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Methods of functional connectivity are applied ubiquitously in studies involving

non-invasive whole-brain signals, but may be not optimal for exploring the propagation

of the steady-state responses, which are strong oscillatory patterns of neurodynamics

evoked by periodic stimulation. In our study, we explore a functional network underlying

the somatosensory steady-state response using methods of effective connectivity.

Human magnetoencephalographic (MEG) data were collected in 10 young healthy adults

during 23-Hz vibro-tactile stimulation of the right hand index finger. The whole-brain

dynamics of MEG source activity was reconstructed with a linearly-constrained minimum

variance beamformer. We applied information-theoretic tools to quantify asymmetries in

information flows between primary somatosensory area SI and the rest of the brain. Our

analysis identified a pattern of coupling, leading from area SI to a source in the secondary

somato-sensory area SII, thalamus, and motor cortex all contralateral to stimuli as well

as to a source in the cerebellum ipsilateral to the stimuli. Our results support previously

reported empirical evidence collected both in in vitro and in vivo, indicating critical areas

of activation of the somatosensory system at the level of systems neuroscience.

Keywords: magnetoencephalography (MEG), somatosensory system, steady-state response, causality analysis,

complexity analysis

INTRODUCTION

Electrophysiological steady-state responses (SSR) entrained to the frequency and phase of periodic
stimuli provide a non-invasive method to test the integrity of sensory pathways. Many studies
characterized the shapes of individual SSR and their dominant frequencies, but mapping of the SSR
as the propagation of a neural signal within the wider network underlying somatosensory function
remains largely unexplored. A combination of steady-state responses and statistical tools explicitly
describing information transfers could provide a data-informed approach for studying the integrity
of sensory pathways at the level of systems neuroscience.

In general, the steady-state response arises from strong oscillatory dynamics of neural activity
evoked by periodic stimulation, in contrast to temporal patterns of the transient changes in signal
dynamics caused by the onsets of stimuli, such as event-related potentials (ERPs). In our study,
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we will focus on the somatosensory steady-state response (SSSR),
which is elicited by periodic tactile stimulation, and provides
effective means to investigate oscillatory brain sensory networks
(Nangini et al., 2006). The SSSR is typically observed at
the frequencies of the driving stimulus, possibly with higher
harmonics, reaching a resonance-like maximum in amplitude
of around 20Hz (Snyder, 1992). The steady-state response is
believed to be a result of the interplay between the on-going
activity and afferent input, reflecting the intrinsic dynamic
properties of the sensory networks at the scale of neuronal
populations (Engel et al., 2001).

Previous studies have extensively linked the somatosensory
steady-state response with primary somatosensory area SI using
the model of a single equivalent current dipole under the
assumption that response to tactile stimuli can be localized
only to one specific location (Baumgartner et al., 1993; Hari
et al., 1993). Multiple dipole modeling of electric brain sources
is possible but requires more complex assumptions about the
number of underlying sources, their locations and possible
orientations of the dipoles (Hoshiyama et al., 1997). In contrast,
model-free beamformer techniques can be used in an attempt
to reconstruct whole-head volumetric maps of neural dynamics
(Robinson and Rose, 1992; Van Veen et al., 1997). In both cases,
dipole modeling or beamforming, not much research has been
performed to study the propagation of the steady-state response
throughout the wider network underlying human somatosensory
function.

Typical studies on steady-state responses characterize
source activation based on similarity between source dynamics
(functional connectivity), which is ultimately driven by their
similarity with stimuli (Bardouille and Ross, 2008; Schlee
et al., 2008). In an extreme case, two perfect sine waves can
be considered as highly correlated, but from the point of
information-theoretic analysis, such a model assumes no
information flow between them. In contrast to functional
connectivity, effective connectivity (an influence which
one signal exerts over another signal) essentially quantifies
information transfer, thus being an attempt to explicitly
describe information processing in a network (Vicente et al.,
2011). Typical directionality measures are asymmetric, and
can be applied in both directions, estimating an amount of
information transferred from one source to another, and vice
versa. Asymmetry in informant transfer would then indicate the
dominant directionality in propagation of information in the
network.

