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Abstract. Interannual variations in air—sea fluxes of carbon dioxide (CO;) impact the global carbon cycle and
climate system, and previous studies suggest that these variations may be predictable in the near term (from
a year to a decade in advance). Here, we quantify and understand the sources of near-term predictability and
predictive skill in air-sea CO» flux on global and regional scales by analyzing output from a novel set of retro-
spective decadal forecasts of an Earth system model. These forecasts exhibit the potential to predict year-to-year
variations in the globally integrated air—sea CO, flux several years in advance, as indicated by the high cor-
relation of the forecasts with a model reconstruction of past CO; flux evolution. This potential predictability
exceeds that obtained solely from foreknowledge of variations in external forcing or a simple persistence fore-
cast, with the longest-lasting forecast enhancement in the subantarctic Southern Ocean and the northern North
Atlantic. Potential predictability in CO, flux variations is largely driven by predictability in the surface ocean
partial pressure of CO,, which itself is a function of predictability in surface ocean dissolved inorganic carbon
and alkalinity. The potential predictability, however, is not realized as predictive skill, as indicated by the moder-
ate to low correlation of the forecasts with an observationally based CO, flux product. Nevertheless, our results
suggest that year-to-year variations in ocean carbon uptake have the potential to be predicted well in advance

and establish a precedent for forecasting air—sea CO; flux in the near future.

1 Introduction

Observations collected over the past few decades indicate
that the ocean has absorbed 160Pg of excess carbon from
the atmosphere since the beginning of the industrial revolu-
tion (Le Quéré et al., 2018); projections from climate mod-
els suggest that ~ 540 Pg of excess carbon will reside in the
ocean by the end of the century (under the RCP8.5 emission
scenario; Ciais and Sabine, 2013). Accurate projections of
past and future air—sea CO; flux are important for quantify-
ing and understanding the changing global carbon cycle and
for estimating future global climate change (Le Quéré et al.,
2018).

Superimposed on the background of long-term changes
in ocean carbon uptake is substantial variability on global

and regional scales (McKinley et al., 2017; Landschiitzer
et al., 2016). The recent literature highlights ocean carbon
uptake variability that manifests on timescales of years to
decades. Interannual variability in globally integrated air—sea
CO, flux has been estimated to have a standard deviation of
0.31 and 0.2PgCyr~! from observationally based products
(Rodenbeck et al., 2015) and ocean biogeochemical models
(Wanninkhof et al., 2013), respectively, which is of the or-
der of 10 % of the global mean CO; flux (2.3PgCyr!). A
global extrapolation of sparse pCO;, observations suggests
that there is large variability on decadal timescales (Land-
schiitzer et al., 2016). On regional scales, Southern Ocean
studies have highlighted recent air—sea CO, flux variabil-
ity on interannual (Wetzel et al., 2005; Lenton and Matear,
2007; Lovenduski et al., 2007, 2013, 2015a; Verdy et al.,
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2007; Wang and Moore, 2012; Hauck et al., 2013; Lenton
et al., 2013) and decadal (Fay et al., 2014; Landschiitzer
et al., 2015; Munro et al., 2015) timescales. In the North At-
lantic, high air-sea CO; flux variability has been linked to
the North Atlantic Oscillation (Thomas et al., 2008; Ullman
et al., 2009) and the Atlantic Multidecadal Oscillation (Metzl
et al., 2010; Breeden and McKinley, 2016), whose spectra
peak at interannual and multi-decadal timescales.

Near-term predictions of the climate system (so-called
“decadal predictions”) are forecasts of climate variability and
change on annual, multi-annual, and decadal timescales from
global climate models (Meehl et al., 2014). These forecasts
are sensitive to both initial conditions (e.g., the atmospheric
temperature used to initialize the forecasts) and external forc-
ing (e.g., the long-term increase in atmospheric temperature
associated with increasing greenhouse gas concentrations;
Kirtman et al., 2013). Recent publications highlight near-
term predictability and predictive skill in regional surface
air temperature, precipitation, Arctic sea ice concentration,
oceanic heat content, and the large-scale Atlantic Ocean cir-
culation (Smith et al., 2007; Keenlyside et al., 2008; Meehl
et al., 2009, 2014; Robson et al., 2012; Yeager et al., 2012,
2015; Yeager and Robson, 2017; Boer et al., 2016). As prior
literature has established a strong link between air—sea CO;
flux and variability in the physical climate system on these
timescales (e.g., Resplandy et al., 2015; McKinley et al.,
2017), it follows that air-sea CO, flux may be predictable
in the near term.

