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Abstract. Genetic algorithms can be a powerful tool for the automated design of optimal drinking water distri-
bution networks. Fast convergence of such algorithms is a crucial factor for successful practical implementation
at the drinking water utility level. In this technical note, we therefore investigate the performance of a suite of
genetic variators that was tailored to the optimization of a least-cost network design. Different combinations
of the variators are tested in terms of convergence rate and the robustness of the results during optimization of
the real-world drinking water distribution network of Sittard, the Netherlands. The variator configurations that
reproducibly reach the furthest convergence after 105 function evaluations are reported. In the future these may
aid in dealing with the computational challenges of optimizing real-world networks.

1 Introduction

Optimization techniques have been applied to the design
(or more specifically, the dimensioning) of water networks
for decades (see Bieupoude et al., 2012, and De Corte and
Sörensen, 2013, for overviews). A widely applied approach
is that of genetic algorithms (GAs) (Holland, 1975; Gold-
berg, 1989) and other members of the overarching fam-
ily of evolutionary algorithms (EAs) (Maier et al., 2014).
Though the classic genetic algorithm is very powerful, the
various mechanisms of the genetic algorithm are commonly
expanded, replaced or combined with heuristic tricks or com-
plete heuristic algorithms to improve performance (as re-
viewed by e.g. El-Mihoub et al., 2006). The algorithms
which include these are commonly referred to as hybrid ge-
netic algorithms (HGAs) or memetic algorithms (MAs). An
overview of these approaches is summarized below. Follow-
ing one of the approaches, a selection of custom heuristic
variators has been implemented in Gondwana, a generic op-
timization tool for drinking water networks (van Thienen
and Vertommen, 2015). In this paper, these variators are de-
scribed and it is demonstrated how they contribute to signif-
icantly faster convergence in an optimization problem case
study.

2 Hybrid genetic algorithms

A cornerstone of the HGA approach (Krasnogor and Smith,
2005; El-Mihoub et al., 2006) is the observation that clas-
sic GAs are especially well suited for quickly locating global
optima in the solution space but subsequently have difficulty
converging to the optimum locally within a reasonable num-
ber of iterations. To mitigate this, GAs are augmented with
local search (LS) methods. These are algorithms that iter-
atively modify a given solution towards a predefined opti-
mization criterion. LS methods find local optima relatively
quickly but are generally unable to escape this local optimum
in favour of a possibly different global optimum. The result-
ing HGA therefore profits from the strengths of both tech-
niques and yields better solutions. El-Mihoub et al. (2006)
identify the following general ways in which GA capabilities
can be expanded through hybridization:

1. A GA solution can be improved by running it through a
LS method. This can be done to improve the final solu-
tion of the GA. Alternatively, the LS algorithm can be
applied to refine intermediate solutions to promote the
representation of different promising areas of the solu-
tion space within the population.
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Table 1. Specific variators. Types include mutators (m) and crossover (c), classic (C) and heuristic (H).

Variator Abbreviation Type Description

random mutation RM mC assign a random value within a prescribed range to a parameter or subdivision index
n point crossover NPC cC mix lists of decision variable (attribute/parameter) values
selection mutation SeM mC random selection from a list of predefined values
flatiron mutation FM mH give an object the same value as (or the minimum or maximum of) its neighbours

on both sides, provided each side has only one neighbour
list proximity mutation LPM mH random selection from n nearest neighbour values in an ordered list of allowed values

2. The number of iterations that are needed to achieve con-
vergence can be reduced by replacing classic genetic
operators with different ones to guide the search through
the solution space.

3. Alternatively, system-specific knowledge can be used to
modify the genetic operators in such a way that they
only result in viable solutions. This does not guide the
search but prevents time loss due to the evaluation of
many illegal solutions, which may arise from random
variations in heavily restricted GA problems.

4. The population size needed to achieve convergence can
be reduced by dynamically controlling candidate selec-
tion with a LS method.

5. System-specific knowledge can be used to construct a
model to quickly approximate the results of fitness func-
tions that are expensive to calculate, speeding up the
evaluation of the GA objectives.

It is worth noting that the possible resulting HGAs form a
broad class of algorithms and that individual HGAs might
fall under categories different from GA within the taxonomy
of EA (Calegari et al., 1999).

3 Case study

3.1 Problem-specific variators

Within the field of water network design optimization, al-
gorithms that guide the GA to reduce the size of the search
space is a specific challenge in current research (Maier et
al., 2014). Table 1 lists a collection of genetic operators that
was composed to tune a GA to the optimization of a least-
cost design (Alperovitz and Shamir, 1977; Savic and Walters,
1997). This type of problem varies pipe diameters through-
out the network in search of the minimum network costs
while achieving a minimum pressure at each node. In ad-
dition to several classic GA variators (Holland, 1995; Gold-
berg, 1989), two heuristic variators are used that were con-
structed with the goal of a least-cost design in mind. In terms
of the classification of hybrid metaheuristics by Talbi (2002),
the resulting HGA is a low-level teamwork hybrid.