An analysis of dominant information flow with respect to SI
would provide more insight in reconstructing the propagation
of somatosensory response, inferring the directionality of
communications within the network of distributed neuronal
ensembles. In this study, we establish a fully data-driven
approach using information-theoretic tools to describe the
effective connectivity between neuromagnetic sources activated
in response to the mechanic pressure periodically applied to
a finger. We explore the exchange of information between
the primary somatosensory area SI and the rest of the brain.
We identify several distinctive sources which are localized
contralaterally to stimuli in the secondary somatosensory area

SII, thalamus, motor cortex, and ipsilaterally in the cerebellum.
Specifically, we show that more information is transferred from
SI to all those sources, than in the reverse direction.

MATERIALS AND METHODS

Experiment
MEG data were collected at a sample rate of 1,250 Hz with
a bandwidth of 0–300 Hz using a 151-channel whole head
first-order gradiometer system (CTF, Coquitlam, BC, Canada).
Subjects (n = 10) were seated upright with their head resting in
the helmet shaped scanner. Head localization coils were placed
on the nasion, and left and right pre-auricular points for co-
registration of MEG data with subject-specific anatomical MR
images. A small elastic air bladder was fitted to the right index
finger pad. Vibrotactile stimulation was applied to the finger by
pressurizing the bladder with 23 Hz trains of 10 ms compressed
air pulses of 3 s in duration. The inter-train interval was randomly
distributed between 3 and 5 s. A white noise masking sound was
binaurally presented at 90 dB SPL via insert phones to mask
sounds possibly associated with the stimulator. MEG and the
driving signal for the stimulator were collected simultaneously
for 10 min. Subjects watched a subtitled silent movie and were
asked to stay alert during the MEG recording. No responses
were required. Informed and written consent was obtained from
each subject before participating in the study, which had been
approved by the Research Ethics Board at Baycrest Centre for
Geriatric Care. More details on the data acquisition can be found
in Bardouille and Ross (2008).

Asymmetry in Information Transfer
In this section we describe a non-linear method to quantify
the transfer of information between two processes. This method
explicitly assumes that sensory processing may be considered
the result of generation and transformation of cooperative
modes of neural activity (Bressler, 1995, 2002; McIntosh, 1999).
Specifically, the principles emphasize the integrative capacity
of the brain in terms of ensembles of coupled neural systems
interacting in a non-linear way (Nunez, 1995; Jirsa andMcIntosh,
2007). Typically, in a non-linear analysis of EEG or MEG, it
is assumed that individual time series, xt and yt , represent
the manifestation of underlying multi-dimensional non-linear
dynamics (Stam, 2005). To estimate the exchange of information
between two systems, we reconstruct, from time series of
observations, the dynamics in the multi-dimensional state space
of the underlying model. It can be done with time delay
embedding

xt = (xt , xt−τx , ..., xt−τx(dx−1))
T (1)

yt = (yt , yt−τy , ..., yt−τy(dy−1))
T (2)

wherein each time series, xt and yt , is converted to a sequence
of vectors in a multi-dimensional space. Here dx and dy are
embedding dimensions, and τx and τy are embedding delays
measured in multiples of the sampling interval. Note that the
ultimate goal is not to reconstruct an orbit in the state space that
is closest to the true one. However, Takens’ embedding theorem
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states that if the embedding dimension m is sufficiently high, the
macrocharacteristics of a dynamic system such as the entropy or
information content of a signal can be approximated (Takens,
1981).