Here, we analyze a novel set of decadal prediction sim-
ulations from an Earth system model (ESM) to investigate
near-term predictions of global and regional ocean carbon
uptake. On annual to decadal timescales, ESM predictions
of the past (so-called “retrospective forecasts”) are used to
assess both predictability and predictive skill in air—sea CO;
flux. Predictability is the potential to predict the system based
on forecast verification against a model reconstruction. Pre-
dictive skill is based on forecast verification against observa-
tions. We further assess the role of external forcing in the
predictability of CO; flux by analyzing a set of uninitial-
ized forecasts run under identical external forcing. By ana-
lyzing forecasts of the past, our study establishes a precedent
for making skillful predictions of ocean carbon uptake in the
near future.

2 Community Earth System Model Decadal
Prediction System

Our primary numerical tool is the Community Earth System
Model Decadal Prediction Large Ensemble (CESM-DPLE,;
Yeager et al., 2018). In this section, we describe the model
and provide details about forecast initialization, ensemble
generation, and drift correction. Importantly, we note that
this is the first CESM decadal prediction system to include a
representation of ocean biogeochemistry. CESM-DPLE uses
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the same code base as the CESM Large Ensemble (CESM-
LE; Kay et al., 2015).

The CESM is a state-of-the-art coupled climate model
consisting of atmosphere, ocean, land, and sea ice compo-
nent models (Hurrell et al., 2013; Danabasoglu et al., 2012;
Lawrence et al., 2012; Hunke and Lipscomb, 2008). The
ocean physical model (version 2 of the Parallel Ocean Pro-
gram; Danabasoglu et al., 2012) has nominal 1° horizon-
tal resolution and 60 vertical levels. The biogeochemical
ocean model represents the lower trophic levels of the ma-
rine ecosystem (Moore et al., 2004, 2013), full carbonate sys-
tem thermodynamics (Long et al., 2013), air—sea CO, fluxes,
and a dynamic iron cycle (Doney et al., 2006; Moore and
Braucher, 2008).

CESM-DPLE consists of a set of initialized, fully coupled
integrations of CESM that adhere to the protocols for Com-
ponent A of the Decadal Climate Prediction Project (Boer
et al., 2016). We use the CESM-DPLE system (Yeager et al.,
2018) that builds on previous CESM decadal prediction ef-
forts (Yeager et al., 2012, 2015) with some modifications
(including the addition of ocean biogeochemistry, as noted
above). CESM-DPLE initiates 40 decade-long “forecasts” of
the Earth system each year from 1954-2015; the start date for
each forecast is 1 November, in accordance with the DCPP
protocols. Each of the model integrations is subject to a com-
mon set of historical external forcings (e.g., greenhouse gas
concentrations).

The ocean physical and biogeochemical initial conditions
for the DP experiments are generated from a forced ocean—
sea ice simulation of the CESM. That is, a simulation of the
ocean and ice components of the CESM that has been forced
with fluxes computed from the observed atmospheric state
over 1948-2015. This simulation is therefore meant to re-
construct the historical evolution of the ocean physical and
biogeochemical state over the 1948-2015 period (Fig. 1).
Hereafter, we refer to this simulation as the “reconstruction”.
Initial conditions from the atmosphere and land components
of the DP experiments are obtained from a 20th century sim-
ulation of the CESM Large Ensemble (Kay et al., 2015).

Ocean biogeochemistry in the version of the CESM used
for CESM-DPLE has been extensively validated in the liter-
ature (Long et al., 2016; Lovenduski et al., 2016; McKinley
et al., 2016; Krumhardt et al., 2017; Freeman et al., 2018).
In particular, the simulated mean, variability, and trends
in surface ocean pCO; and air-sea CO; flux from CESM
over 1982-2011 compare favorably to estimates from obser-
vations for the global average and over most ocean biogeo-
chemical biomes (McKinley et al., 2016; Lovenduski et al.,
2016). In Fig. 2, we illustrate the comparison between ob-
servationally based estimates of CO;, flux (from the Land-
schiitzer et al., 2016, pCO» product) and estimates produced
by the reconstruction and coupled CESM-LE over 1982-
2015. The model reconstruction does a reasonable job (r =
0.79) of representing observed spatial patterns (in both mag-
nitude and direction) of the flux across most oceanic re-
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Figure 1. Annual mean air-sea CO; flux (mol m~—2 yr_l) in the
South Pacific subtropical permanently stratified biome for the
(black) model reconstruction and (pink) CESM-DPLE decadal fore-
casts initiated in 1960, 1980, and 2000 (other forecasts omitted
for visual clarity). The thick magenta line represents the ensem-
ble mean forecast; open circles show the ensemble mean in forecast
year 1. Positive fluxes denote ocean outgassing. Forecasts have been
drift-corrected and adjusted to match the reconstruction climatolog-
ical mean for ease of visual comparison.

gions. The globally integrated air—sea CO fluxes over 1982—
2015 from the observational product and model reconstruc-
tion are 1.41 and 1.80 PgCyr~!, respectively (directed into
the ocean).

