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Abstract. The influence of physical damping on the numerical stability of time integration analysis is an open 
question since decades ago. In this paper, it is shown that, under specific very general conditions, physical damping 
can be disregarded when studying the numerical stability. It is also shown that, provided the specific conditions are 
met, analysis of structural systems involved in extremely high linear-viscous damping is unconditionally stable. A 
secondary achievement is that, when the linear-viscous damping increases, the numerical damping may increase or 
decrease. 
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1. Introduction 

Transient/dynamic behavior is an inherent part of almost all real phenomena, which cannot be simplified in many 
applications, e.g. analysis of tall buildings against severe wind or earthquake [1-3]. A powerful tool for analyzing these 
behaviors and in general initial value problems in different branches of science and engineering is time integration; see [4-18]. 
Concentrating on structural dynamics [12, 19, 20], the initial value problem defining the structural behavior is as stated below: 
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t  and endt  imply the time and the duration of the dynamic behavior, M is the mass matrix,  tintf  and  tf  stand for the 

vectors of internal force and excitation respectively,  u t ,  u t  and  u t  respectively denote the unknown vectors of 

displacement velocity and acceleration, 
0u , 

0u  and 
0intf  define the initial status of the system; also see [13, 21]; and 

OQ   schematically represents the constraints considered additionally for modeling the nonlinear behaviors, e.g. impact or 
elastoplastic behavior; see [22, 23]). Solution of eq. (1) by time integration is summarized in Fig. 1; Subscripts 0 and i are 
indicators for the integration stations, respectively at the starting and arbitrary station of the integration, and Superscript a 
indicates that the argument is computed approximately. 

The main algorithmic parameter of time integration analysis is the integration step t  (see [24, 25]). Accordingly, the 

major essentiality of approximate computations, i.e. convergence [26, 27], can be expressed as:  

  =lim
0→

a

t
    (2) 
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Fig. 1. Typical process of time integration analysis. 

where,   and a  respectively stand for the computed and exact values of the arbitrary component of the response. In view 
of the Lax-Richtmyer equivalence theorem [26-28], for the responses computed by time integration to converge, it is essential 
to guarantee numerical stability [27-31]. In more detail, in time integration analysis of a mathematically stable system (i.e. 
systems with finiteness guaranteed for all components of the exact response [32]; in structural dynamics, mathematical stability 
is equivalent to physical stability [13]), for maintaining responses convergence, the computation should be consistent (i.e. in 
analysis with smaller steps, the errors associated with arbitrary integration step should decrease faster than the integration step 
[31, 33]) and numerically stable. Numerical stability can be defined by [31, 33]: 

 ∞:∀   excitation Finite∀  and conditions  initial  Finite∀  aa  .   (3) 

Numerical stability and convergence imply the capability to avoid uncontrollable large computational errors regardless of 
the number and size of the integration steps. These features are important and essential because of two main reasons. First, in 
order to guarantee finite inaccuracy (controllable accuracy) after arbitrarily large number of steps in applications such as 
meteorological and astrophysical studies [6, 7, 34], and secondly, for controlling the accuracy by repeating the analysis with 
smaller steps, obligatory in applications such as earthquake engineering [19, 35]. Furthermore, it is decades, that unconditional 
stability, i.e. numerical stability regardless of the integration step, is a privilege when defining new integration methods [12, 20, 
31, 33, 36]. The crucial role of stability in some specific linear and nonlinear applications is reported in [37-43]. 

In order to study the validity of eq. (3) and guarantee responses’ numerical stability, it is conventional to first assume 

 intf Ku Cu

C M K 
 
 

    (4) 

(K is the linear stiffness matrix, C implies the linear-viscous damping matrix, and   and   are constant coefficients, 

indicating that the linear-viscous damping is classical and of the Rayleigh type [12, 19, 20, 44]). Under this assumption, for the 
study of numerical stability, it is necessary and sufficient to study the arbitrary linear SDOF (Single Degree Of Freedom) 
system below: 

 22 0u u u         (5) 

(  is the coefficient of the linear-viscous damping, and  , m, mc 2 , and mk 2 , stand for the natural frequency, mass, 

linear-viscous damping, and linear stiffness, respectively [19]), construct the amplification matrix, A, as: 
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  (6) 

and test the spectral radius of A, i.e. ( )A [45] for the validity of eq. (7): 

     1Aor        1   A    (7) 

depending on whether one or more eigen values of A equal  A  [33]. (For some integration methods, e.g. the Houbolt 

method [46], higher time derivatives exist in eq. (6); this does not affect the discussion in this paper.) Satisfaction of eq. (7) 
entails numerical stability [12, 13, 31, 33]. 

