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This paper presents the Homeo-Heterostatic Value Gradients (HHVG) algorithm as a

formal account on the constructive interplay between boredom and curiosity which gives

rise to effective exploration and superior forward model learning. We offer an instrumental

view of action selection, in which an action serves to disclose outcomes that have intrinsic

meaningfulness to an agent itself. This motivated two central algorithmic ingredients:

devaluation and devaluation progress, both underpin agent’s cognition concerning

intrinsically generated rewards. The two serve as an instantiation of homeostatic and

heterostatic intrinsic motivation. A key insight from our algorithm is that the two

seemingly opposite motivations can be reconciled—without which exploration and

information-gathering cannot be effectively carried out. We supported this claim with

empirical evidence, showing that boredom-enabled agents consistently outperformed

other curious or explorative agent variants in model building benchmarks based on

self-assisted experience accumulation.

Keywords: curiosity, boredom, goal-directedness, intrinsic motivation, outcome devaluation, satiety, homeostatic

motivation, heterostatic motivation

1. INTRODUCTION

In this study, we present an instrumental view of action selection, in which an action serves to
disclose outcomes that have intrinsic meaningfulness—i.e., that hold epistemic values—to an agent
itself. The implication of this statement is twofold: (1) for agents whose innate goal appeals to their
own knowledge gain, the occurrence of curiosity rests upon the devaluation of known knowledge
(and hence goal-directedness); (2) boredom—consequential to devaluation—and curiosity entail a
mutually reinforcing cycle for such kind of (meaningful) disclosure to ensue.

Animal studies have shown that learning stimulus-response (S-R) associations through action-
outcome reinforcement is but one facet of instrumental behavior. Internally, animals may build
models that assign values to reappraise experienced outcomes. This expands the landscape of
instrumental behavior to include the stimulus-outcome-response (S-O-R) learning system—or
goal-directed learning (Balleine and Dickinson, 1998). Goal-directed behavior is known in both
empirical and computational approaches to support adaptive and optimal action selection (Adams
and Dickinson, 1981; Adams, 1982; Mannella et al., 2016). Central to such behavioral adaptiveness
is devaluation. This means for a given action-outcome pair the associated reinforcing signal is no
longer monotonic. Instead, an outcome value will change with reappraisals in accordance with an
agent’s internal goal.

One classic paradigm of devaluation manipulates an agent’s level of satiation based on
food accessibility, leading to altered behavioral patterns. In the context of epistemic disclosure,
an analogy can be drawn between devaluation and the emergence of boredom, in which
one’s assimilation of knowledge reduces the value of similar knowledge in future encounters.
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The relationship between boredom and outcome devaluation
has a long history in psychological research. Empirical findings
indicated that boredom is reportedly accompanied by negative
affective experiences, suggesting that experienced outcomes are
intrinsically evaluated and considered as less valuable (Perkins
and Hill, 1985; Vodanovich et al., 1991; Fahlman et al., 2009; van
Tilburg and Igou, 2012; Bench and Lench, 2013).

Psychophysiological studies also demonstrated that boredom
plays an active role in eliciting information-seeking behaviors.
Subjects showing higher levels of reported boredom are
accompanied by increased autonomic arousal, such as heart rate
and galvanic skin response. These findings are in line with our
key notion that boredom intrinsically and actively drives learning
behaviors (Berlyne, 1960; London et al., 1972; Harris, 2000). Note,
however, that this notion is contested and a matter of unsettled
debate (e.g., Eastwood et al., 2012; Fahlman et al., 2013;Merrifield
and Danckert, 2014; Danckert et al., 2018). It is therefore worth
pointing out that boredommay be accompanied by a low arousal
state (Barmack, 1939; Geiwitz, 1966; Mikulas and Vodanovich,
1993; Pattyn et al., 2008; Vogel-Walcutt et al., 2012).

A finding by Larson (1990) invites the speculation that
a task set may interact with boredom, thereby modifying
a subject’s behavioral pattern to follow either low or high
arousal states. This means boredom may merely signal a
state of disengagement. Whether an agent’s cognitive resources
can be freely allocated to re-engage another task inherently
depends upon the existence of a prohibiting condition. Larson’s
(1990) participants, who reported boredom and were later
rated with low scores in creative writing, were by design
not allowed to disengage from the essay-writing task. Other
theories, on the other hand, suggested that boredom is associated
with increase in creativity (Schubert, 1977, 1978; Harris,
2000).

We thus postulate that, in the absence of any a priori
cognitive or behavioral constraints, a state of boredom is followed
by an attempt to diversify one’s experience. That is, boredom
begets exploration. This is in line with Vodanovich and Kass’s
(1990) notion of boredom in “inspiring a search for change and
variety” and Zuckerman’s (2008) “sensation-seeking.” Sensation-
seeking (Zuckerman, 1971, 2008; Kass and Vodanovich, 1990;
Dahlen et al., 2005) is categorized as a personality trait, tightly
linked to boredom susceptibility (Zuckerman et al., 1978).
High sensation seekers get bored more easily, suggesting that
individuals susceptible to boredom are predisposed to seek novel
sensations. As a result, a learner who is also a novelty-seeker may
have a world model that generalizes better. In our framework,
receiving novel sensations is formalized as planning to visit states
where an agent can effectively learn faster (i.e., the agent gets
bored quicker). This effect is then treated as an intrinsic reward,
prompting an agent to continue experiencing the state before the
reward is depleted.

A recent computational modeling tapped into a similar theme
(Gomez-Ramirez and Costa, 2017), where boredom facilitates
exploration. However, our work differs from that of Gomez-
Ramirez and Costa (2017) in that our model permits a simple
form of agency (by having an action policy) and focuses on
learning. Additionally, their exploration may favor predictable

state space, whereas our agent will treat high predictability as an
intrinsically non-rewarding state.

Finally, in psychology studies, the term boredom usually
comes under two distinct constructs: a state of boredom and
boredom proneness (Elpidorou, 2014, 2017; Mugon et al.,
2018). Boredom proneness is regarded as the psychological
predisposition of an individual to experience boredom which
poses a systematic impact on one’s social and psychological well-
being. By contrast, a state of boredom is seen as a transient,
regulatory signal that prompts one’s behaviors into alignment
with its goal-directedness (Elpidorou, 2017). In this sense,
our model conceptually encompasses the function of the state
boredom regulatory signal.