CESM-DPLE initializes an ensemble of 40 simulations
each year using round-off-level (order 10~!#) perturbations
in the initial air temperature field (Fig. 1). Previous work in-
dicates that this small perturbation in the initial conditions
generates a wide divergence in global mean surface temper-
atures across the ensemble members within about 30 days
(Vineel Yettella, personal communication, 2018), and the av-
erage divergence in globally integrated, annual mean fore-
cast CO flux across the ensemble members (0.53 PgCyr~')
is an order of magnitude greater than that generated by the
preindustrial control simulation of CESM (0.09 PgCyr—!;
Lovenduski et al., 2015b). Each ensemble member is sub-
ject to identical external forcing. The number of ensemble
members in each forecast ensures statistically robust drift es-
timates (see below; Boer et al., 2013; Kirtman et al., 2013;
Yeager et al., 2018).

Following initialization, the coupled model drifts toward
its preferred state over the decadal forecast. This is a com-
mon problem for full-field initialization decadal prediction
experiments (Meehl et al., 2014) and requires a drift correc-
tion to be applied to the model forecasts before predictability
and predictive skill may be analyzed. We correct the drift by
transforming to anomalies from a drifting climatology, as in
Yeager et al. (2012, 2018). For a given forecast, X(L, M, S),
where L is the forecast length, M is the ensemble member,
and S is the start year of the forecast; the drift-corrected fore-
cast anomaly, X'(L, M, S), is defined as

X'(L,M,S)=X(L,M,S)—X(L,M, 5", (1)
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where X (L, M, S)M’S is the average rate of drift over all fore-
casts. Note that this method does not assume that the drift is
linear and disregards potential dependence of the drift on the
external forcing.

Predictive skill in CESM-DPLE may be enabled by exter-
nal forcing (e.g., the time evolution of atmospheric green-
house gases) as well as by initialization. To assess the role
of initialization in predictability, we compare CESM-DPLE
air—sea CO; flux (generated with the initialization procedure
described above) with air—sea CO; flux from the CESM-
LE (McKinley et al., 2016; Lovenduski et al., 2016) over
the same historical period. The CESM-LE is a 32-member
ensemble of the CESM with fully resolved ocean biogeo-
chemistry that evolves the Earth system from 1920 to 2100
under historical and RCP8.5 forcing (Kay et al., 2015). As
such, CESM-LE represents the uninitialized counterpart to
the CESM-DPLE system; output from CESM-LE can tell us
how the modeled air—sea CO; flux would evolve over a given
decade in the absence of initialization, but under the same ex-
ternal forcing.

3 Results

3.1 Predictability

Predictability is a property of a system that characterizes the
potential for its future evolution to be predicted; this concept
is distinct from that of model skill. We quantify predictability
by evaluating the ability of the CESM-DPLE initialized fore-
casts to predict variations in air—sea CO» flux from the recon-
struction. For a given forecast anomaly, X'(L, M, S), pre-
dictability is defined as the correlation coefficient of X'(L,
M, S) with the corresponding anomaly in the reconstruction;
the reconstruction anomaly is obtained by subtracting the cli-
matological mean value over 1955-2015.

The globally integrated air—sea CO, flux anomaly from the
initialized CESM-DPLE in forecast year 1 exhibits high cor-
relation with the CO, flux anomaly from the reconstruction
(Fig. 3a; r = 0.98). This correlation remains high and statis-
tically significant (at the 95 % level using a two-sided Stu-
dent’s ¢ test while accounting for autocorrelation in the sam-
ple size) for 10 forecast lead years (Fig. 3c), suggesting high,
long-lasting predictability in the globally integrated air—sea
CO; flux.