For MDOF (Multi Degree Of Freedom) systems, the discussion above can be valid also without the assumption of classical 
damping, if eq. (6) is re-defined for the total system [47, 48]. When the damping is classical, the linear behavior of the MDOF 
system can be represented by SDOF systems [12, 20, 31, 33, 47]. Accordingly, in order to study the stability of a specific 
integration scheme, it is essential to consider eqs. (5-7) and obtain   for different values of  , t , and  . In more detail, 

for the study of stability, one should compute the amplification matrix for different values of t  and  , and for each 

computation of the amplification matrix the spectral radius should be determined. The resulting spectral radii will lead to Fig. 2 
and the study of eq. (7).  
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Fig. 2. Typical changes of spectral radius versus t  in conventional study of numerical stability. 

If under specific conditions, linear-viscous damping can be reliably beneficial for numerical stability, it will be possible to 
study the stability, after disregarding the damping. To say better, if a rule can be found to guarantee enhancement of numerical 
stability of time integration analysis when adding the linear-viscous damping, instead of studying the validity of eq. (7), i.e. 

         1,or                1,   tgtg AA     (8) 

it will be sufficient to study the simpler requirement below: 

         10,or            10,   tgtg AA       (9) 

This implies the sufficiency of studying Fig. 3, instead of Fig. 2. Such studies are not addressed in the literature, e.g. see [12, 
13, 20, 29, 31, 33, 43, 49-57]. The only study on the issue, mainly stating that the effect of damping on numerical stability 
depends on different conditions (not stated in the report of the study), returns to 1987 [58]. Considering this, the more ease and 
less computational effort associated with Fig. 3 compared to Fig. 2, and the crucial role of numerical stability in real analyses 
[37-42], the objective of this paper is to develop a rule, that clarifies the influence of physical damping on the numerical 
stability. Generalization of the achievements from viscous damping to other types of damping is also under attention. The 
theory is explained first. Validity of the claims is discussed later, and the discussion is extended afterwards. The paper is 
concluded, with a brief set of the achievements. 

 
Fig. 3. Simplified study of Fig. 2 to be validated in this paper. 

 

2. Theory 

With attention to Fig. 1, the definition of numerical stability in eq. (3), and eq. (6), an arbitrary unstable response does 
not become infinitely large, from the starting steps of the analysis. Figure 4 displays this phenomenon and some examples are 
presented in [59]. To explain better, consider the extension of eq. (6), to forced vibration of MDOF system [12, 20, 33, 36, 47], 
stated below: 
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(L stands for the load operator, and n implies the step under consideration, equivalently equal to the number of the integration 
steps prior to the step under consideration.) By replacing the computed values with the exact values, eq. (10) changes form to 
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Fig. 4. Schematic illustration of an arbitrary unstable response obtained from time integration analysis. 

where, n  is a representative of the difference between the computed and exact responses at the n th station, considering no 

difference at the n-1 th station, i.e. 
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Equations (10-12) lead to (see [33]): 
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where, k  equals the local truncation error [31, 33, 60], and in arriving at eq. (13.2), mathematical induction [61] is 

implemented. In view of eqs. (12) and (13.3), and the role of spectral radius in the size of A, i.e. A  [12, 20, 31, 33, 36], the 

unstable responses cannot be infinitely large, when n is sufficiently small; see Fig. 4 and [59]. Therefore, although there is not 
a clear separation between Sections A and B in Fig. 4, 

 0fn    (14) 

In view of Fig. 4, eq. (14) might seem incorrect, when the natural frequencies of the system are extremely high. This is not 
true. The highly oscillatory natural modes generally are erroneously added to the mathematical model during spatial 
discretization [36, 62]; elimination of these unreal oscillations is essential [12, 20, 33, 36]. In the rare cases that these 
oscillations originate in the real behavior, accuracy considerations bound t  [12, 13, 19], and again eq. (14) holds.  