Information transfer from system xt to yt can be quantified
using information-theoretic tools. Intuitively, yt is a nonlinear
cause of xt , denoted as Y → X, if past and present values
of yt contain information about future values of xt , provided
that information about past and present of xt itself is excluded
(Palus et al., 2001). The transfer of information from Y to X is
quantified as the conditional mutual information I(xt+k, yt|xt)
between xt+k and yt given xt . Palus and Vejmelka (2007) showed
that under certain conditions, I(xt+k, yt|xt) is equivalent to the
measure of transfer entropy T(Y → X) proposed by Schreiber
(2000). The transfer of information T(Y → X) or I(xt+k, yt|xt)
can be expressed in terms of individual H(·) and joint entropies
H(·, ·) and H(·, ·, ·) as following:

Tk(Y → X) ≡ I(xt+k, yt|xt) = H(xt+k, xt)+H(yt , xt)

−H(xt+k, yt , xt)−H(xt+k) (3)

where the index k is used to designate dependence of the transfer
information on the future lag k, which is measured in units of
data points. In a similar way we define the transfer of information
Tk(X → Y) from X to Y :

Tk(X → Y) ≡ I(yt+k, xt|yt) (4)

In general, it holds that I(yt+k, xt|yt) 6= I(xt+k, yt|xt).
The difference between the two measures, Tk(X→Y) and
Tk(Y → X), characterizes an asymmetry in the predictive power
between two signals, and thus indicate the directionality of the
dominant information transfer between the systems underlying
the observed signals. Specifically, we define the asymmetry in
information transfer Dk(Y → X) as:

Dk(Y → X) = Tk(Y → X)− Tk(X → Y) (5)

Note that this statistic is anti-symmetrical, e.i. Dk(Y → X) =

−Dk(X → Y), and produces zero values between identical
signals.

Estimation of Information Transfer
Until now we described the theoretical aspects of constructing
a measure of the information transfer (3) and (4). A crucial
issue is how to estimate them from finite noisy time series. Here
we give a short description of the pipeline which was tested in
previous studies using linear and linear models (Chávez et al.,
2003; Vakorin et al., 2009, 2012, 2013).

There are three points to note. First, in estimating the measure
(5), to reduce the variance of estimation error and to increase the
robustness of the results, Tk(Y → X) and Tk(X → Y) can be
substituted by their averaged estimates, < Tk(Y → X) >k and
< Tk(X → Y) >k, respectively, where< ... >k denotes averaging
over a selected range of future lags k = 1, ..., kmax (Palus et al.,
2001). Thus, the measure D(Y → X) can be expressed as

D(Y → X) =< Tk(Y → X) >k − < Tk(X → Y) >k (6)

The second issue is estimation of the entropies themselves.
The straightforward approach is to divide the state-space into
bins, i = 1, 2, 3, ..., of some size δ and calculate the entropy
of the multidimensional dynamics through constructing a
multidimensional histogram, estimating probabilities of being in
the bin i, pi(x, δ). This study took another approach, as proposed
by Prichard and Theiler (1995) who estimated individual and
joint entropies H(x) through the corresponding correlation
integral Cq(x, r).

Correlation integral is interpreted as the likelihood that the
distance between two randomly chosen points or embedding
vectors, xi and xj, representing the multi-dimensional dynamics
of x at times i and j, is smaller than some characteristic scale
length r. The entropy can be estimated through correlation
integral as

H(x) = −
∑

i(bins)

pi(x, δ) log2 pi(x, δ) ≈ − log2 Cq(x, r) (7)

where the correlation integral Cq(x, r) is a function of the scale
parameter r, which in general can be related to the bin size δ. The
parameter q is the integral order.

In turn, the Cq(x, r) is defined as

Cq(x, r) =
1

N(N − 1)q−1
×

N
∑

j=1





∑

i6=j

2(r− ‖ xi − xj ‖)



 (8)

where N is the number of data points (embedding vectors), 2

is the Heaviside function, and ‖ · ‖ stands for the maximum
norm distance between two embedding vectors xi and xj. For a
given vector xi, the function

∑

i6=j 2(r− ‖ xi − xj ‖) represents

the number of the points j such that the distance between the d-
dimensional vectors xi and xj is less than r. In this study, we used
the second order (q = 2) correlation integral, following Pompe
(1993) who proposed to call this a measure of generalized mutual
information.