We further investigate whether the predictability in the
globally integrated air—sea CO» flux is a function of initial-
ization by (1) correlating integrated CO; flux anomalies from
the ensemble mean of the uninitialized CESM-LE simulation
with anomalies from the reconstruction and (2) generating
a persistence forecast (autocorrelation as a function of lead
time) for the CO, flux anomalies from the reconstruction.
Figure 3a and c reveal that the initialization of the forecast
does not much improve the prediction from the uninitialized
forecast. This is because the strong externally forced compo-
nent of the forecast (e.g., the rising CO; concentration in the
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Figure 2. Annual mean air—-sea CO5 flux (mol m—2 yr_l) over the period 1982-2015 as estimated by (a) the Landschiitzer et al. (2016)
observationally based product, (b) the model reconstruction, and (c¢) the CESM-LE. Positive fluxes denote ocean outgassing, and black
contours in (a) show biome boundaries.
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Figure 3. (a) Temporal evolution of the globally integrated air—sea CO, flux anomaly, as estimated by the (black) reconstruction, (red)
CESM-DPLE initialized forecast, (red dotted) CESM-LE uninitialized forecast, and (blue) Landschiitzer et al. (2016) observationally based
product. The CESM-DPLE time series is the drift-corrected, ensemble mean forecast anomalies over lead year 1; the reconstruction, unini-
tialized forecast, and observational product have been transformed to anomalies by subtracting their respective climatological means. Ob-
servations prior to 1995 are dotted due to lower observation density. Positive anomalies indicate anomalous ocean outgassing. (b) Same
as (a), but with long-term linear trends removed from each time series. (¢) Predictability of globally integrated CO; flux as a function of
lead time, as indicated by the correlation coefficient of CO, flux anomalies from the (red) CESM-DPLE initialized forecast, and the (red
dotted) CESM-LE uninitialized forecast with the reconstruction. The black dashed line indicates the correlation coefficient of the persistence
forecast as a function of lead time. Red asterisks (black circles) on the initialized forecast indicate predictability that is statistically different
from the uninitialized (persistence) forecast at the 95 % level using a z test. (d) Same as (c¢), but with linear trends removed from each time

series.

atmosphere) provides an important source of predictability
in both the initialized and uninitialized forecasts. While the
persistence forecast also yields high correlation coefficients,
both the initialized and uninitialized forecasts beat persis-
tence for all prediction lead times (Fig. 3c).

Figure 3a also reveals interannual variability in the glob-
ally integrated air—sea CO;, flux. While this variability is
swamped by the externally forced signal (i.e., the increasing
CO» uptake due to rising atmospheric CO,), we are never-
theless interested in the ability of CESM-DPLE to forecast
this year-to-year variability. To accomplish this, we remove
the linear trend from the forecasts and the reconstruction

Earth Syst. Dynam., 10, 45-57, 2019

before computing predictability; this method produces esti-
mates of correlation that are not dominated by the trend in-
duced by external forcing. The globally integrated, detrended
air—sea CO; flux anomaly from the initialized CESM-DPLE
in lead year 1 exhibits high correlation with CO, flux from
the reconstruction (Fig. 3b; r = 0.70), suggesting high pre-
dictability of ocean carbon uptake variability on interannual
timescales as well. While this predictability drops off with
forecast lead time, we nevertheless find high correlations
(r > 0.5) between the annual mean CO, flux forecast anoma-
lies and detrended reconstruction anomalies that extend for
4 years (Fig. 3d).
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Figure 4. Predictability of air—sea CO, flux, as indicated by the correlation coefficient of detrended air—sea CO, flux anomalies from the
(a) CESM-DPLE initialized forecast lead year 1 with the reconstruction and the (b) CESM-LE uninitialized forecast with the reconstruction.
(c) Correlation coefficient of the persistence forecast for lead year 1. Correlation coefficients that are not statistically significant at the 95 %

level using a ¢ test are assigned a value of zero.

Interannual variability in global air—sea CO, flux may also
be affected by interannual variability in external forcing (e.g.,
volcanoes). As above, we evaluate the role of initialization by
calculating uninitialized predictability and estimating persis-
tence. Figure 3 indicates that the initialized forecast exhibits
higher predictability than the uninitialized forecast and the
persistence forecast for a lead time of 10 years, though this
initialized predictability is only statistically separable from
the uninitialized and persistence forecasts for lead years 1-
2 and 2, respectively; statistical separation was determined
via a Fisher’s r to z transformation and a comparison of the
resulting z test statistic to the value for the 95 % confidence
interval (1.96). Thus, the CESM-DPLE initialized forecasts
have the potential to predict year-to-year variations of glob-
ally integrated air—sea CO; flux several years in advance.

The results from our analysis of the globally integrated
air—sea CO; flux suggest that interannual variations in global
ocean carbon uptake may be predictable in advance. They
further indicate that initialization of the forecasts enhances
the predictability of future interannual variations over and
above the predictability from variations in the external forc-
ing, such as those imposed by volcanic eruptions. This is
a particularly meaningful result for those forecasting year-
to-year changes in the global carbon budget (e.g., Le Quéré
et al., 2018), especially as these forecasting efforts are blind
to the externally forced variability in advance (i.e., the ex-
ternal forcing of the future is unknown). In this way, near-
term predictions of air—sea CO; flux variations can help to in-
form future predictions of land—air CO; flux and atmospheric
CO,.