Curiosity, irrespective of being a by-product of external goal-
attainment or an implicit goal in and of an agent itself, is often
ascribed as a correlate of information-seeking behavior (Gottlieb
et al., 2013). Behaviors exhibiting curious quality are observed
in humans and animals alike, suggesting an universal role of
curiosity in shaping one’s fitness in terms of survival chance.
Though the exact neural mechanism underlying the emergence
of curious behavior still remains obscure, current paradigms
have their focus on (1) novelty disclosure and (2) uncertainty
reduction aspects of information-seeking (Bellemare et al., 2016;
Friston et al., 2017; Ostrovski et al., 2017; Pathak et al., 2017).
Indeed, both aspects can be argued to improve agent’s fitness in
epistemic landscape if the agent elects to incorporate the novelty
or uncertainty.

Both boredom and curiosity are tightly connected to the
notion of intrinsic motivation. Specifically, the occurrence of
boredom and curiosity can be mapped to homeostatic and
heterostatic motivations, respectively. The homeostatic and
heterostatic motivations as two important classes of intrinsic
motivation have been extensively reviewed in Oudeyer and
Kaplan (2009). Simply, a homeostatic motivation drives a system
to compensate perturbations in order to reach some equilibrial
state. A heterostatic motivation is the opposite of a homeostatic
motivation. A system that is driven by heterostatic motivations
will self-perturb out of its equilibrium. In our formalism,
predictive model learning and policy learning, each respectively
induces boredom and curiosity, suggesting that the two classes of
motivation can in fact be complementary when the two learning
tasks are carried out concurrently. Our contribution thus pertains
to the reconciliation of homeo-heterostatic motivations.

2. MARKOV DECISION PROCESS

In what follows, we briefly review preliminaries for the ensuing
algorithm. We focus on well-established themes surrounding
typical reinforcement learning, including Markov Decision
Process and value gradients as a policy optimisation technique.

In Markov Decision Process (MDP) one considers the tuple
(S,A,R, P,π , γ ). S and A are spaces of real vectors whose
member, s ∈ S and a ∈ A, represent states (or sensor values)
and actions. R is some reward function defining the mapping
R : S × A → R. The probabilities associated with states and
actions are given by the forward model P(S′|A = a, S = s) and
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the action policy π(A|S = s). Throughout the paper we use the
‘prime’ notation, e.g., s′, to represent one time step into the future:
s′ = s(t + 1).

The goal of MDP is to optimally determine the action policy
π∗ such that the expected cumulative reward over a finite (or
infinite) horizon is maximized. Considering a finite horizon
problem with discrete time, t ∈ [0,T], this is equivalent to

π∗ = argmaxπ Ea∼π

[

∑T
t=0 γ

tR(s(t), a(t))
]

, where γ ∈ [0, 1]

is the discount factor.
Many practical approaches for solving MDP often resort

to approximating state-action value q(a, s) or state value v(s)
functions (Sutton and Barto, 1998; Mnih et al., 2013; Heess et al.,
2015; Lillicrap et al., 2015). These value functions are given in the
Bellman equation

v(s) = Eπ(a|s)

[

R(a, s)+ γ q(a, s)
]

= Eπ(a|s)

[

R(a, s)+ γEP(s′|a,s)[v(s
′)]
]

(1)

When differentiable forwardmodel and reward function are both
available, policy gradients can be analytically estimated using
value gradients (Fairbank and Alonso, 2012; Heess et al., 2015).

3. HOMEO-HETEROSTATIC VALUE
GRADIENTS

This section describes formally the algorithmic structure and
components of the Homeo-Heterostatic Value Gradients, or
HHVG. The naming of HHVG suggests its connections with
homeostatic and heterostatic intrinsic motivations. A detailed
review on homeostatic and heterostatic motivations are given in
Oudeyer and Kaplan (2009). Briefly, a homeostatic motivation
encourages an organism to occupy a set of predictable,
unsurprising states (i.e., a comfort zone). Whereas, a heterostatic
motivation does the opposite; curiosity belongs to this category.

The algorithm offers a reconciliation between the two
seemingly opposite qualities and concludes with their
cooperative nature. Specifically, the knowledge an organism
maintains about its comfort zone helps instigate outbound
heterostatic drives. In return, satisfying heterostatic drives
broadens the organism’s extent of comfort zone. As a
consequence, the organism not only improves its fitness in
terms of homeostatic outreach but also becomes effectively
curious.

3.1. Nomenclature and Notations
It is instructive to overview the nomenclature of the algorithm.
We consistently associate homeostatic motivation with the
emergence of boredom, which reflects the result of having
incorporated novel information into one’s knowledge, thereby
diminishing the novelty to begin with. This is conceptually
compatible with outcome devaluation or induced satiety in
instrumental learning. Devaluation progress is therefore referred
to as one’s epistemic achievement. That is, the transitioning
of a priori knowledge to one of having assimilated otherwise
unknown information. The devaluation progress is interpreted as

FIGURE 1 | Intuitive understanding of the Homeo-Heterostatic Value Gradients

(HHVG) algorithm. (A) The algorithm can be interpreted as the cooperative

interplay between a thrower (kid; blue) and a catcher (dog; red). The thrower is

equipped with a forward model that estimates its aiming and is controlled by

an action policy. Without knowing the thrower’s policy, the catcher

(meta-model), in order to make good catches, infers where the thrower is

aiming on average. (B) The catcher is interested in novel, unpredicted throws.

Whenever the catcher improves its predictive power some intrinsic reward

(devaluation progress) is generated. (C) As the catcher progresses further,

similar throws become highly predictable, thus inducing a sense of boredom.

(D) To make the interplay interesting again, the thrower is driven to devise new

throws, so that the catcher can afford to make further progress. By repeating

(A,B) the thrower has attempted diverse throws and known well about its aim.

At the same time, the catcher will assume a vantage point for any throw.

an instantiation of intrinsic reward. The drive to maintain steady
rewards conforms to a heterostatic motivation.

The notation L(·) consistently denotes loss functions
throughout the paper; any variables on which the loss function
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depends are always made explicit. There are occasions where we
abbreviated the loss function to avoid clutters. A definition such
as Lmm(ψ) : = L(a, s;ψ , θ) is then given upon first appearance.
Here, the subscript mm indicates meta-model. One may tell in
this example that the symbols a, s, and θ on the right hand side
are temporarily omitted. This means the optimisation procedure
for the meta-model concerns only the parameter ψ . Similarly,
this applies to Lfm, Lvf , and Lap, where the subscripts stand for
forward model, value function, and action policy. The symbol N
is reserved for Normal distribution.

