
Cell Physiol Biochem 2018;51:31-45
DOI: 10.1159/000495159
Published online: 15 November 2018 31

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Fan et al.: LncRNA MALAT1 Protects Osteoblasts from Dexamethasone

Original Paper

Accepted: 7 November 2018

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution 
for commercial purposes as well as any distribution of modified material requires written permission.

DOI: 10.1159/000495159
Published online: 15 November 2018

© 2018 The Author(s) 
Published by S. Karger AG, Basel
www.karger.com/cpb

Long Non-Coding RNA MALAT1 Protects 
Human Osteoblasts from Dexamethasone-
Induced Injury via Activation of PPM1E-
AMPK Signaling
Jian-bo Fana,b   Yingzi Zhang c    Wei Liua    Xin-hui Zhua    Da-wei Xua    
Jian-ning Zhaob    Zhi-ming Cuia

aDepartment of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 
bDepartment of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, cDepartment of 
Orthopedics, the Second Affiliated Hospital of Suzhou University, Suzhou, China

Key Words
LncRNA MALAT1 • Osteoblasts • Dexamethasone • Nrf2

Abstract
Background/Aims: Dexamethasone (Dex) induces injuries to human osteoblasts. In this 
study, we tested the potential role of the long non-coding RNA metastasis-associated lung 
adenocarcinoma transcript 1 (Lnc-MALAT1) in this process. Materials: Two established human 
osteoblastic cell lines (OB-6 and hFOB1.19) and primary human osteoblasts were treated 
with Dex. Lnc-MALAT1 expression was analyzed by quantitative real-time polymerase chain 
reaction assay. Cell viability, apoptosis, and death were tested by the MTT assay, histone-
DNA assay, and trypan blue staining assay, respectively. AMP-activated protein kinase 
(AMPK) signaling was evaluated by western blotting and AMPK activity assay. Results: Lnc-
MALAT1 expression was downregulated by Dex treatment in the established osteoblastic cell 
lines (OB-6 and hFOB1.19) and primary human osteoblasts. The level of Lnc-MALAT1 was 
decreased in the necrotic femoral head tissues of Dex-administered patients. In osteoblastic 
cells and primary human osteoblasts, forced overexpression of Lnc-MALAT1 using a lentiviral 
vector (LV-MALAT1) inhibited Dex-induced cell viability reduction, cell death, and apoptosis. 
Conversely, transfection with Lnc-MALAT1 small interfering RNA aggravated Dex-induced 
cytotoxicity. Transfection with LV-MALAT1 downregulated Ppm1e (protein phosphatase, Mg2+/

Mn2+-dependent 1e) expression to activate AMPK signaling. Treatment of osteoblasts with 
AMPKα1 short hairpin RNA or dominant negative mutation (T172A) abolished LV-MALAT1-
induced protection against Dex-induced cytotoxicity. Furthermore, LV-MALAT1 induced an 
increase in nicotinamide adenine dinucleotide phosphate activity and activation of Nrf2 
signaling. Dex-induced reactive oxygen species production was significantly attenuated 
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by LV-MALAT1 transfection in osteoblastic cells and primary osteoblasts. Conclusion: Lnc-
MALAT1 protects human osteoblasts from Dex-induced injuries, possibly via activation of 
Ppm1e-AMPK signaling.

Introduction

Dexamethasone (Dex) is prescribed to patients with chronic inflammatory and 
autoimmune diseases [1]. However, excessive or long-term Dex treatment induces cytotoxic 
effects in human osteoblasts, serving as a primary cause of osteoporosis and osteonecrosis 
[2, 3]. Dex treatment has been shown to exert direct cytotoxic effects on cultured human 
osteoblasts in vitro [2, 4-7]. Studies focusing on the pathological mechanisms of Dex-induced 
injuries in osteoblasts have been previously conducted [8-13], and have been the main area 
of focus of our research group as well [4, 9, 11, 14].

The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1) [15], or Lnc-MALAT1, is an abundant and highly conserved lncRNA 
[16-18]. It was first discovered as a prognostic marker for lung cancer metastasis [19]. Lnc-
MALAT1 is overexpressed in various human cancers [16-18]. It interacts with polycomb-2 
to regulate histone modifications and cell proliferation [20]. Furthermore, it interacts with 
serine/arginine-rich proteins to regulate the subcellular localization of splicing regulatory 
proteins [21]. Recent studies have proposed the pro-survival function of Lnc-MALAT1 [22]. 
However, the potential activity of Lnc-MALAT1 in Dex-treated human osteoblasts has not yet 
been studied.