Based on Fig. 4 and the explanation above, for the starting 
fn  integration steps of an unstable analysis, 

         ≠lim,∞:steps  starting  for the  defined   ∀
0→

a

t

a
f

a n


     (15) 

The last part of eq. (15) is concluded from the instability of the response and the Lax-Richtmyer theorem [26-28], taking into 
account the consistency, as an assumption. Equations (14) and (15) are obtained for arbitrary unstable response. In continuation 
of this section, it is shown that, provided special conditions are satisfied, eqs. (14) and (15) cannot both be correct, when time 
integration analysis of the associated undamped system (similar mass, stiffness, excitation, and initial conditions) with the 
same integration method and step is numerically stable. 

As conventional in the study of numerical stability [31, 33], attention here is paid to the damped SDOF system below:  
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where, 

 0c   (17) 
It is meanwhile assumed that the time integration method is consistent, and the analysis of the associated undamped system, i.e. 
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is numerically stable, i.e. in view of eq. (3), 

 a
und    (19) 

where, a
und  represents an arbitrary response computed for eq. (18). Addressing the responses obtained for eq. (16) as a

damp , 

the stability of a
damp  is to be shown. 

Assume that a
damp  is unstable. In view of Fig. 4 and eqs. (14) and (15), the computed unstable response remains finite for 

few steps after the start of the analysis. Accordingly, a
dampu , a

dampu , and a
dampu , remain finite at 

fn  non-zero number of steps at 

the start of the analysis. Because of this finiteness, it is possible to define the system below: 
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where,   implies an arbitrary real number and endt   is obtainable from:  

 
fllend nntnt  0,0   (21) 

Responses computed for the problems in eqs. (16) and (20) can be identical. In more detail, provided using the integration 

method and the integration step used in obtaining a
dampu , in analysis of eqs. (16) and (20), the resulting two responses will be 

identical, when in the integration formulation the equations involved in the excitation have contributions from damping, and 
the contributions associated with damping and excitation can be canceled out by appropriate selection of  . Selection of the 
appropriate value for   will be possible, specifically when both or none of the damping and the excitation exists in each 
equation defining the integration scheme. Many time integration methods satisfy this condition, e.g. see Table 1. By 
considering: 
 that the responses computed for eqs. (16) and (20) are identical at endtt 0 ,  

 the fact that eq. (20) presents an undamped problem, and  
 that the integration method provides numerically stable responses for undamped problems, 

  
Table 1. Adequate values for   in eq. (20) for some time integration methods. 
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the existence of an appropriate value for   implies stability of the responses computed for eq. (16). As a consequence, the 

assumption of the instability of a
damp   and the last relation in eq. (15) are incorrect. In other words, the responses computed 

for the damped problem are stable. Therefore, when: 
 The damping is linear-viscous. 
 The damping and the excitation contribute the integration scheme, such that a value can be assigned to   entailing 

identical responses for eqs. (16) and (20), when time integrated with the similar integration step. 
 The integration method is consistent. 
numerical stability of the undamped system’s analysis implies the stability of the associated linear-viscous damped systems’ 
analyses. For further reliability and clarity of the discussion on the notion of finiteness, the structural system is considered 
physically stable, when undamped; see [59]. Hence, when: (a) the time integration scheme is consistent, (b) the damping is 
linear-viscous, (c) the damping contributes in the integration scheme, such that eqs. (16) and (20) can lead to identical 
responses when time integrated with the same integration step, and (d) the structural system is physically stable, numerical 
stability of the undamped system's analysis implies numerical stability of the associated damped systems’ analyses. This 
conclusion entails Fig. 5 (  is the oscillatory frequency, in many cases that of the highest natural mode), according to which, 
for arbitrary time integration method, when the above-mentioned four conditions are satisfied, 

 The range of values of t  resulting in unstable responses for linear-viscous damped analyses will be a subset of the 

range of values of t  resulting in unstable responses for the associated undamped analysis.  