3.2. Intuition
An intuitive understanding of HHVG is visualized in Figure 1.
Imagine the interplay between a thrower and their counterpart—
a catcher. The catcher anticipates where the thrower is aiming
and makes progress by improving its prediction. The thrower, on
the other hand, keeps the catcher engaged by devising novel aims.
Over time, the catcher knows well what the thrower is capable of,
whilst the thrower has attempted a wide spectrum of pitches.

In the algorithm, the thrower is represented by a forward
model attached to a controller (policy) and the catcher a “meta-
model.” We unpack and report them individually. Procedural
information is summarized in Algorithm 1.

3.3. Forward Model
We start by specifying at current time the state and action
sample as s and a. The forward model describes the probability
distribution over future state S′, given s, a, and parameter θ .

P(S′|A = a, S = s; θ) (2)

The entropy associated with S′, conditioned on s and a, gives
a measure of the degree to which S′ is informative on average.
We referred to this measure as one of interestingness. Note
this is a different concept from the “interestingness” proposed
by Schmidhuber (2008), which is the first-order derivative of
compressibility.

3.4. Boredom, Outcome Devaluation, and
Meta-Model
Boredom, in common understanding, is perhaps not unfamiliar
to most people under the situation of being exposed to certain
information which one has known well by heart. It is the opposite
of being interested. In the current work, we limited the exposure
of information to those being disclosed by one’s actions.

To mark the necessity of boredom, we first identify the
limitation of a naive instantiation of curiosity; then, we show that
the introduction of boredom serves to resolve this limitation.

Consider the joint occurrence of future state S′ and action A:
P(S′,A|S = s; θ ,ϕ). This can be derived from the product rule
of probability using P(S′|A = a, S = s; θ) (as shown Equation 2)
and action policy π(A|S = s;ϕ), parametrised by ϕ (action policy
is revisited in section 3.6).

A naive approach to curiosity is by optimizing the action
policy, such that A is predictive of maximum interestingness (see
section 3.3) about the future.

However, this naive approach would certainly lead to the agent
behaving habitually and, as a consequence, becoming obsessive

Algorithm 1Homeo-heterostatic value gradients

1: Variables

outer loop time t
gradient step counter ℓ, i, j, k
state st : = s(t) and action at : = a(t)
learning rate λθ , λψ , λν , λϕ

discount factor γ
experience pool D

2: Models and parameters

forward model P(S′|s, a; θ)
meta-model Q(S′|s;ψ)
value approximator v(s; ν)
action policy π(A|s;ϕ)

3: Objectives

forward-model learning Lfm(θ)
meta-model learning Lmm(ψ) ⊲ Eq.4
value learning Lvf (ν) ⊲ Eq.6
policy learning Lap(ϕ) ⊲ Eq.8

4: for t = 0 . . .T do

5: From st , sample action at ∼ π(·|st;ϕ)
6: Perform at and advance to st+1

7: Insert tuple
(

st , at ,π(at|st), st+1
)

into D

8: Sample D and train forward model:
9: Lfm(θ) : = L(s′, a, s; θ) = ‖s′ − f (a, s; θ)‖2 ⊲ Eq.14

10: θ (ℓ+1)← θ (ℓ) − λθ∇θLfm(θ
(ℓ))

11: Value learning (M updates, see Algorithm 2)
12: Sample D and perform devaluation:
13: ψ (i+1)← ψ (i) − λψ∇ψLmm(ψ

(i))
14: Sample D and train action policy:

15: evaluate R
(i+1)
ψ = Lmm(ψ

(i))− Lmm(ψ
(i+1))

16: evaluate v′ = v(s′; ν(j+M))
17: w← π(a|s;ϕ(k))/π(a|s;ϕ(<k))

18: ϕ(k+1)← ϕ(k) + λϕ∇ϕwLap(ϕ
(k)) given R

(i+1)
ψ , v′

Algorithm 2 Fitted Policy Evaluation [cf. Heess et al. (2015)]

1: Given

outer loop time t
experience pool D
value function v(s; ν(j))
gradient step counter i, j, k

2: Clone parameter ν̃ ← ν(j)

3: form = 1 . . .M do

4: Sample
(

sτ , aτ ,π(aτ |sτ ;ϕ(<k)), sτ+1
)

from D (τ < t)

5: Evaluate R
(i+1)
ψ = Lmm(ψ

(i))− Lmm(ψ
(i+1))

6: y = R
(i+1)
ψ + γ v(sτ+1; ν̃)

7: w = π(aτ |sτ ;ϕ(k))/π(aτ |sτ ;ϕ(<k))
8: Apply updates ν(j+m) ← ν(j+m−1) −

∇ν
w
2

(

y− v(s; ν(j+m−1))
)2

9: Every C updates, ν̃ ← ν(j+m)

about a limited set of outcomes. In other words, a purely
interestingness-seeking agent is a darkroom agent (see section
3.7; also Friston et al., 2012 for related concept).
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Such obsession with limited outcomes poses a caveat—the
agent has no recourse to inform itself about prior exposure
of similar sensations. If the agent is otherwise endowed with
this capacity, namely, by assimilating previous experiences into
summary statistics, an ensuing sense of boredom would be
induced. The induction of boredom essentially causes the agent
to value the same piece of information less, thus changing the
agent’s perception toward interestingness. If the agent were to
pursue the same interestingness-seeking policy, a downstream
effect of boredom would drive the agent to seek out other
information that could have been known. This conception
amounts to an implicit goal of devaluating known outcomes.

