝐵)

𝑙𝑚𝑎
,   (7) 

 

with ∆() being the distance function to calculate the distance 

between the two focal points 𝑓𝑜𝑐𝐴 and 𝑓𝑜𝑐𝐵 of the ellipse, and 

with the length 𝑙𝑚𝑎 of the major axis. 

Resulting values for Round cover the interval of [0;1], where 1 

stands for a HAO being ideally line-shaped. Consequently, 

Round is 0 when the HAO is a circle. With this, the value 

sequence can be written as: 

 

𝜒𝑅𝑜𝑢𝑛𝑑 = [0; 0.25; 0.5; 0.75; 1 ].  (8) 

 

The Comp parameter represents a measure to evaluate the 

similarity of a HAO to a surrounding, minimal approximating 

rectangle: 

 

𝐶𝑜𝑚𝑝 =
𝑙𝑟𝑒𝑐𝑡𝑤𝑟𝑒𝑐𝑡

𝑠𝐻𝐴𝑂
,    (9) 

 

With the length 𝑙𝑟𝑒𝑐𝑡, width 𝑤𝑟𝑒𝑐𝑡 and size 𝑠𝑟𝑒𝑐𝑡 of the rectangle. 

It can be seen that a Comp value of 1 occurs in case of an ideally 

compact or rectangularly-shaped HAO. Nevertheless, even 

higher values are possible, which motivates the extraction of a 

suitable value sequence by using test results derived from a 

complementary available dataset. As upper bound of the 

sequence, the maximum value of this test was taken and a 

tolerance of twice the standard deviation was added. Finally, the 

sequence for the Comp attribute is formulated as follows: 

 

𝜒𝐶𝑜𝑚𝑝 = [0; 1.75; 3.5; 5.25; 7 ].  (10) 

 

In contrast to roundness and compactness, the last shape 

parameter, density (Dens), serves to evaluate the spatial 

distribution of HAO pixels. A HAO is ideally dense, when its 

shape is quadratic. Otherwise, a HAO is not dense when it is line-

shaped (Boldt, 2018). The Dens attribute is calculated with: 

 

𝐷𝑒𝑛𝑠 =
√𝑠𝐻𝐴𝑂

1+𝑑𝑒
,     (11) 

 

with the diameter 𝑑𝑒  of a surrounding ellipse: 

 

𝑑𝑒 =
√𝑠𝐻𝐴𝑂

2√𝑎3𝑏2

(𝑏2𝑐𝑜𝑠2𝜔+𝑎2𝑠𝑖𝑛2𝜔)⁄
,  (12) 

 

where 𝑎 stands for half the major axis length, 𝑏 for half the minor 

axis length, and 𝜔 for the angle between the horizontal axis of 

the image and the major axis of the ellipse. 

Since the actual Dens value depends on the size and shape of the 

current HAO, a generally valid sequence interval does not exist. 

A low value near 0 represents a not-dense HAO. Analogously to 

the Comp attribute, a suitable value sequence was calculated by 

tests, leading to: 

 

𝜒𝐷𝑒𝑛𝑠 = [0; 7.125; 14.25; 21.375; 28.5 ]. (13) 

 

2.2.3 Feature Matrix 

With the descriptions given above, it follows that for each HAO, 

a feature vector consisting of DAP values for eight attributes 

(shape- and SAR-specific) is calculated. Since a sequence of five 

values was chosen for each attribute, 10-dimensional DAP 

vectors were extracted. Therefore, the dimension of the HAO 

feature vectors is 80. This fact combined with the high amount of 

HAOs (34,363) leads to a high-dimensional feature matrix, which 

has to be reduced to avoid problems such as the so-called curse 

of dimensionality (Hsu, 2007). 

This reduction is performed using the PCA, containing the 

benefit of analyzing the impact of the original features on the 

resulting principal components (PCs). This analysis can be 

accomplished by evaluating the loadings of the linear 

combinations describing the PCs (Boldt, 2018). In this way, 

focusing on a suitable separation of different change categories, 

an optimal feature or combination of features can be identified. 

With respect to the feature matrix available in this study, 11 PCs 

are found which represent 81.4 % of the total data variance 

(Figure 1). From this, the first two PCs already hold about 44 %. 

 

 

Figure 1. Eigenspectrum showing the total variance for each PC 

(in [%]). The dotted green line marks the first 11 PCs. 

 

With the evaluation of the loadings for the 11 PCs, it can be 

concluded, that the SAR-specific (Cov, Sig0) and the roundness 

(Round) DAP attributes have the biggest influence on the 

reduced feature space representation (Figure 2).  

In Figure 2 (A), the loadings of the input features for the first PC 

are visualized. To differentiate between features with low and 

high influence on the PC, a dotted line is plotted representing 

75 % of the biggest loading value. With this, most significant 

features are identified for each of the 11 PCs. A histogram results 

(Figure 2, B) which contains the frequencies for the features, 

showing how often they exceed the 75 % border. It can be 

observed that in contrast to the other DAP attribute groups, the 

Cov, Sig0, and Round attributes have the highest frequency of 

most significant features. From this it follows that the detected 

HAOs are well-separable by considering these attributes. 

Furthermore, the Round attribute represents the most sensible 

shape parameter. Hence, it can be stated that the detected small-

scaled HAOs show a high variance with respect to this feature. 

For other scaled change objects, other shape feature might be 

more important. This should be kept in mind when adapting the 

method to other change analysis tasks. 

In summary and with focus on the categorization of HAOs, this 

attribute combination leads to a suitable change differentiation. 

Therefore, it might be sufficient to reduce the high-dimensional 

HAO feature vector only on these features. This analysis can be 

part of further studies. 
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Figure 2. Loadings of first PC (A). Dotted black line symbolizes 

a threshold (here: 75 % of biggest loading) to identify most 

significant features. B: Histogram of most significant features 

over all 11 PCs. 