 Equivalently, the range of t  resulting in stable responses for an undamped analysis will be a subset of the range of 

t  resulting in stable responses for the associated linear-viscous damped analyses. 

 Unconditional instability may turn to stability or even unconditional stability by adding linear-viscous damping. 
 Stability of an undamped system’s time integration analysis will imply stability of the associated linear-viscous damped 

systems’ analyses.  
In analysis of MDOF systems, for the validity of the above claims, besides Conditions (a)-(d), the damping should be classical; 
see the extension in Section 4. For nonlinear analyses, Conditions (a)-(d) are necessary; see Section 5.  
 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Effect of linear-viscous damping on spectral radius when Conditions (a)-(d) are met. 

 

3. Numerical Illustration 

In this section, the validity of Fig. 5 is studied via different conventional and recent time integration methods [19, 46, 63-
72]. First, it is displayed that when Conditions (a)-(d) addressed in Section 2 are provided, linear-viscous damping is beneficial 
for numerical stability; see Figs. 6-18, where  

 12  T   (22) 
and the values of   are selected from:  

 84 10,10,100,2,1,5.0,1.0,05.0,02.,0   (23) 

Extremely large values of   are considered in eq. (23), in order to clarify any probable ambiguity regarding the effects of 

large damping on numerical stability. Obviously, Figs. 6-18 are in complete agreement with Fig. 5 (see [19, 46, 63-71] and 
consider physical stability for the system under consideration). 

Then, the importance and role of Condition (c) (stated in Section 2) in the validity of Fig. 5 is studied via an integration 
method recently proposed by Rezaiee-Pajand and Karimi-Rad [72]. As apparent in Fig. 19 and Table 2, when using this 
integration method, linear-viscous damping is not necessarily beneficial for the numerical stability ( crt  is the largest 

integration step leading to numerical stability, roughly speaking equal to the integration step in Figs. 2, 3, and 5, at which, the 
spectral radius increases from values smaller than one to values larger than one). Nevertheless, this is not against the claims 
made in Section 2 and Fig. 5; see the formulation of this method [72], stated below: 
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Fig. 6. Changes of spectral radius with respect to Tt  for the Houbolt method [46]: (a) low  , (b) high  . 

 

 

 

 

 

 

Fig. 7. Changes of spectral radius with respect to Tt  for the Newmark average acceleration method [63]: (a) low  , (b) high  . 

 
 

 

 

 

Fig. 8. Changes of spectral radius with respect to Tt  for the Newmark linear acceleration method [19]: (a) low  , (b) high  .  

 

 
 

 

 

 

 

Fig. 9. Changes of spectral radius with respect to Tt  for the central difference method [64]: (a) low  , (b) high  . 

 

 
 
 

 
 
 
 
 
 

Fig. 10. Changes of spectral radius with respect to Tt  for the Wilson-Theta method ( 42.1 ) [66]: (a) low  , (b) high  . 
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Fig. 11. Changes of spectral radius with respect to Tt  for the HHT method [67] ( 6.0,3025.0,1.0   ): (a) low  , (b) high  . 

 

 

 
 
 

 
 
 
 
 

Fig. 12. Changes of spectral radius with respect to Tt  for the HHT method [67] ( 5.0,25.0,3.0   ): (a) low  , (b) high  . 

 
 
 

 

 

 
 

Fig. 13. Changes of spectral radius with respect to Tt  for the C-H method ( 8.0 ) [65]: (a) low  , (b) high  . 

 

 

 
 
 

 

 

Fig. 14. Changes of spectral radius with respect to Tt  for the C-H method ( 0 ) [65]: (a) low  , (b) high  . 

 

 
 
 

 

 
 
 
 
 
 

Fig. 15. Changes of spectral radius with respect to Tt  for the C-H method ( 5.0 ) [65]: (a) low  , (b) high  . 
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Fig. 16. Changes of spectral radius with respect to Tt  for the 
1  method ( 975.01  ) [68]: (a) low , (b) high . 

 

 

 
 
 
 

 

 

Fig. 17. Changes of spectral radius with respect to Tt  for the method of Bathe [69, 70]: (a) low , (b) high .     