To this end, we introduce the following meta-model Q to
represent a priori knowledge about the future. Note that Q
is a conditional probability function over S′ and is not to be
confused with a state-action value function q(a, s) in MDP. The
meta-model, parametrised by ψ , is an approximation to the true
marginalization of joint probability P(S′,A|S = s; θ ,ϕ) over A:

Q(S′|S = s;ψ) ≈ P(S′|S = s; θ ,ϕ)

=
∑

A

[

P(S′,A|s; θ ,ϕ)
]

=
∑

A

[

P(S′|A, s; θ)π(A|s;ϕ)
]

(3)

We associate the occurrence of boredom, or, synonymously,
outcome devaluation, with minimizing the devaluation objective
with respect to ψ . The devaluation objective is given by the
Kullback-Leibler (KL) divergence:

Lmm(ψ) : = L(a, s;ψ , θ)

= DKL

[

P(s′|a, s; θ)
∥

∥Q(s′|s;ψ)
] (4)

3.5. Devaluation Progress, Intrinsic
Reward, and Value Learning
Through the use of KL-divergence in Equation 4, we emphasize
the complementary nature of devaluation in relation to a
knowledge-gaining process. That is to say, devaluation results in
information gain for the agent. This, in fact, can be regarded as
cognitively rewarding and, thus, serves to motivate our definition
of intrinsic reward.

One rewarding scenario happens when Q(S′|s;ψ) has all
the information there is to be possessed by A about S′. A is
therefore rendered redundant. One may speculate, at this point,
the agent could opt for inhibiting its responses. Disengaging
actions potentially saves energy which is rewarding in biological
sense. This outcome is in line with the “opportunity cost model”
proposed by Kurzban et al. (2013). In their model, boredom is
seen as a resource regulatory signal which drives an agent to
disengage the current task and curb the computational cost. As
a consequence, the occurrence of boredom may encourage re-
allocation of computational processes to alternative higher-value
activities (Kurzban et al., 2013).

Alternatively, the agent may attempt to develop new
behavioral repertoires, bringing into S′ new information (i.e.,

novel outcomes) that is otherwise unknown to Q. The ensuing
sections will focus on this line of thinking.

From Equation 4, we construct the quantity devaluation
progress to represent an intrinsically motivated reward. The
devaluation progress is given by the difference between KL-
divergences before and after devaluation [as indicated by the
superscript (i+ 1)]:

R
(i+1)
ψ (a, s) : = L(a, s;ψ (i), θ)− L(a, s;ψ (i+1), θ)

= Lmm(ψ
(i))− Lmm(ψ

(i+1)),
(5)

Here, we write R
(i+1)
ψ (a, s) in accordance with notational

convention in reinforcement learning, where reward is typically
a function of state and action. Subscript ψ indicates the
dependence of R on meta model parameter.

Having established the intrinsic reward, value learning is
such that the value function approximator v(s; ν) follows the
Bellman equation v(s) = Ea[R(a, s) + γEs′ [v(s

′)]]. In practice,
we minimize the objective with respect to ν:

Lvf (ν) : = L(s′, a, s; ν)

=
∥

∥y− v(s; ν)
∥

∥

2

y = R
(i+1)
ψ (a, s)+ γ v(s′; ν̃)

(6)

3.6. Policy Optimisation
We define action policy at state S = s as the probability
distribution over A with parameter ϕ:

π(A|S = s;ϕ) (7)

Our goal is to determine the policy parameter ϕ that
maximizes the expected sum of future discounted rewards. One
approach is by applying Stochastic Value Gradients (Heess et al.,
2015) and maximizes the value function. We thus define our
policy objective as follows (notice the negative sign; we used a
gradient update rule that defaults to minimization):

Lap(ϕ) : = L(s′, a, s; θ ,ψ (i),ψ (i+1), ν,ϕ)

= −Ea∼π(·|s;ϕ)

[

R
(i+1)
ψ (a, s)+ γEs′∼P(·|a,s;θ)

[

v(s′; ν)
]

]

(8)

3.7. Remarks on Homeostatic and
Heterostatic Regulations
Oudeyer and Kaplan (2009) outlined the distinctions between
two important classes of intrinsic motivation: homeostatic and
heterostatic. A homeostatic motivation is one that can be
satiated, leading to a certain equilibrium behaviorally; whereas a
heterostatic motivation topples the agent, thus preventing it from
occupying habitual states.

Our algorithm entails regulations relating to both classes
of intrinsic motivation. Specifically, the devaluation objective
(Equation 4) realizes the homeostatic aspect due to its connection
with induced satiety. On the other hand, the devaluation progress
(Equation 5) introduced for policy optimisation instantiates a
heterostatic drive to agent’s behavioral pattern.
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Heterostasis is motivated by the agent pushing itself toward
novelty and away from devalued, homeostatic states (as revealed
at the end of this section in Equation 13). This statement is shown

formally by replacing the reward R
(i+1)
ψ (a, s) in Equation 8, with

Equation 5. We then arrived at the following form involving
expected KL-divergence:

− Ea∼π(·|s;ϕ)

[

DKL[P(s
′|a, s; θ)‖Q(s′|s;ψ (i))]

− DKL[P(s
′|a, s; θ)‖Q(s′|s;ψ (i+1))]

]

− Ea∼π(·|s;ϕ)Es′∼P(·|a,s;θ)

[

v(s′; ν)
]

= −
{

I(S′ :A|S = s;ψ (i),ϕ, θ)− I(S′ :A|S = s;ψ (i+1),ϕ, θ)

+ Ea∼π(·|s;ϕ)Es′∼P(·|a,s;θ)

[

v(s′; ν)
]}

(9)

Notice that the expected devaluation progress becomes the
difference between conditional mutual information I before
(ψ (i)) and after devaluation (ψ (i+1)).

Assume, for the moment, that the agent is equipped with
devaluation capacity only. In other words, we replace the
devaluation progress and fall back on devaluation objective,
R : = Lmm(ψ) (cf. Equation 5). The agent is now interestingness-
seeking with homeostatic regulation.We further suppose that the
dynamics of ψ and ϕ evolve in tandem, which gives

I(S′ :A|S = s;ψ (i),ϕ(k))→ I(S′ :A|S = s;ψ (i+1),ϕ(k))

→ I(S′ :A|S = s;ψ (i+1),ϕ(k+1))

→ I(S′ :A|S = s;ψ (i+2),ϕ(k+1))→ . . .

(10)
In practice, the nature of devaluation and policy optimisation
often depends on replaying agent’s experience. Taking turn
applying gradient updates to ψ and ϕ creates a self-reinforcing
cycle that drives the policy to converge toward a point mass. For
instance, if the policy is modeled by some Gaussian distribution,
this updating scheme would result in infinite precision (zero
spread).