The third point is related to the issue of choosing the optimal
embedding parameters, τ and d. This is a crucial and, in
general, non-trivial step. There are many competing approaches
proposed in the literature, and all of them are heuristic and
somewhat mutually exclusive. The task can be simplified in case
of frequency priors when we are interested in interactions for a
specific frequency band (Montez et al., 2006). The idea is that the
embedding lag τ should be short enough to capture the fastest
oscillations cut off by the highest frequency fH , while the lowest
frequency fL determines the embedding window d × (τ − 1) of
a delay vector. The embedding window should be long enough
to allow for the slowest processes. This leads to the following
estimators:

τ =
fs

ǫ fH

d =
ǫ fH

fL
+ 1 (9)

where fs is the sampling frequency, and ǫ = 2...3 is a constant
factor related to the Nyquist sampling theorem, indicating that a
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process must be sampled at least twice the highest frequency of
its fluctuations.

Workflow of the Analysis
First, MEG data were down-sampled to a 250Hz sampling rate,
and separated into trials of five second durations including 1 s
pre-stimulus and 1 s post-stimulus intervals. The stimuli were
of 3 s durations. For each MEG sensor and each trial, the
baseline correction was achieved by subtracting the mean signal
strength across the pre-stimulus interval, and a band pass filter
was applied between 16 and 28 Hz. Based on the prior knowledge
about the SSSR, we isolated the steady-state MEG data as the
time interval from 500ms after stimulus onset to the end of the
stimulus train, [0.5s 3.0s]. The first half second was discarded to
avoid possible transitory effects.

Source activity was reconstructed with synthetic aperture
magnetometry (SAM) (Robinson and Vrba, 1999). The nasion
and left/right pre-auricular points were identified on the subjects’
anatomical MRI to co-register the MEG data. Isolating the
scalp in the MRI generated a realistic head model for source
estimation. Based on this head model and the steady-state MEG
data, a weighting coefficient set was determined at each node
on a 5 × 5 × 5 mm grid encompassing the whole brain
using a data-driven linearly constrained minimum variance
beamformer (Robinson and Rose, 1992; Van Veen et al.,
1997). The coefficient sets, in linear combination with the
MEG data, estimated the source activity at each grid node to
generate whole brain estimates of neuronal activity over time.
For more details on the preprocessing procedures and source
reconstruction, see Bardouille and Ross (2008). The methods for
estimating asymmetries in information transfer were applied to
the reconstructed steady-state source activity.

Further, the steady-state time series for each voxel were
normalized to have the mean of zero and the variance of one.
Then, the delay vectors was constructed with the embedding
dimension of 5 and the lag of 4 time points according to the
criteria (9), assuming that fL = 16Hz and fH = 28 Hz.
In a previous study (Vakorin et al., 2010), for each subject,
we identified a source localized to the primary somatosensory
area SI, contralateral to stimuli. This source was characterized
as having higher signal regularity among other sources (MEG
virtual channels), based on the analysis of sample entropy
(Vakorin et al., 2010). Net information transfer as defined in (6)
was calculated between area SI and all other virtual channels, for
all the single trials, with subsequent averaging across trials.

The volumetric maps of the net information transfer with
respect to area SI were created and co-registered with the
anatomical MRI identifying the head localization coil locations
in the MR image. Each subject’s MRI was transformed into
Talairach space, and we applied the same transformation to the
maps of information exchange on a subject-by-subject basis.
Then, for each virtual channel, one-sample t-test was apply
to compare the mean score to zero across subjects, and the
volumetric maps of t-test values and corresponding p-values
were created. AFNI software (Cox, 1996) was used to visualize
the volumetric data, with the t-test map superimposed on the
subject-averaged anatomical MRI. For each cluster of virtual

channels, we computed the mean effect size, averaged across all
virtual channels in the given cluster. Effect size was calculated as
Hedges’ g statistic (Hedges, 1981), which was proposed to correct
a bias for Cohen’s d statistic for small sample size (n < 20).