Given the high predictability and the important role of ini-
tialization in forecasts of interannual air—sea CO; fluxes on
a global scale, we next investigate the spatial patterns of air—
sea CO; flux predictability across the global ocean. Here,
we use the same statistical techniques as for the global flux,
but instead perform an analysis in each model grid cell. On
a global scale, the evolution of air-sea CO, flux is domi-
nated by the long-term increase in ocean uptake (see, e.g.,
Fig. 3a), whereas on local and regional scales, the evolution

www.earth-syst-dynam.net/10/45/2019/

is dominated by interannual variability (Fig. 1; see also, e.g.,
Lovenduski et al., 2016). To capture the predictability on in-
terannual timescales, we perform an analysis on linearly de-
trended forecasts in each model grid cell. Figure 4a illustrates
the large predictability of initialized CO, flux across much
of the global ocean for forecast lead year 1 (additional fore-
cast lead years shown in Fig. S1 in the Supplement). The
uninitialized forecast (Fig. 4b) and the persistence forecast
(Fig. 4¢) indicate lower predictability.

If not external forcing or persistence, what drives the high
predictability in air—sea CO; flux interannual variability? We
decompose the predictability of air-sea CO, flux (®) over
forecast lead year 1 by considering the predictability of its
drivers:

D =k-Sp-(1—ice)- ApCOg, 2)

where k is the piston velocity (also known as the gas transfer
coefficient), Sy is the solubility of CO, in seawater, “ice” is
the fraction of the ocean covered by sea ice, and ApCO;
is the difference between the oceanic pCO; and the atmo-
spheric pCO;. As for CO, flux, predictability is defined as
the anomaly correlation coefficient of each driver variable in
forecast year 1 with the corresponding anomaly of that driver
variable in the reconstruction, e.g., the correlation of anoma-
lous piston velocities from the forecast with those from the
reconstruction. Figure 5 shows the predictability of each of
the CO; flux driver variables; the anomaly correlation coeffi-
cients are scaled to CO; flux units (mol m—2 yr‘l) and can
be easily compared. The predictability scaling is achieved
by multiplying the anomaly correlation coefficient (r) by the
sensitivity of CO, flux to each driver variable (x) and the
standard deviation of the driver variable time series:

— .oy, 3
r ax Ox 3)
where the sensitivities and standard deviations are estab-
lished from model-estimated, annual mean quantities in each
grid cell (as in, e.g., Lovenduski et al., 2007, 2013, 2015a)
using annual averages from the reconstruction. The CO; flux

Earth Syst. Dynam., 10, 45-57, 2019
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Figure 5. Drivers of predictability in air-sea COy flux during forecast year 1, as indicated by the predictability of the (a) gas exchange
coefficient, (b) solubility, (c) sea ice fraction, and (d) ApCO», scaled to CO, flux units (mol m—2 yr_l). Correlation coefficients that are not
statistically significant at the 95 % level using a ¢ test are assigned a value of zero.
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Figure 6. Drivers of predictability in surface ocean pCO; during forecast year 1, as indicated by the predictability of surface ocean (a) DIC,
(b) Alk, (c) temperature, and (d) salinity, scaled to pCO» units (patm). Correlation coefficients that are not statistically significant at the 95 %

level using a ¢ test are assigned a value of zero.

predictability is largely driven by predictability in ApCO»
across the global ocean (Fig. 5). Our results suggest sec-
ondary roles for the piston velocity in the equatorial Pa-
cific, solubility in the North Atlantic subpolar gyre, and sea
ice fraction in the Arctic-North Atlantic and high-latitude
Southern Ocean. Elsewhere, these other driver variables play
only minor roles in CO, flux predictability.

As the large predictability in ApCO; is caused by the pre-
dictability of surface ocean pCO; in our model framework
(i.e., atmospheric CO concentration is prescribed rather than
predicted), we next investigate the drivers of interannual pre-
dictability in surface ocean pCO,: dissolved inorganic car-
bon (DIC), alkalinity (Alk), temperature (T'), and salinity (S).