For curiosity, however, such parameter dynamics should not
be catastrophic if we subsume the homeostatic regulation and
ensure the preservation of the relation given in Equation 11:

I(S′ :A|S = s;ψ (i+1),ϕ(k)) ≤ I(S′ :A|S = s;ψ (i),ϕ(k))

≤ I(S′ :A|S = s;ψ (i+1),ϕ(k+1))

⇒ −I(S′ :A|S = s;ψ (i+1),ϕ(k))+ I(S′ :A|S = s;ψ (i),ϕ(k))

≤ I(S′ :A|S = s;ψ (i+1),ϕ(k+1)) (11)

This equation holds because the devaluation process on average
has a tendency to make A less informative about S′, after
which A is perturbed to encourage a new S′ less predictable
to Q. By rearranging the equation such that the left hand
side remains positive, we have arrived at a lower bound on
I(S′ :A|S = s;ψ (i+1),ϕ(k+1)) which recovers the expected
devaluation progress.

Equation 12 summarizes the argument associated with
Equations (10, 11).

ϕ(k+1) = argmax
ϕ(k)

[

I(S′ :A|S = s;ψ (i),ϕ(k))

− min
ψ̄ (i)

I(S′ :A|S = s; ψ̄ (i),ϕ(k))

]

6= argmax
ϕ(k)

[

min
ψ (i)

I(S′ :A|S = s;ψ (i),ϕ(k))

]

(12)

Finally, we offer an intuition on how policy optimisation
gives rise to heterostatic motivation. This is made clear from the

optimized target I(S′ :A|S = s;ψ (i+1),ϕ(k+1)), found on the right
hand side of Equation 11. It is instructive to re-introduce the true
marginalization P(S′|S = s; θ ,ϕ) from Equation 3; write:

I(S′ :A|S = s;ψ (i+1),ϕ(k+1)) =
∑

a

π(a|s;ϕ(k+1))

∑

s′

P(s′|s, a; θ) log
P(s′|a, s; θ)

Q(s′|s;ψ (i+1))
=
∑

a

π(a|s;ϕ(k+1))

∑

s′

P(s′|s, a; θ) log
P(s′|a, s; θ)

P(s′|s; θ ,ϕ(k+1))

P(s′|s; θ ,ϕ(k+1))

Q(s′|s;ψ (i+1))

= I(S′ :A|S = s;ϕ(k+1))+ DKL

[

P(s′|s; θ ,ϕ(k+1))‖Q(s′|s;ψ (i+1))
]

(13)

Simply, the optimized policy is such that the agent increases
the conditional mutual information and is pushed away (via
increasing the KL-divergence) from its homeostatic state Q.

4. IMPLEMENTATION CONSIDERATIONS

This section presents practical considerations when motivating
the aforementioned agent using neural networks. These
considerations were mainly for the ease of calculating
KL-divergence analytically.

4.1. Forward Model
We assumed that the state follows some Gaussian distribution
with mean s and covariance6. The future state is described by its
mean s′ according to the deterministic mapping s′ = f (a, s; θ),
where a is the action sampled from policy. f represents a neural
network with trainable parameter θ :

f (a, s; θ) = As+

(

∑

ι

aιB
ι

)

s+ Ca+ o (14)

A, B, and C are approximations of Jacobian matrices and o a
constant, all depending on θ . B is a three-way tensor indexed by
ι along the first axis. This treatment is similar to Watter et al.
(2015) (also cf. Karl et al., 2016), except that we considered a
bilinear approximation and that, in the following sections, we
used only the mean states in a deterministic environment.
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The above formalism follows that s′ has covariance matrix
E[s′s′⊺] = J6J⊺, where J =

(

A+
∑

ι aιB
ι
)

. The transition
probability is then given by

P(S′|A = a, S = s; θ) = N
(

f (a, s; θ), J6J⊺
)

(15)

The model parameter θ represented four fully connected layers
of width 512; the four layers were complemented by a residual
connection, which was a single fully connected layer. We used
rectified linear units (ReLU) as output nonlinearities. Next, four
fully connected, linear layers each mapped the 512-dimensional
output into vectors of dimension 16, 32, 8, and 1. These vectors
were then reshaped into tensors and used as A, B, C, and o.

4.2. Meta Model
Our meta model was defined as a Gaussian distribution Q(S′|S =
s;ψ) = N (µ′,6′;ψ), where the mean µ′ and covariance
matrix 6′ are outputs of a neural network parametrized by ψ .
Specifically, to construct the covariance matrix, we used the fact
that the eigendecomposition of a positive semi-definite matrix
always exists. This then means we can use neural networks to
specify an orthogonal matrix H and a diagonal matrix D, such
that the covariance matrix is equivalent to:

6′ = HDH⊺, D = diag(d)

H = I − 2
uu⊺

‖u‖2
,

(16)

where d is a positive-valued vector that specifies the diagonal
elements of D. The second line of Equation 16 shows how an
orthogonal matrix can be built from a real-valued vector u, called
Householder vector (Tomczak andWelling, 2016). I is an identity
matrix.

The network architecture used to compute µ′, d, and
u consisted of three trainable layers, each of which was
identically structured. Three fully connected layers with ReLU
activation functions, complemented by a residual connection,
were followed by a linear, fully connected output layer. The
output layer for d used a Softplus nonlinearity to ensure positive
values.

We can, of course, let the neural network output a full matrix
X and have 6′ = XX⊺. However, our method is less costly when
scaling up the problem dimension.

4.3. Policy and Value Functions
Both the policy and value functions were identically structured
in terms of network architecture. They consisted of four fully
connected layers with ReLU activation functions, complemented
by a residual connection. This was then followed by a linear
output layer. The outputs for the policy network were treated as
logits of a categorical distribution over action space.

5. EXPERIMENT

One testable hypothesis that emerges from our previous
remark—that boredom gives rise to novelty seeking policy (cf.
KL-divergence term in Equation 13)—is that boredom helps

improve agent’s forward model learning. This is because novelty
seeking essentially implies diversity in agent’s experience. In other
words, a boredom-driven curious agent must exhibit a tendency
toward exploration and against perseveration. This tendency is
critical when the agent was not given a training set (on which
it based its forward model learning) but has to self-assist in
accumulating one from scratch.

Briefly, an agent that tends to explore would appear to
accumulate experience that reflects a more complete picture of
the environment and, therefore, leads to a more accurate forward
model. By contrast, if an agent perseverates, it can only afford
to occupy a limited set of states, leaving its forward model an
inadequate representation of the environment.

The primary goal and purpose of the ensuing experiments is
thus to illustrate, with and without boredom, (1) the extent to
which an agent explores and perseverates, and (2) the forward
model performance.