RESULTS

Previously, having applied an analysis of signal regularity
quantified as inverted signal complexity (sample entropy), we
localized activation of a source in the somatosensory area
SI contralateral to stimuli (Vakorin et al., 2010). Specifically,
Figure 1 shows the volumetric subject-averaged activation map
for a local peak in area SI. The activation map was thresholded
at the level of 90% of its maximum, and was superimposed on
the subject-averaged anatomical MRI. The color bar in Figure 1

indicates the magnitude distribution of the measure of signal
regularity averaged across subjects. Higher values coded in red
colors are associated with an increase in signal regularity of the
steady-state response at a given source location. This was a result
obtained in our previous study. In the current study, we used the
source associated with the subject-specific peak in regularity in
area SI, as the seed for an analysis of directionality of coupling
from SI to the rest of the brain.

For each subject, we generated volumetric maps of the net
information transfer with respect to a source in area SI (the seed),

FIGURE 1 | Axial (A), coronal (B), and saggital (C) views of volumetric

regularity (inverted complexity) map of the somatosensory steady-state

response, shown for a peak located in the primary somatosensory area SI.

The map is thresholded at the level of 90% of the maximum regularity value of

0.026. Higher values coded with red colors are associated with higher signal

regularity of the steady-state response at a given location, compared to other

sources.
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with the rest of the brain being the target. For almost all virtual
channels, the hypothesis on the normality of the distribution of
net information transfer across subjects could not be rejected.
The robustness of the asymmetry in information transfer across
subjects was then tested with t-tests. The distribution of t-
test values across all the virtual channels is shown in Figure 2.
Note that positive values for the t-statistic are associated
with the dominant transfer of information from the primary
somatosensory area SI, whereas the negative values indicate that
net information is coming into area SI. As can be seen from
Figure 2, the distribution is skewed toward the positive values,
indicating that, on average, area SI is considered a generator of
information in the propagation of the somatosensory steady-state
response.

Next, we identified the upper 0.1%-tail of this distribution
defined by the 0.999-quantile equal to 4.77. Then, we used a
clustering procedure 3Dclus from AFNI software to find clusters
of active voxels, removing clusters below the size limit of 100–
200 voxels (the results were robust with respect to the cluster
size limit). The two clusters were localized in the secondary
somatosensory area SII (Hedges’ g = 1.4 ± 0.3) and thalamus
(Hedges’ g = 1.3± 0.2). Specified in Talairach coordinate system,
the peak located in area SII was found to be around x = –53 mm
[L], y= –9 mm [P], and z= 27 mm [S], whereas the coordinates
of the thalamic source were around x = –6 mm [L], y = –4
mm [P], and z = –4 mm [I]. Figure 3 shows the axial, coronal,
and sagittal views of the volumetric map of net information
transfer with respect to area SI for these two locations: sub-
panels in the left are associated with area SII (Figures 3A,C,E),
where sub-panels in the right column illustrate activation in
thalamus (Figures 3B,D,G). The map was thresholded at the
0.999-quantile, and was superimposed on the subject-averaged

anatomical MRI. Note that red color represents the net transfer
of information directed from SI to SII and thalamus.

With a decreased threshold for the t-test statistics associated
with a 0.5% tail, similar procedure identified four clusters.
Specifically, in addition to sources in area SII and thalamus
contralateral to stimuli, we found a source in the motor cortex
(Figures 4A,C,E) around x = –44 mm [L], y = –3 mm [P], and
z= 54 mm [S] contralaterally, and in the cerebellum ipsilaterally
(Figures 4B,D,F) around x = 23 mm [R], y = –53 mm [P], and
z = -17 mm [I]. Effect size for both these sources was estimated
to be around Hedges’ g = 1.3± 0.1.