The heuristic flatiron mutator was custom-made to en-
hance convergence according to approach 2 in the list above.

It guides the search past a type of artefact that commonly oc-
curs in intermediate solutions for the least-cost design prob-
lem. This artefact occurs when classic mutation causes a
larger diameter pipe to be surrounded by smaller diameter
pipes, which is hydraulically insensible. These artefacts can
take a long time to disappear through random mutation only.
The flatiron mutator speeds up convergence by “smoothing
out” these artefacts as follows:

1. For the mutating pipe, obtain the neighbour IDs from
a lookup table with neighbouring pipes per pipe (it is
worth noting that this lookup table is created at the start
of the optimization, thereby limiting its impact on com-
putation).

2. If the pipe connects to exactly 1 or 2 neighbouring
pipes, compare the diameter of the mutating pipe to
those of its neighbours.

3. If the mutating diameter is larger than the diameter of
all neighbours, reduce it to the largest diameter among
neighbours.

The heuristic list proximity mutator enhances convergence
according to approach 3 in the list above. It is equivalent to
the classic “creep mutator” (Sivanandam and Deepa, 2007):
it functions as the regular random mutation of a single pipe
diameter, except that the possible outcomes of the mutation
are limited to values close to the value prior to mutation. This
mutator is typically used because large deviations from the
original diameter are likely to cause hydraulically inviable
solutions.

In order to evaluate the influence of the developed
problem-specific variators, a series of tests was performed
on a case study.

3.2 Case study network

The case study consists in the design of part of the exist-
ing drinking water distribution network of the Dutch village
Sittard. The network has a total length of 10.8 km and has
1000 connections, including connections to a school, a resi-
dential building with 32 apartments and a care farm for men-
tal patients. The network is fed by a single reservoir and has a
mean total demand of 15 m3 h−1. The network is represented
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Figure 1. EPANET model of the drinking water distribution net-
work of Sittard (Netherlands), consisting of 583 junctions, 491
pipes, 140 valves and 1 reservoir.

by an EPANET (Rossman, 2000) model consisting of 583
junctions, 491 pipes, 140 valves and 1 reservoir. The network
is displayed in Fig. 1.

3.3 Optimization

For the design of the network, the minimization of the prod-
uct between pipe diameter and pipe length (surrogate for
costs) was considered as the objective, constrained by a min-
imum pressure at each node equal to 34 m. The decision vari-
ables were the pipe diameters that could be chosen from the
following: 0, 13.2, 21.2, 36, 42.6, 58.2, 66, 72.8, 87.3, 101.6,
130.8, 147.6, 163.6, 190, or 200 mm. A population of 100
individuals with an elitism rate of 15 % was used for each
optimization. Selection between candidates was achieved
through tournament selection with a tournament size of 2 and
with the objective function – the product of pipe length and
diameter – as the performance criterion.

3.4 Tests

A total of 16 tests were performed, wherein different rates
for the specific variators were considered in order to assess
their influence on the network design results. For each test,
a total of 1× 105 function evaluations and 10 runs were per-
formed: each test was repeated 10 times in order to assess
the mean, standard deviation, best and worst results obtained
for each test. Table 2 provides an overview of the different
tests, including the considered variator values and obtained
results. Tests 1 and 2 consist of different rate combinations of
the classical random mutation (RM) and one-point crossover
(NPC). The heuristic proximity mutation was added in tests
3 to 8. Different rates for the heuristic flatiron mutation were
considered in tests 9 to 14. Tests 15 and 16 further explore

Figure 2. Overview of the obtained results for the different tests.

the influence of the one-point crossover on the performance
of the algorithm.

4 Results

From the obtained results (Table 2) it is clear that the consid-
eration of the heuristic flatiron mutation (FM) and proximity
mutation (LPM) significantly improved the obtained results
for the optimization problem. These results are graphically
reported in Fig. 2.

Considering only the naïve random mutation and one-
point crossover, the best results after 1× 105 function evalu-
ations were achieved with a mutation rate equal to 0.05 and a
crossover rate equal to 0.95. In this case the average objective
function value was 8.8× 105. Adding a proximity mutation
does not improve the results, but considering only a proxim-
ity mutation and no random mutation has a significant influ-
ence on the outcomes. With only the proximity mutation, the
best results after 1× 105 function evaluations were achieved
for a proximity mutation rate of 0.05. With this value, the
best results were achieved for the mean as well as the best
and worst values for the objective function. Figure 3a illus-
trates the influence of this variator on the computed objective
function values.