To this end, we motivated a model pruning hierarchy on
which the comparisons above were based. The model pruning
hierarchy, as summarized in Table 1 and section 5.3, provides
a principled way to assess agent’s behavior by progressive
degrading model components. As a result, the difference between
a boredom agent and a boredom-free curious agent or non-
curious agent can be highlighted.

Explorativeness and perseveration were assessed qualitatively
using Coverage Rate (CR) and Coverage Entropy (CE), reported
in section 6. CR simply counts the number of states an agent
has visited amongst all possible states. CE focuses on weighing
the number of time steps a state was being occupied. CR
thus indicates the proportion of the environment explored
by the agent. Whereas, a CE curve declining over time
indicates the agent tends to perseverate around a limited state
space.

Forward model performance was assessed based on validation
error. The validation set was sampled from the oracle dataset
(see section 5.2). Contrary to self-assisted data accumulation,
the oracle dataset was acquired by uniformly sampling the state-
action grid. This dataset is therefore an idealized case to learn the
best possible forward model.

TABLE 1 | Model pruning hierarchy that helps highlight the contribution of

boredom and curiosity in regulating agent’s exploration and perseveration.

Oracle P/RW PG/GR PG/IRS C/PE C/B

FM X X X X X X

AP © X X X X

IR © X X

VF X X

MM X

Ticks mark the existence or dependence of trainable network components; circles indicate

independent intervention. Top row: P/RW, random-walk policy; PG/GR, policy gradients

with rewards drawn from a Gaussian distribution; PG/IRS, policy gradients with intrinsic

reward samples; C/PE, curiosity using forward model error; C/B, curiosity from boredom.

First column: FM, forward model; AP, action policy; IR, intrinsic rewards; VF, value function

approximator; MM, meta-model.
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FIGURE 2 | Environmental configuration. The red cross represents an

attractor, whilst black triangles repellers. Vector plots indicate the forces

exerted if the agent assumed the positions with zero velocities. The initial

position is set at the blue letter “A.” This configuration remains identical cross

all model variants and test runs.

Overall, we set the following constraints on training and
environment conditions: (1) agent is responsible for assembling
its own training set from scratch; (2) the probability of visiting
different states is not uniformly distributed if the agent will
commit to random walk; (3) the amount of time to accumulate
training data points is limited.

5.1. Training Environment
Our agents were tested in a physics simulator, free of stochasticity,
built to expand the classical Mountain Car environment (e.g.,
“MountainCar-v0” included in Brockman et al., 2016) into two-
dimensional state space. The environment is analogous to the
Mountain Car in ways that it has attractors and repellers that
resemble hill- and valley-like landscapes (Figure 2). The presence
of both structures serves as acceleration modifier to the agent.
This makes state visitation biased toward attractors. Therefore,
the acquisition of an accurate forward model necessitates
planning visits to the vicinity of repellers.

The states an agent can occupy were defined as the tuple
(x, y, ẋ, ẏ) in continuous real space. Positions (x, y) ∈ [0, 1]2

were bounded in a unit square, whereas velocities (ẋ, ẏ) were not.
Boundary condition resets x and y to zero velocities. However, it
is possible for the agent to slide along the boundaries if its action
goes in the direction parallel to the nearby boundary. We note
that being trapped in the corners is possible; though an agent
could potentially get itself unstuck if appropriate actions were
carried out.

Agent’s action policy was represented by a categorical
distribution over accelerations in x and y directions. The
distribution was defined on the interval [−2.0, 2.0]2, evenly
divided into a 11 × 11 grid. When an action is selected,

the corresponding acceleration is modified according to forces
exerted by the attractors and repellers.

Unlike the classical Mountain Car, our environment does not
express external rewards, nor does it possess any states that are
indicative of termination. Agents were allowed a pre-defined time
limit (T = 30, 000 steps; Data Accumulation Phase or DAP) to
act without interruption. Agent’s experiences in terms of state
transitions were collected in a database, which was sampled from
for training at each step. During DAP, learning rates for model
parameters remained constant. After DAP (or post-DAP), agent
entered an action-free stage lasted for T = 30, 000, during which
only sampling from own experience pool for forward model
training was performed. Learning rate scheduling scheme was
implemented at post-DAP.

An implementation of our training environment is available
online 1.

5.2. Oracle Dataset
To contrast with self-assisted data accumulation, we constructed
an oracle dataset. This dataset assumed unbiased state occupancy
and action selection. We acquired the dataset by evenly dividing
the state-action space into a 49 × 49 × 11 × 11 × 11 × 11
grid. Each state-action pair was passed to the physics simulator
to evaluate the next state. The resultant tuple (s, a, s′) then
represents one entry in the dataset. The training, testing, and
validation sets were prepared by re-sampling the resulting dataset
without replacement according to the ratio 0.8, 0.16, and 0.04.

A class of model referred to as Oracle, which consists of a
forward model only (Table 1), was trained on this dataset. The
Oracle model does not need to learn an action policy, as actions
are already specified in the oracle dataset. The Oracle model was
trained for 60, 000 epochs. During training, the learning rate was
scheduled according to test error. Benchmarking was performed
on the validation set as part of model comparisons (see section
5.4).

The oracle dataset differs from the ones that are populated
by an agent as it explores. For instance, some locations in the
state space are essentially inaccessible to our agent due to the
force exerted by the repellers. These locations greatly inform
forward model learning, however, but are only present in the
oracle dataset and available to the Oracle model.

5.3. Model Pruning
We defined five variants of our boredom-driven curious agent.
With each variation, the agent receives cumulative reductions
in network components. Theses reductions are summarized as
model pruning hierarchy in Table 1.

The reason that we motivated model comparisons based on
model pruning is to emphasize the contribution of boredom and
curiosity in regulating agent’s explorativeness and perseveration.
Overall, as model pruning progresses the agent was deprived
of functional constructs like devaluation progress, intrinsic
motivation, and planning. Eventually, the agent lost the ability to
contextualize action selection and became a random-walk object.
This corresponds to an ǫ-greedy policy with ǫ = 1. A random-
walk agent is explorative but it cannot be considered curious

1https://github.com/arayabrain/MountainCar2D
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in the sense that no principled means are applied to regulate
explorative behaviors. With the model variants detailed below
we intended to demonstrate the impact boredom and intrinsic
motivation have on regulating exploration and, as a consequence,
on forward model learning.