DISCUSSION

Typically, measures for quantifying similarities between the
signals are symmetric. Basically, almost all measures of functional
connectivity belong to this class. In contrast, asymmetry in the
time courses between brain areas may indicate another aspect
of coordinated activity. Specifically, a significant difference in
the amount of information sent in one direction and in the
other, may be indicative of elevated communication between
nodes in a functional network. Information generated by a
dynamic system (which can be quantified as signal complexity
of individual nodes) and information transfer between them
would be considered two complementary sides of the interplay
between specialization and integration processes (Mišić et al.,
2011; Vakorin et al., 2012). An analysis of net information
transfer thus would provide more insight in reconstructing the
sequence and directionality of interactions occurring in the
network of distributed neuronal ensembles, whichmay be hidden
for measures of functional connectivity.

FIGURE 2 | Distribution of the t-test values across the virtual channels (voxels). The channels from the upper 0.1%-tail, which is defined by 0.999-quantile = 4.77,

represent two brain areas, shown in Figure 3.
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FIGURE 3 | Volumetric map of net information transfer with respect to the

primary somatosensory area SI. The map is thresholded at the 0.999-quantile

(0.1% tail in Figure 2), and is superimposed on subject-averaged anatomical

MRI. Two clusters of virtual channels are identified: secondary somatosensory

area SII (left column, A,C,E), and a thalamic source (right column, B,D,F). The

directionality of dominant information transfer is from SI to SII and thalamus.

The data used in our study have been differently
analyzed in two previous studies (Bardouille and Ross, 2008;
Vakorin et al., 2010). Bardouille and Ross (2008) applied a
measure called inter-trial coherence (ITC) (Stapells et al., 1987)
to identify brain areas that activate synchronously during the
steady-state response with consistent phase relations to the
vibrotactile stimulation of the right index finger. Although they
were able to identify a handful of sensorimotor areas, only area
SI activated contralaterally to the stimulus was consistently
expressed across all the subjects.

Using the same data, Vakorin et al. (2010) further studied
the activation of the somatosensory steady-state response (SSSR)
with entropy-based statistics constructed from a combination
of information theory and non-linear dynamics. Instead of
estimating the consistency of the frequency-specific phase
dynamics across trials, this study explored the signal complexity

FIGURE 4 | Volumetric map of net information transfer with respect to the

primary somatosensory area SI, similar to Figure 3, but with a decreased

threshold associated with the 0.5% tail of the distribution in Figure 2. The

directionality map is superimposed on subject-averaged anatomical MRI. With

the decreased threshold, two more clusters of virtual channels are identified:

one in the motor cortex (A,C,E), and one in the cerebellum (B,D,F). The

directionality of dominant information transfer is from SI to motor cortex and

cerebellum.

(or regularity) of individual trials, using sample-entropy, a
measure that is closely related to the mean rate of information
generated by a non-linear system underlying the observed time
series (Richman and Moorman, 2000; Vakorin and McIntosh,
2012). In contrast to ITC, this analysis identified activity not only
in area SI contralateral to stimuli, but also bilaterally in the PPC,
as regions with increased signal regularity, consistently expressed
across the subjects.

In the same data, a seed analysis with respect to a source
with a higher signal regularity, located in in SI, a measure of
pattern synchronization called cross-sample entropy was used
to generate synchrony maps between SI and the rest of the
brain (Vakorin et al., 2010). Cross-sample entropy is similar
to sample entropy but defined for a pair of time series. The
analysis confirmed the synchronized dynamics of neuromagnetic
activity between SI and PPC, robustly expressed across subjects.
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As no regions of interest were defined a priori, the map of
pattern synchronizations between activated regions emerged
automatically on the noisy background. The patterns contained
in PPC regions were found to be well coordinated with those in
SI, not necessarily being phase locked.