 

3. CATEGORIZATION OF HIGH ACTIVITY OBJECTS 

Based on the reduced feature matrix, the HAOs are categorized 

by applying an unsupervised configuration of the commonly 

known k-means clustering algorithm. For this, the optimally 

matching number of categories was calculated by evaluating the 

mean quantization error as described in (Boldt et al., 2014). Five 

categories were found to which the HAOs were assigned. Figure 

3 contains the categorization result, illustrated in three different 

HAAs.  

The first HAA denotes an industrial area, consisting of different 

parking lots for cars and trucks and of collecting or loading / 

unloading points (Figure 3, A). The second HAA shows a subset 

of the airport area, containing surrounding structures and parts of 

the airport ramp (Figure 3, B). The third HAA represents some 

suburban structures with business complexes close to the airport 

ramp, including airplane parking lots. Moreover, this HAA 

contains a construction site, which was on progress during the 

time series data acquisition (Figure 3, c.1 to c.2).  

With respect to the categorization results, it can be seen that 

semantically different subsets contain different change categories 

dominating these areas. For example, construction sites are 

dominated by the green category (Figure 3, A.3, a; B.3, a, b), 

whereas car parking lots are composed by the blue and red 

categories (Figure 3, A.3, b; B.3, C; and partially C.3, b). In 

contrast, airplane parking lots at the airport ramp show a 

dominance of the magenta-colored category (Figure 3, B.3 lower 

half and C.3, a).  

The subset C.3 b of Figure 3 represents an interesting area which 

is suitable to show the precision of our method. As already 

mentioned, this area denotes a construction site, which was in 

progress during the acquisition period of the time series. The 

observable fact that a small construction site category (green) 

was found besides the car parking lot categories (blue and red) 

leads to the assumption that the construction site was partially 

finished during the investigated period. The detected 

construction site category at the upper right edge could 

exemplary be caused by a local aggregation of soil or debris.  

In summary, it can be resumed that the chosen DAP attributes 

enable a precise detection of change categories having different 

semantical meaning.  

 

4. CONCLUSION 

In this study, the concept of Differential Attribute Profiles 

(DAPs) was used in connection with the task of change 

categorization in high resolution SAR time series data. As 

changes, so-called High Activity Objects (HAOs) are considered, 

characterizing very frequently changing areas of the investigated 

scenery (e.g. parking lots and construction sites). 

Several complementary attributes are used for the HAO-based 

DAP calculation. In detail, eight different attributes consisting of 

the two main divisions SAR-specific (Coefficient of variation, 

normalized radar cross section Sigma Nought ) and shape (area, 

moment of inertia, diagonal of bounding box, roundness, 

compactness, and density) were considered. For each attribute, a 

value sequence of five values was applied, leading to a 

34,363 x 80 sized feature matrix (34,363 detected HAOs).  

To avoid problems such as the curse of dimensionality, this high-

dimensional feature matrix was reduced by using the well-known 

Principal Component Analysis (PCA), offering the opportunity 

to analyze the impact of the original features on the resulting 

principal components (PCs). This is accomplished with the help 

of the so-called loadings, which represent the coefficients of the 

input features in the linear combinations of the resulting PCs. It 

was observed that the SAR-specific attributes and the roundness 

feature are most significant for a differentiation of the HAOs.  

For the final categorization step, the first 11 PCs were taken 

which comprise approximately 80 % of the total data variance. 

The reduced, 34,363 x 11 feature matrix was taken as input for 

an unsupervised version of the k-means algorithm, leading to the 

calculation of the optimal number of clusters. Five change 

categories were found in total. For the evaluation of the existing 

local semantics, the HAOs were color-coded matching to their 

categories and visualized in the time series mean amplitude 

image. 

The robustness and precision of the categorization results were 

evaluated in three representative High Activity Areas (HAAs). It 

was observed that construction sites, car and airplane parking lots 

contain a characterizing dominance of different categories. 

Hence, these land use classes can be easily identified. The 

precision of this identification was shown with the example of a 

construction site which was partially in progress during the 

investigated period.  

It was shown that the presented attributes for the calculation of 

the DAPs are well-suitable for a capable differentiation of change 

categories. Furthermore, it was observed that especially the SAR-

specific features combined with the roundness attribute lead to 

promising results when focusing on small-sized change objects. 

Generally, it should be kept in mind that for other change object 

sizes, other attribute combinations might be more meaningful. 
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Moreover, the DAP method enables the usage of nearly all 

possible attributes to model the image content in a 

complementary way.  

Consequently, future studies might deal with the analysis of other 

attributes which are suitable for the task of change categorization. 

Another interesting aspect to deal with is given by the detection 

of change objects of different scale and their correlation with 

certain DAP attributes. Hence, suitable attributes for different 

scopes of change detection (e.g. monitoring of urban, rural or 

forest) can be proposed.  
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Figure 3. Results of change categorization illustrated by three exemplary HAAs (A to C) representing an industrial area (A), 

surrounding structures of airport area and subset of airport ramp (B) and some business complexes nearby the airport ramp (C). 1 (A 

to C): WorldView-2 image, 2 (A to C): Time series mean TSX amplitude image, 3 (A to C): Image of 2 with overlaid color-coded 

HAOs, where each color stands for a specific change category. c: WorldView-2 images representing a detailed view on the 

construction site in C.3, b, detected by the method. Cyan-colored rectangles highlight AOIs: Car parking lots (A.3, b; B.3, c), loading 

/ unloading and collecting points (A3.a), construction sites (B.3, a; B.3, b), airplane parking lots (C.3, a) and a mixture of a 

construction site and an already finished car parking lot (C.3, b).  
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