 

 

 
 
 
 

 
 

Fig. 18. Changes of spectral radius with respect to Tt  for the method of Katsikadelis [71]: (a) low , (b) high . 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 19. Changes of spectral radius with respect to Tt for the method of Rezaiee Pajand and Karimi-Rad ( 9.0 ) [72]: (a) low , (b) 

high . 
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and consider that the   introduced in Section 2 cannot exist for the scheme in eq. (24). Consequently, Figs. 6-19 are in 
complete agreement with Fig. 5, as well as the study reported in [58]. 
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Table 2. Changes of Ttcr  with respect to   for the method proposed in [72] ( 9.0 ). 

  0 0.02 0.05 0.10 0.50 1 5 100 1E4 1E8 

Ttcr 0.2781 0.2756 0.2720 0.2675 0.2429 0.1456 0.08425 0.03638 0.159E-4 0.159E-8 

 
In addition, in Figs. 6-18, 

 1=lim:∀
∞→



t    (25) 

This observation can be explained, by the fact that, at   the behavior is asymptotically static, and hence, for the actual 

(exact) response, 

 :   0u    and  0u     (26) 

Besides, the Conditions (a)-(d) stated in Section 2 are considered satisfied in Figs. 6-18. Therefore, in agreement with the 
achievements in Section 2, at  , regardless of the integration step, the computed responses are both consistent and  

stable. The consequence is responses convergence to the actual responses. Accordingly, eq. (26) implies 1  regardless of 

the integration step. This is an evidence for the validity of eq. (25). When, the Conditions (a)-(d) are not satisfied, although 
eq. (26) will remain correct, eq. (25) is not necessarily correct, because of the lack of guarantee on stability and convergence. 
Figure 19 displays an example. (Meanwhile, eq. 25 can be explained also with attention to the geometry of Fig. 5.) 

Furthermore, as apparent in Figs. 6-19, the changes of spectral radius with respect to viscous damping do not occur in a 
monotone trend for different values of Tt . In more detail, for unconditionally stable analyses, the trends of the changes of 

  with respect to Tt  are different before and after about 1  (associated with the critically damped condition [19]). This 

affects the numerical damping of the analysis, which is the capability of some time-integration methods to eliminate additional 
erroneous oscillations induced by discretization in space [33, 36, 62]. Therefore, linear-viscous damping affects numerical 
damping, and in setting the details of an arbitrary analysis, for providing the required numerical damping, attention to linear-
viscous damping is essential. In view of the objective of this paper, further discussion on numerical damping is left for future 
works. 

4. Generalization 

In the discussion presented in Section 2, the damping was assumed linear, viscous, and classical (for MDOF systems [12, 
19]). This is an assumption conventional in practice [12, 19, 20, 35, 44]), and in view of it, the damping force can be defined as 

(see eq. (4)):  

 f Cud     (27) 

The discussion and the resulting achievements may however be also valid for other types of damping (see [73]), e.g. 

 ,f Cud Z     (28) 

In a review on the discussion presented in Section 2, the nature and type of damping affects the presented discussion negligibly. 
In more detail, by replacing eqs. (16), (17), and (20), with eqs. (29)-(31), stated below: 
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   (31) 

the discussion presented in Section 2 can be repeated and lead to similar results, if the probable nonlinearities in the definition 
of the damping force are modeled with negligible errors; see [74-76]. The last point is essential to preserve the validity of 
eqs. (14) and (15), resulted from eqs. (10)-(13), considering that eqs. (10)-(13) are valid for linear analyses [31, 33]. The 
specific consequence is that arbitrary physical damping would assist the numerical stability, provided the conditions below are 
met: 
 The integration method is consistent. 
 The damping and excitation contribute the integration scheme such that a constant value or matrix can be assigned to   

leading to identical responses for eqs. (29) and (31), when analyzed with the same integration step. 
 The probable nonlinearities in the definition of physical damping are modeled with sufficient accuracy. 
 The structural system is physically stable. 
The difference between Figs. 2 and 3 from the points of view of computational effort and ease, and the benefits of the general 
rule claimed in this paper may increase for physical damping other than linear-viscous damping. The amount of the benefit 
depends directly on the number of coefficients defining the damping, e.g. equal to one ( ) for linear-viscous damping. This 

highlights the significance of the achievements in this paper. 
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5. Discussion 

The achievements attained in this paper, specifically maintaining a general rule for the influence of physical damping on 
numerical stability of time integration analyses, are important, because: 
 The reduction of the computational effort associated with the study of numerical stability is considerable; see Figs. 2 and 3 

and the brief discussion in the ending lines of Section 4. 
 Research on new time integration methods is in rapid progress (see Table 3 and [4-18, 77]). Accordingly, study on the 

features and properties of new methods, e.g. numerical stability, would rather be facilitated. The main achievement in this 
paper is a step to materializing this objective; see Figs. 2 and 3 and [48]. 