Earth Syst. Dynam., 10, 45-57, 2019

We use a similar approach as for CO; flux, but here the sensi-
tivities are derived from carbonate chemistry approximations
(Lovenduski et al., 2007; Doney et al., 2009; Long et al.,
2013), and all drivers are scaled to pCO; units (uatm) for
ease of comparison:

apCO
P 2 (4)
0x

The surface ocean pCO3, and thus the air—sea CO, flux pre-
dictability, for forecast lead year 1 is largely driven by pre-
dictability in surface ocean DIC and Alk, with temperature
playing a secondary role and salinity a minor role (Fig. 6).
The similar predictability of DIC and Alk across many re-
gions hints at an important role for ocean circulation, rather

www.earth-syst-dynam.net/10/45/2019/
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Figure 7. Air—sea CO, flux predictive skill, as indicated by the correlation coefficient of air—sea CO; flux (a) anomalies, and (b) linearly
detrended anomalies from the CESM-DPLE initialized forecast in year 1 with the Landschiitzer et al. (2016) observational product over 1995—
2015. Correlation coefficients that are not statistically significant at the 95 % level using a ¢ test are assigned a value of zero.

than biological productivity (which has a much larger impact
on DIC than Alk), in CO; flux predictability.

3.2 Predictive skill

We next evaluate the predictive skill of the CESM-DPLE
forecasts; the skill is a measure of the ability of the fore-
cast to reproduce the observational record. For air—sea CO,
flux, direct observations are rare, and we are constrained to
estimates of flux from observations of sparsely sampled sur-
face ocean pCO,. Here, we use as our observational metric
the CO, flux estimated from the Landschiitzer et al. (2016)
surface ocean pCO; product. This product is a gap-filled es-
timate of surface ocean pCO,, which, when combined with
measurements of atmospheric pCO;, sea surface tempera-
ture, salinity, and wind, yields a monthly estimate of air—sea
CO, flux at 1° x 1° horizontal resolution from 1982-2015
(see also Fig. 2a). As the pCO, observations are rather sparse
prior to 1995 (see Fig. 2 of Bakker et al., 2016), we calculate
skill for the period between 1995 and 2015 only, but show
for the interested reader the full observational product time
series.

The CESM-DPLE initialized predictions exhibit some
skill at representing the globally integrated air—sea CO, flux
in forecast lead year 1 (Fig. 3a and b; initialized forecast skill
0.88; detrended, initialized forecast skill 0.66). Our compar-
ison indicates that CESM-DPLE (and the reconstruction, for
that matter) struggles to produce the pronounced trends to-
ward anomalous CO; outgassing in the 1990s and anoma-
lous CO; uptake in the 2000s. The ability (or lack thereof)
of ESMs to reproduce the observationally derived multi-
decadal air—sea CO; flux variability has been the subject of
recent publications (e.g., Li and Ilyina, 2018; Gruber et al.,
2019), though no robust mechanisms seem to explain the
(mis)match. The CESM-DPLE initialized forecast in forecast
lead year 1 exhibits moderate predictive skill in the tropics
and subtropics (Fig. 7) and low skill elsewhere.

www.earth-syst-dynam.net/10/45/2019/

3.3 Predictability and predictive skill on the biome scale

Because the predictability of air—sea CO; flux is primarily
driven by the predictability of the biogeochemical state vari-
ables DIC and Alk, it makes sense to aggregate predictability
across biogeographical biomes. We probe the limits of pre-
dictability and predictive skill in regional air—sea CO, flux by
averaging the local flux across 17 biogeographical biomes.
This is achieved by re-gridding the Fay and McKinley (2014)
mean biome mask to the CESM model grid and computing
the area-weighted average CO; flux from the reconstruction,
CESM-DPLE initialized forecasts, and observationally de-
rived pCO; product. The detrended CO, flux anomalies for
three of the biomes are shown for forecast lead year 1 in
Fig. 8, and the predictability and predictive skill across all
biomes is detailed in Table 1. These three biomes were cho-
sen to contrast their predictability and/or predictive skill.

The biome-averaged CO; flux anomalies from the CESM-
DPLE initialized forecast in forecast lead year 1 exhibit high
correlations with the reconstruction anomalies in the North
Pacific subtropical biomes and in the Southern Ocean ice
biome (Fig. 8; Table 1), indicating high potential for the
prediction of CO;, flux anomalies. This predictability de-
creases with increasing forecast lead time in the North Pa-
cific subtropical biomes, but persists for the Southern Ocean
ice biome through forecast years 7-9 (Fig. 8). Indeed, the
Southern Ocean ice biome is an anomaly in this regard; in
the other 16 biomes, predictability drops off with prediction
lead time (not shown).