In spite of some progress made in understanding the SSSR,
the question on the different stages of the development of the
SSSR requires a further exploration. For example, in studies
on the auditory steady-state response (ASSR) as a result to a
periodically acoustic signal, it has been demonstrated that the
development of the ASSR to amplitude-modulated sound occurs
in cortical regions at slower modulation rates (<60Hz) and in
brainstem at faster modulation rates (>60Hz) (Dimitrijevic and
Ross, 2008). Despite analogous functional implications about the
spatial characteristics of the SSSR, a better understanding of the
somatosensory processing is expected.

Establishing a fully data-driven pipeline, this study explored
the transmission of information between neuromagnetic
sources in a functional network activated by vibrotactile
stimulation of the right index finger. First, whole-brain
neural activity representing the somatosensory steady-state
response was reconstructed with a beamformer technique.
Then, the information exchange was quantified between the
primary somatosensory area SI and the rest of the brain. The
volumetric map of the asymmetry in information transfer
with respect to SI was created. We identified several brain
areas wherein interactions with area SI were consistent across
subjects. Specifically, the sources were localized contralaterally
to the stimuli in the secondary somatosensory area SII, the
thalamus, the motor cortex, and ipsilaterally to the stimuli in the
cerebellum.

Thalamus sends and receives signals to and from cortical as
well as to and from sub-cortical areas within the local and large-
scale thalamo-cortical circuitry (Ribary et al., 2014). Five out of
about 50 nuclei of the thalamus act as relays, receiving inputs
from sensory peripheral receptors and sending the information
to the primary sensory cortex for sophisticated processing(Ward,
2013). The relay nuclei which innervate the primary sensory
projection areas, can be called the first-order relay nuclei. The
other 45 higher-order thalamic nuclei participate in complex
cortical and sub-cortical networks, relaying information between
cortical and subcortical areas without primary sensory inputs
(Sherman, 2012).

MEG has a limited spatial resolution and is not able to
distinguish between first-order and higher-order thalamic nuclei.
Directed coupling between area SI and thalamus, as found in
our study, represent an averaged information transfer between
these two brain regions. The imbalance in functional connectivity
observed as SI → thalamus, would be consistent with a variance
in the number and efficacy of the cortico-thalamic and thalamo-
cortical projections, assuming similarities between the visual
and somatosensory systems. It is estimated that there are 10-
100 cortico-geniculate axons for every geniculo-cortical axon
(Sherman and Koch, 1986). In cats, it was estimated that about
60% of the synaptic terminals in the lateral geniculate nucleus
(LGN) are cortical in origin, where only about 10% come from
retina (Montero, 1991).

As for anatomical connections between SI and SII, it
was often found, at least in the mouse, when the cortical
areas are mutually interconnected, they are also connected
through a cortico-thalamo-cortical pathway arranged in parallel.
The prevailing belief was originally based on an assumption
that information is transmitted through direct cortico-cortical
pathways (Kaas, 1987). For instance, in the visual system, a
corollary of such a postulate would be that the information sent
from the lateral geniculate nucleus to the primary visual cortex,
remains primarily in the cortex when it is transferred up the
higher levels of the cortical hierarchy (Olshausen et al., 1993).
However, other studies suggest that after the first transmission
of sensory information to the cortex from the periphery, much
of information exchange between cortical areas is performed by
the higher-order thalamic relays through the cortico-thalamic-
cortical routes (Sherman, 2001; Guillery and Sherman, 2002;
Sherman andGuillery, 2002). For example, using optical imaging,
Theyel et al. (2009) studied the cortical hierarchy in slices of
the mouse brain, involving the thalamus, primary and secondary
somatosensory areas. Their results indicate that direct cortico-
cortical projections from SI are not necessary to activate SII. On
the contrary, it was a cortico-thalamic-cortical circuit starting in
area SI that strongly activated area SII.