 

Table 3. Number of researches with "new time integration method" in the body of the research manuscript according to Google Scholar 
search. 

Years 1983-1987 1988-1992 1993-1997 1998-2002 2003-2007 2008-2012 2013-2017 
Number 0 4 11 17 12 19 38 

 The conditions discussed in Sections 2 and 4 can simply be tested. Accordingly, the achievements can simply be 
implemented in practice. 

 When the conditions stated in Sections 2 and 4 are satisfied, there exists an amount of linear-viscous damping that can 
stabilize arbitrary unstable analysis. 

 The discussion presented in Sections 2-4 takes into account all step-by step time integration methods, for which eq. (10) 
can be derived. Equation (10) and amplification matrix are conceptually equivalent to the nature of step-by-step solution 
of second order ordinary initial value problems [20, 31, 33, 48]. Consequently, the presented discussion includes not only 
single-stage implicit or explicit methods [31, 33], but also different predictor-corrector and multi-stage methods, e.g. see 
[31, 78, 79]. 

Furthermore, in the study of new time integration methods, it is conventional to consider the requirements derived for the 
numerical stability of linear analysis as necessary conditions for the numerical stability of nonlinear analyses; e.g. see [12, 33, 
69, 75]. No new time integration method is introduced in this paper, and time integration methods are specifically important in 
nonlinear analysis. Considering these, in view of the discussion presented in Section 2, the achievements can be valid for 
nonlinear analysis, when the nonlinearity is via the internal force (see eq. 1) and 

 intf f fs d   (32)

( fs  represents the internal forces in the structural system originated in the relative displacement of different parts of the 

system, and fd  stands for the internal forces resisting against motion; see also eq. (27)), provided nonlinearity iterations are 

sufficiently strict; see [76]. Figures 20-22 address an example. 
Loosening the conditions restricting the achievements of this paper, i.e. the four conditions stated in the ending part of 

Section 4, is a major area for further research. Such studies may lead to elimination of physical damping from the study of 
numerical stability (of time integration methods). Even more, in long term, the importance of damping may disappear from the 
study of many time integration methods. 

Fig. 20. Initial status and details of a free vibration nonlinear SDOF system to study the influence of viscous damping on numerical 
stability. 

6. Conclusions 

In time integration analysis of the semi-discretized equation of motion below: 
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Fig. 21. Exact response of the system introduced in Fig. 20 displaying the physical stability of the nonlinear behavior: (a) Displacement 

history, (b) Plot of velocity versus displacement. 

 

                    

                    
Fig. 22. Influence of linear-viscous damping on central difference analysis [64] of the system displayed in Fig. 20 when the nonlinearity 

modeling is controlled strictly: (a) s 5.1t , (b) s 2t , (c) s 4t . 

the physical damping, fd , can be disregarded in the study of numerical stability, if 

 The integration scheme is consistent. 
 The damping and excitation appear in the time integration scheme such that, by adequate selection of  , eqs. (16) and 

(20) (or eqs. (29) and (31)) can be modeled identically by the integration method. 
 The residuals of the nonlinearity iterations are negligible. 
 The behavior of the structural system is physically stable. 
For linear-viscous damped systems, the above-mentioned achievement leads to Fig. 5. In addition, when the above four 
conditions are satisfied, 
 For extremely high linear-viscous damping, the analysis becomes unconditionally stable. 
 The influence of linear-viscous damping on numerical damping is different for different amounts of linear-viscous 

damping. Accordingly, in setting the details of time integrations methods, for eliminating the higher erroneous modes, 
physical damping should be taken into account. 
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