Initialization engenders the predictability of air—sea CO;
flux variability the North Pacific subtropical biomes, as we
find low correlation between the uninitialized CESM-LE
forecast CO; flux anomalies and the reconstruction anoma-
lies here (Fig. 8a and b; Table 1). The initialized forecast for
these biomes has higher predictability than the uninitialized
forecast and the persistence forecast for 7-8 years (Fig. 9).
These conclusions hold for most of the other ocean biomes
(Table 1), with a few exceptions for which the uninitialized
forecast and/or persistence forecast are similar to the initial-
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Figure 8. Temporal evolution of the biome-averaged air—sea CO, flux anomalies in the (a) NP STSS, (b) NP STPS, and (c) SO ICE biomes
(mol m—2 yr_l). The following time series are plotted: (black) reconstruction, (red) CESM-DPLE initialized forecast, (red dotted) CESM-
LE uninitialized forecast, and (blue) Landschiitzer et al. (2016) observationally based product. The CESM-DPLE time series is the linearly
detrended, drift-corrected, ensemble mean forecast anomalies in year 1; the reconstruction, CESM-LE ensemble mean, and observed time
series have been transformed to anomalies by removing the linear trend. Observations prior to 1995 are dotted due to lower observation
density. Positive anomalies indicate anomalous ocean outgassing.
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Figure 9. Predictability of biome-averaged CO, flux as a function of lead time in the (a) NP STSS, (b) NP STPS, and (¢) SO ICE biomes, as
indicated by the correlation coefficient of detrended CO; flux anomalies from the (red) CESM-DPLE initialized forecast and the (red dotted)
CESM-LE uninitialized forecast with the reconstruction. The black dashed line shows the correlation coefficient of the persistence forecast
as a function of lead time. Red asterisks (black circles) on the initialized forecast indicate predictability that is statistically different from the

initialized (persistence) forecast at the 95 % level using a z test.

ized forecast (e.g., the eastern Pacific equatorial biome). In
the Southern Ocean ice biome, the CO; flux predictability
is almost entirely driven by external forcing, and the persis-
tence forecast indicates high predictability as well (Figs. 8
and 9, Table 1). Thus, the high and long-lasting predictabil-
ity in this biome must be interpreted with caution given the
importance of external forcing in predicting CO; flux anoma-
lies here.

The predictive skill of CESM-DPLE in forecast lead year 1
is illustrated for three biomes in Fig. 8 and Table 1. Again,
we note the moderate skill in the tropics and subtropics and
lower skill elsewhere.

The difference in the predictability between the initialized,
uninitialized, and persistence forecasts reveals the impact of
initialization on predictions of air—sea CO, flux variability
on the biome scale (Fig. 9). We probe the limits of initial-
ized predictability in each biome by calculating the max-
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imum forecast lead time for which the initialized CESM-
DPLE CO; flux forecast has both higher predictability than
the uninitialized CESM-LE and persistence forecasts and
present the results in Fig. 10. Our results indicate that ini-
tialization improves the forecast for the longest lead times
in the subantarctic Southern Ocean and the northern North
Atlantic, where the initialized forecast beats the other two
forecasts out to forecast lead times of 10 and 9 years, respec-
tively. We note, however, that the improvement in the North
Atlantic is only statistically significant for 1 lead year and
in the Southern Ocean for 2-3 lead years. Given the impor-
tant role of these two regions for the global ocean uptake
of anthropogenic carbon, and the numerous studies linking
climate variability to air—sea CO» flux variability in these re-
gions, this long-lasting predictability is encouraging. In other
regions, however, such as the Southern Ocean ice or eastern
equatorial Pacific biomes, the initialized forecast only beats
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Table 1. Biome-averaged air—sea CO, flux statistics.
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Biome Biome Biome Initialized Uninitialized Persistence Forecast Maximum
name acronym number  forecast? forecast®  forecast® skill!  lead time®
North Pacific ice NP ICE 1 0.29 —0.22 0.25 0.43 3(0)
North Pacific subpolar NP SPSS 2 0.54 —0.12 0.47 —0.45 2(0)
Seasonally stratified

North Pacific subtropical - \p opgg 3 054 006 007 028 9(2)
Seasonally stratified

North Pacific subtropical - \p ¢ppg 4 085 032 045 0.60 4(1)
Permanently stratified

West Pacific equatorial PEQU-W 5 0.73 0.31 0.52 0.66 5(0)
East Pacific equatorial PEQU-E 6 0.64 0.35 0.50 0.53 1(0)
South Pacific subtropical = g, gppg 7 081 0.33 0.50 0.19 3(1)
Permanently stratified

North Atlantic ice NA ICE 8 0.49 0.07 0.24 0.36 4 (0)
North Atlantic subpolar NA SPSS 9 055 010  0.17 028 9(1)
Seasonally stratified