Note that in our study, we report only the dominant part
of bi-directional communication between the cortical areas. We
found that more information was transferred from area SI to area
SII, than vice versa. Physiologically, it may seem to be a trivial
result, as it is consistent with both hypotheses on information
processing in cortical hierarchy. Methodologically, however, the
analysis was performed in a fully data-driven manner. It is
interesting to report that the pathway SI → SII was identified
among all the possible connections between an activated source
in area SI and all other sources defined by the nodes of the grid
used to reconstruct the whole-head neuromagnetic activity.

We also identified connections leading from area SI to the
motor cortex and the cerebellum. A number of studies has
shown that in the rat SI can project to important motor control
centers (Petrof et al., 2015) as well as to cerebellum (Bower et al.,
1981). Both areas showed activation in response to electrically
stimulated SI (Brown and Bower, 2002). Specifically, SI projected
to the cerebellar granule cell patches either contralaterally
or ipsilaterally, depending on the laterality of the peripheral
projections of those patches. It was proposed that the cerebellum
can be responsible for coordinating the acquisition of sensory
data, which is further process by the nervous system, at least
in the rats (Bower and Woolston, 1983; Morissette and Bower,
1996). In the human brain, a number of functional MRI (fMRI)
studies reported ipsilateral activation of the cerebellar sources in
reaction to tactile stimuli. For example, passive movement with
the tactile system activated the primary supplementary motor
and pre-motor cortex, as well as SI and SII contralaterally and the
cerebellum ipsilaterally (Yang et al., 2011). Similar results were
found in another fMRI study involving stroking and touching
tasks (Zaman et al., 2001).

In general, our results thus demonstrate that exploring the
asymmetries in information transfer in the propagation of
a steady-state response with information-theoretic tools is a
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powerful method for describing information processing in a
data-driven manner, and is able to reveal coordinated activity
hidden from conventional analysis of functional connectivity.
For central processing of sensory information, our results were
found to be consistent with previously reported empirical
evidence on coupling between primary somato-sensory area SI
and secondary area SII, thalamus, motor cortex, and cerebellum.

LIMITATIONS OF THE STUDY

In our study, we quantify only net transfer of information, not
considering information flows in both directions separately. The
rational for this is that in the models based on coupled oscillators,
unidirectional coupling may lead to spurious detection of a
bidirectional coupling (Bezruchko and Smirnov, 2010). In other
words, in general, we cannot distinguish two situations: a
unidirectional coupling or bidirectionally coupled systems with
a weak coupling in one direction and a strong coupling in the
other. Also note that we quantify asymmetry in information
transfer, meaning that equal information flows in both directions
will cancel each other. This would potentially explain why we do
not observe activation in some areas like posterior parietal cortex
(PPC) with effective connectivity. Specifically, in our previous
study (Vakorin et al., 2010), we identified a connection between SI
and bilateral PPC, using a measure called cross-sample entropy,
which represents a non-linear method for estimating functional
connectivity. This would imply that neurodynamics at SI and
PPC are essentially similar, and therefore net information transfer
between them is close to zero. In the current study, we quantify a
dis-balance in information transfer, reporting connections with a
high asymmetry.

We limited our analysis to the canonical beta frequency
band, which was associated with the stimulus frequency. We
did not divide the whole beta band into sub-bands. A number
of studies have indicated that the directionality of coupling
for spectrally resolved statistics can be sensitive to phase
delays (or advances) between the signals in the presence of
strong phase synchronization (Vakorin et al., 2013). We used
a canonical beta frequency band, which on the one hand, can
be associated with the stimulus frequency, and on the other
hand, is relatively wide to avoid spurious effects related to phase
synchronization.

We also acknowledge that our study may have been limited by
a relatively small sample size (n = 10), although, as described in
section Results, effect size for activation clusters was strong, based
on Hedgesg statistic (Hedges, 1981).
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