Adding a flatiron mutation further improved the obtained
results. The best results after 1×105 function evaluations, on
average, were obtained for a combination of a crossover rate
of 0.95, with a proximity mutation rate equal to 0.05 and a
flatiron mutation rate equal to 0.8. The best result within one
test was obtained for a slightly lower flatiron mutation rate,
equal to 0.7. Figure 3b illustrates the influence of this flatiron
mutation rate on the obtained objective function values.

The effect of the problem-specific variators can also
clearly be seen on the shape of the convergence curves. Fig-
ure 4 illustrates the mean, mean ± standard deviation, and
mean ±2× standard deviation convergence curves for tests
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Table 2. Problem-specific variator values considered in the different tests and obtained results for 10 runs with 1× 105 function evaluations
each. The best results are indicated in bold.

Test Crossover Random Proximity Flatiron Mean Std. Best Worst
rate (N) Mutation (N) mutation (H) mutation (H)

1 RMNPC1 0.9 0.1 0 0 1.12E+06 2.76E+04 1.07E+06 1.17E+06
2 RMNPC2 0.95 0.05 0 0 8.80E+05 4.75E+04 8.18E+05 9.70E+05
3 LPM1 0.95 0.05 0.01 0 8.83E+05 3.83E+04 8.39E+05 9.41E+05
4 LPM2 0.95 0 0.01 0 5.94E+05 1.99E+04 5.57E+05 6.23E+05
5 LPM3 0.95 0 0.03 0 5.69E+05 2.92E+04 5.28E+05 6.06E+05
6 LPM4 0.95 0 0.05 0 5.69E+05 2.30E+04 5.27E+05 6.05E+05
7 LPM5 0.95 0 0.075 0 6.03E+05 1.65E+04 5.60E+05 6.24E+05
8 LPM6 0.95 0 0.1 0 6.10E+05 1.57E+04 5.91E+05 6.43E+05
9 FM1 0.95 0 0.05 0.1 5.76E+05 2.49E+04 5.43E+05 6.13E+05
10 FM2 0.95 0 0.05 0.9 5.60E+05 3.11E+04 5.16E+05 6.05E+05
11 FM3 0.95 0 0.05 0.5 5.62E+05 1.97E+04 5.37E+05 6.07E+05
12 FM4 0.95 0 0.05 0.95 5.63E+05 2.55E+04 5.28E+05 6.12E+05
13 FM5 0.95 0 0.05 0.7 5.62E+05 2.88E+04 5.11E+05 6.05E+05
14 FM6 0.95 0 0.05 0.8 5.53E+05 2.64E+04 5.14E+05 6.17E+05
15 NPCFM1 0.9 0 0.05 0.8 5.77E+05 2.16E+04 5.50E+05 6.17E+05
16 NPCFM2 0.8 0 0.05 0.8 5.59E+05 2.46E+04 4.97E+05 5.93E+05

Figure 3. (a) Influence of the proximity mutation rate on the obtained objective function values in tests LPM2, LPM3, LPM4, LPM5 and
LPM6. (b) Influence of the flatiron mutation rate on the obtained objective function values in tests FM1, FM2, FM3, FM4, FM5 and FM6.

number 2 (RMNPC2) and 12 (FM4). The proximity and flat-
iron mutations lead to smoother curves and a faster conver-
gence. The standard deviation between results of the differ-
ent runs is also much lower, which means that the results are
more stable.

5 Discussion and conclusions

The results presented in this paper clearly illustrate the value
of applying heuristic, non-classical variators in drinking wa-
ter distribution system design optimizations using genetic al-
gorithms. While the difference between the test with random
mutation and the other tests is especially noticeable in Fig. 2,
it is worth noting that the smaller differences between the
other individual tests indicate a significant difference in con-
vergence as well. In Fig. 4a, for instance, it can be seen that,

in FM4, the average objective function value of 6× 105 was
reached in around 700 generations, about 1.4 times faster
than in LPM2, LPM5 and LMP6.

In the tests, the combination of a low rate for the proxim-
ity mutation with a high rate of the flatiron mutation leads to
the best results after 1× 105 function evaluations (test num-
bers 13:FM5 and 14:FM6), i.e. the fastest convergence. All
tested combinations which include either the flatiron or the
proximity mutation exhibit a similar or worse performance.
Albeit slower, particularly stable results were obtained with
the proximity mutation (rate= 0.1) and no flatiron mutation.
These runs show the smallest standard deviation in the results
after 1× 105 function evaluations.

In future research and consulting projects with Gondwana,
this combination of variators will be used in order to deal
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Figure 4. Convergence curves (mean, first and second standard deviations of 10 runs) obtained for tests RMNPC2 and FM4. (a) One-point
crossover, proximity mutation and flatiron mutation (FM4). (b) Random mutation and one-point crossover (RMNPC2).

with the computational challenges of larger real-world net-
works.
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