5.3.1. Boredom-Driven Curiosity (C/B)
The first agent variant retained all distinctive components
introduced in Section 3. The meta-model provides the
devaluation progress as intrinsic rewards, whilst the value
function enables the agent to plan actions that are intrinsically
rewarding in the long run.

5.3.2. Predictive Error-Driven Curiosity (C/PE)
The C/PE variant tests whether the induction of boredom is
a constructive form of intrinsic motivation. This is achieved
by removing the meta-model, thereby requiring an alternative
definition of intrinsic reward. We replaced the devaluation
progress with learning progress defined by mean squared errors
of the forward model:

R
(ℓ+1)
θ

: = Lfm(θ
(ℓ))− Lfm(θ

(ℓ+1))

Lfm(θ) : = L(s′, a, s; θ)

: = ‖s′ − f (a, s; θ)‖2 (17)

The construction of learning progress is one typical approach to
intrinsic motivation and curiosity (Schmidhuber, 1991; Pathak
et al., 2017).

5.3.3. Policy Gradients, Intrinsic Reward Samples

(PG/IRS), Gaussian Rewards (PG/GR)
Next, we examined how reward statistics alone influences policy
update and, as a consequence, model learning. The value function
was removed at this stage to dissociate policy learning from any
downstream effects of value learning.

One distinctive feature of devaluation progress is that it
entails time-varying rewards — depending on the amount of
time over which an agent has evolved in the environment. We
hypothesized that the emergence of curious policy is associated
with reward dynamics over time. That is to say, if one perturbs
themagnitudes and directions of the policy gradients with reward
statistics appropriate for the ongoing time frame, the agent
should exhibit similar curious behaviors. Nevertheless, we argue
that such treatment is only sensible given virtually identical
initial conditions. Specifically, all agent variants shared the
same, environmental configuration, initial position, and network
initialization.

To this end, we prepared a database for intrinsic reward
samples. During C/B performance, all reward samples were
collected and labeled with the corresponding time step.
Afterwards, the PG/IRS agents randomly sampled from the
database in a temporally synchronized manner and applied
standard policy gradients.

The PG/IRS was contrasted with the PG/GR variant. Their
difference lies in that a surrogate reward was used in place of
the database. We defined the surrogate reward as a Gaussian
distribution with time-invariant parameters, in which the mean

µ = 0 is under the assumption of equilibrium devaluation
progress and the standard deviation σ = 0.01, as derived from
the entire database.

5.3.4. Random-Walk Policy (P/RW)
Finally, we constructed a random-walk agent. All network
components, apart from the forward model, were removed. This
agent variant represents the case without intrinsic motivation
and is agnostic to curiosity. Broadly speaking, the agent was
still explorative due to its maximum entropy action policy. We
regarded this version as the worse case scenario to contrast with
the rest of the variants.

5.4. Model Comparisons
All model variants were compared on the basis of validation
error given the oracle dataset. We performed 128 runs for
each of the six variants (Oracle, C/B, C/PE, PG/IRS, PG/GR,
and P/RW). All variants, across all runs, were assigned to
identical environmental configuration (e.g., initial position,
attractor/repeller placements). Network components, whenever
applicable, shared identical architecture and were trained with
consistent batch size and learning rate. Model parameters
followed the Xavier initialization (Glorot and Bengio, 2010).
During post-DAP, learning rate scheduling was implemented
such that a factor 0.1 reduction was applied upon a 3000-epoch
loss plateau.

6. RESULTS

In this section, we offered qualitative and quantitative assessment
of agent’s behavioral pattern and performance across different
agent variants. As established previously, an agent’s performance
in modeling its own environment necessarily depends on both
explorative and non-perseverative behaviors. The overall picture
being delivered here is that the boredom-driven curious agent
(abbrev. C/B) exhibited stronger tendency toward exploration
(Figures 3A,B) and against perseveration (Figures 3C,D). In
accordance with our prediction, the forward model performance
was significantly better for the boredom agent, as compared with
other curious or non-curious variants (Figure 4 and Tables 2, 3).

We first characterized individual agent variants’ qualities of
being i) explorative and ii) perseverative. Active exploration
is one defining attribute of curiosity (Gottlieb et al., 2013),
simply because it differentiates between uncertain and
known situations, thus giving rise to effective information
acquisition. This, however, should be complemented with
suppressed perseveration; namely, to prevent oneself from being
permanently or dynamically captured—i.e., by the corners or the
attractor.

The two qualities can be distinguished, as shown in Figure 3,
by respective measures of Coverage Rate (CR) and Coverage
Entropy (CE). The two measures were computed by first turning
the state space into a 50 × 50 grid, ignoring velocities. CR keeps
track of whether or not a grid cell has been visited and, at each
time step, corresponds to the proportion of visited grid cells. A
CR curve increasing over time indicates that an agent would be
exploring new grid cells.
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FIGURE 3 | Coverage Rate (CR) and Coverage Entropy (CE) by agent variants. The two measures were computed by first turning the state space into a 50× 50 grid,

ignoring velocities. CR then marks over time whether or not a cell has been visited. Whereas, CE treats the grid as a probability distribution. Starting with maximum

entropy, CR cumulatively counts the number of times a position is being visited. Entropy was calculated at each time step using the normalized counter. (A) Overview

of CR shows the distinction between curious and non-curious agents. Curiosity caused the agents to explore faster. (B) Close-up on the curious agent variants, which

were equally explorative. (C) Overview of CE shows agents with different levels of perseverance. The P/RW variants were captured by the attractor, whilst the PG/GR

variants were prone to blockage. (D) Close-up on curious agents, which were characterized by higher CE due to attractor avoidance and more frequent repeller

visitation attempts. Shaded regions represent one standard deviation.

CE, on the other hand, accounts for the number of time
steps an agent revisited one grid cell. This then gives an
empirical probability distribution at each time step that reports
the likelihood of finding an agent occupying a grid cell. A
concentrated probability distribution means an agent only paid
visit to a small set of grid cells and, as a result, the probability
distribution has low entropy.