North Atlantic subtropical —\\ ¢pgg 10 053 008 001 ~0.10 9(1)
Seasonally stratified

North Atlantic subtropical =\, g1pg 1 072 035 0.18 0.56 3(1)
Permanently stratified

Atlantic equatorial AEQU 12 0.55 0.17 0.27 —0.04 4 (1)
South Atlantic subtropical ¢\ qrpg 13 0.60 0.09 0.16 0.49 2(1)
Permanently stratified

Indian Ocean subtropical 1\ gpg 14 016 —0.11 0.05 0.31 3(2)
Permanently stratified

Southern Ocean subtropical ¢y grgg 15 070 —0.02 0.20 0.26 10 3)
Seasonally stratified

Southern Ocean subpolar ¢ ¢pqq 16 0.47 0.08 0.32 0.47 10 2)
Seasonally stratified

Southern Ocean ice SO ICE 17 0.85 0.81 0.64 0.60 1(0)

# Correlation of CO; flux anomalies from the CESM-DPLE initialized forecast in lead year 1 with the reconstruction. Boldface indicates that the correlation
coefficient is statistically different from both the uninitialized and persistence forecasts at the 95 % level using a z test. b Correlation of CO, flux anomalies from

the CESM-LE uninitialized forecast with the reconstruction. ¢ Autocorrelation of the persistence forecast at lead year 1.

Correlation of CO, flux anomalies from

the CESM-DPLE initialized forecast in lead year 1 with the Landschiitzer et al. (2016) observational product over 1995-2015. ¢ The maximum forecast lead time
(years) in which the CESM-DPLE initialized forecast has both higher predictability than the uninitialized CESM-LE forecast and a higher correlation coefficient
than the persistence forecast. Lead times in parenthesis account for statistical separation in correlation coefficients at the 95 % level using a z test.

the uninitialized or persistence forecast for a single year, in-
dicating little benefit of forecast initialization for CO; flux
forecasts here.

4 Conclusions

We analyze output from the CESM-DPLE system to quan-
tify and understand the sources of predictability and predic-
tive skill in global and regional air—sea CO, flux on annual
to decadal timescales. We find high potential predictability
in globally integrated CO, flux several years in advance that
is engendered by initialization. This potential predictability
is evident across much of the global ocean, driven by pre-
dictability in ApCO;, which itself is primarily driven by pre-
dictability in surface ocean DIC and Alk. While the CESM-
DPLE system exhibits strong potential predictability, model
skill as compared to an observationally based product re-
mains a challenge to developing useful forecasts.

www.earth-syst-dynam.net/10/45/2019/

Our study complements two recent studies of ocean car-
bon decadal predictions conducted at different modeling cen-
ters. Li et al. (2016) use decadal predictions from MPI-
ESM to investigate near-term changes in North Atlantic CO»
flux, while Séférian et al. (2018) use CNRM-ESMI1 to as-
sess the predictability horizon of globally integrated ocean
and land carbon fluxes. While these studies use different
prediction systems, we nevertheless come to some of the
same conclusions. For example, Séférian et al. (2018) find
that global ocean carbon uptake is potentially predictable for
up to 6 years, and Li et al. (2016) find high potential pre-
dictability in the North Atlantic that is engendered by initial-
ization. These studies collectively suggest predictability for
near-term ocean carbon uptake on global and regional scales,
which is beneficial for forecasting the future global carbon
budget and climate system.

While the ever-expanding field of decadal climate predic-
tion has the potential to inform policy and management de-
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Figure 10. For each biome, the maximum forecast lead time (years)
in which the initialized CESM-DPLE CO, flux forecast has both
higher predictability than the uninitialized CESM-LE forecast and
a higher correlation coefficient than the persistence forecast. Hatch-
ing shows the maximum forecast lead time while accounting for
statistical separation of correlation coefficients at the 95 % level us-
ing a 7 test.

cisions moving forward, decadal forecasts come with sev-
eral caveats. Initialization shock and drift of the coupled
model system, the inability of Earth system models to realis-
tically simulate internal variability, uncertain future levels of
radiative forcing, and imperfect observations are frequently
cited as limitations to making accurate forecasts of the future
(Meehl et al., 2014). In the case of ocean carbon, it is impor-
tant to note that potential predictability in regional CO, flux
may be driven by initialization of the physical (e.g., SST) or
biogeochemical (e.g., DIC) ocean state (Li et al., 2016) and
that the spatiotemporal coverage of CO, flux observations is
insufficient to fully address predictive skill in our forecast
systems.
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