Because (state) visitation bias was inherent in our training
environment, naturally, agents occupying a subset of states
would cause CE to reduce faster than those who attempted
to escape. The C/B, C/PE, and PG/IRS variants were regarded
as curious and intrinsically motivated. Our results showed

that these variants were predominantly explorative and non-
perseverative. By contrast, the P/RW agent, albeit explorative,
had no principled means to escape the potential well. However,
if t → ∞ the P/RW should be able to explore further
by chance. The PG/GR variant, on the other hand, exhibited,
intermediate explorativeness and extreme perseverance with
disproportionately high variance. We attributed this behavior
to the detrimental effects of inappropriately informative reward
statistics.

Next, we benchmarked forward model performance of
individual variants by their validation loss and error percentage.
We reported DAP and post-DAP performances separately as a
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FIGURE 4 | Benchmarking model variants with oracle dataset. Performances were reported in error percentage (also, see Table 2). (A) Performance as a function of

time during Data Accumulation Phase (DAP). (B) Close-up on curious variants (C/B, C/PE, and PG/IRS), as well as policy gradients (PG/GR) informed by surrogate

reward statistics. The C/PE and PG/IRS variants performed similarly, but differed significantly from C/B (Table 2). (C) Performance over time during post-DAP. (D)

Close-up on post-DAP performances for curious variants and PG/GR.

function of time in Figure 4. Error percentage was calculated
as the percent ratio between root mean squared loss and the
maximum pair-wise Euclidean distance in the validation set. This
ratio can be summarized by ‖s′

k
− f (ak, sk; θ)‖/maxi,j ‖Di−Dj‖,

where D is the validation set and (s′
k
, ak, sk) ∈ D.

The Oracle model, trained under the supervision of oracle
training set, reached an error percentage of 0.84% for
both DAP and post-DAP, amounting to approximately 30%
improvement over the terminal performance of the C/B variant.
All variants considered curious (C/B, C/PE, and PG/IRS)
had similar performances during DAP. In particular, the
PG/IRS, which received independent intervention from the ‘true’
reward distributions achieved marginally lower performance

but indistinguishable from the C/PE variant. This outcome
was observed for both DAP and post-DAP, suggesting intrinsic
reward samples derived from C/B contributed favorably even to
the standard policy gradients algorithm.

Though without the ability to approximate value function, the
PG/IRS variant underperformed in benchmarking, as compared
with the value-enabled, C/B variant. Using non-parametric test,
the difference was detected for DAP (p = 0.0006) and post-DAP
(p = 6.4E-8), respectively. Similar observations were also made
for comparisons between C/B and C/PE, at p = 0.0029 (DAP)
and p = 5.9E-5 (post-DAP). Overall, this suggested significant
differences in the experiences accumulated across agent variants.
The aforementioned statistics were reported in Tables 2, 3.
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TABLE 2 | Summary statistics on validation loss and error percentage as

benchmarking scores.

Agent
DAP Post-DAP

MSE

loss

(SD)

Mean

Percent

Error (SD)

MSE

loss

(SD)

Mean

Percent

Error (SD)

Oracle
0.0008 0.8430 0.0008 0.8428

(2.3E-5) (0.0123) (2.2E-5) (0.0114)

C/B
0.0033 1.7181 0.0017 1.2420

(0.0006) (0.1357) (0.0001) (0.0488)

C/PE
0.0035 1.7611 0.0019 1.2882

(0.0006) (0.1464) (0.0003) (0.0916)

PG/IRS
0.0035 1.7637 0.0020 1.2976

(0.0006) (0.1418) (0.0003) (0.0902)

PG/GR
0.0048 2.0559 0.0030 1.6288

(0.0017) (0.3026) (0.0008) (0.2140)

P/RW
0.6663 22.2734 0.6615 22.1453

(0.3904) (10.0085) (0.3864) (10.0775)

Apart from the Oracle model, a trend of declining scores can be observed as the agent

degraded fromC/B to P/RW, indicating the contribution of boredom and curiosity in model

learning. Key: DAP, Data Accumulation Phase; SD, standard deviation. For agent codes,

see Table 1.

TABLE 3 | Non-parametric statistical tests comparing terminal performance at

DAP and post-DAP for curious model variants.

Mann-Whitney U-Test (n = 128,α = 0.025, Bonferroni corrected)

Validation loss DAP (T = 30, 000) Post-DAP (T = 60, 000)

C/B < C/PE
Statistics 6558.0 5911.0

p-value 0.0029 5.9E-5

C/B < PG/IRS
Statistics 6275.0 5062.0

p-value 0.0006 6.4E-8

Following Table 2, even though the boredom score came close to other curious variants

(C/PE and PG/IRS), the boredom variant still outperformed the other two on statistical

grounds.

7. LIMITATION

One obvious limitation of the proposed method is scalability.
We imposed Gaussian assumption on the forward model and
meta-model because this lends the KL-divergence between the
two to have a closed form solution. However, this solution
depends on both matrix inversion and log-determinant, whose
computational complexity normally falls around an order of
3 when using Cholesky decomposition. To circumvent this
limitation, the intrinsic reward (devaluation progress) may be
replaced with one based on (forward model) prediction error at
the expense of lesser curiosity.

The Gaussian assumption also puts limitations on the
expressiveness of the models. This can be slightly relaxed

to admit Gaussian mixture models. KL-divergence between
Gaussian mixture models is not tractable but can nonetheless
be approximated (e.g., Hershey and Olsen, 2007). Alternatively,
employing normalizing flows (Rezende and Mohamed, 2015)
also allows expressive models. Calculating KL-divergence in this
case is typically resorted to Monte Carlo approximation. These
are potential extensions that can be applied to the current work
in the future.

8. CONCLUSION

We have provided a formal account on the emergence
of boredom from an information-seeking perspective and
addressed its constructive role in enabling curious behaviors.
Boredom thus motivates an instrumental view of action
selection, in which an action serves to disclose outcomes that
have intrinsic meaningfulness to an agent itself. This is, a
bored agent must seek out information worth assimilating
into itself. This led to the central claim of this study—
pertaining to the superior data-gathering efficiency and hence
effective curiosity. We supported this claim with empirical
evidence, showing that boredom-enabled agents consistently
outperformed other curious agents in self-assisted forward
model learning. Our results solicited the interpretation that
the relationship between homeostatic and heterostatic intrinsic
motivations can in fact be complementary; therefore, we have
offered one unifying perspective for the intrinsic motivation
landscape.

Our proposed method is general in formalization and
sits comfortably with existing MDP problems. Our future
work is then to apply the method to more complex
problems, such as embedding into a robot for real-world
scenarios.
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