AMP-activated protein kinase (AMPK) coordinates the signaling of several metabolic 
pathways [23, 24]. It is composed of α-, β-, and γ-subunits [23, 24]. Phosphorylation of the 
α1-subunit at Thr-172 is essential for AMPK activation [23-25]. Activated AMPK is shown to 
promote cell survival under stress conditions [26]. AMPK can attenuate oxidative stress via 
activation of nicotinamide adenine dinucleotide phosphate (NADPH) [27] and nuclear factor 
erythroid 2-related factor 2 (Nrf2) signaling [28-30]. Recent studies have implied that AMPK 
activation can efficiently protect human osteoblasts from Dex-induced injuries [4, 5, 30, 31].

One strategy to induce AMPK activation is to inhibit the expression of its phosphatases 
[32], which were largely unknown until recently [33]. Protein phosphatase Mg2+/Mn2+-
dependent (Ppm) 1e (Ppm1e) is an important AMPKα phosphatase [33]. It belongs to the 
Ppm family [34, 35]. Our previous study demonstrated that microRNA-135b downregulated 
Ppm1e expression to activate AMPK signaling, which in turn protected osteoblastic cells from 
Dex-induced injuries [4]. In the present study, our results suggest that Lnc-MALAT1 protects 
human osteoblasts from Dex-induced injury via activation of Ppm1e-AMPK signaling.

Materials and Methods

Chemicals and reagents
Dexamethasone, puromycin, neomycin, and JC-1 fluorescent dye were purchased from Sigma-Aldrich 

(St. Louis, MO). Antibodies were purchased from Cell Signaling Technology (Beverly, MA) and Santa Cruz 
Biotechnology (Santa Cruz, CA). Fetal bovine serum, Dulbecco’s modified Eagle’s medium, antibiotics, 
and other cell culture reagents were obtained from Gibco-BRL (Grand Island, NY). The cell lysis buffer 
was purchased from Sigma-Aldrich (Wuxi, China). TRIzol reagent for RNA assays was obtained from 
Invitrogen (Shanghai, China). mRNA primers were synthesized by GenePharma Co. (Shanghai, China). The 
2′,7′-dichlorofluorescein diacetate (DCF-DA) fluorescent dye for reactive oxygen species (ROS) assay was 
provided by Roche Diagnostics (Mannheim, Germany).
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Cell culture
Established OB-6 [2] and hFOB1.19 [36] human osteoblastic cells were purchased from the Cell 

Bank of the Shanghai Institute of Biological Sciences (Shanghai, China). Cells were cultured as described 
previously [2, 36]. The primary human osteoblasts were provided by Dr. Ji [6] and cultured under previously 
described conditions [6, 37]. Primary osteoblasts at passage 3–10 were utilized for in vitro experiments. All 
protocols involving the use of human cells were approved by the Ethics Committee of Nantong University 
and Declaration of Helsinki.

Quantitative real-time polymerase chain reaction assay
As described previously [4, 38], TRIzol reagent was used to extract total cellular RNA, which was then 

reverse-transcribed. cDNA was then amplified by quantitative real-time polymerase chain reaction (qPCR). 
SYBR Green PCR kit (Applied Biosystems, Shanghai, China) was utilized to detect the expression of the listed 
mRNAs. Melting curve analysis was applied to calculate the product melting temperature. Quantification of 
mRNA expression was performed using the ΔΔCt method, with glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) as the internal control. The primer sequences used for theNrf2 genes, including heme oxygenase-1 
(HO1), NAD(P)H quinone oxidoreductase 1 (NQO1), and γ-glutamyl cysteine ligase catalytic subunit 
(GCLC) were described previously [39]. Ppm1e mRNA primer sequences were described early [4]. Lnc-
MALAT1 primer sequences were as follows: forward: 5′-AAAGCAAGGTCTCCCCACAAG-3′, reverse: 
5′-GGTCTGTGCTAGATCAAAAGGCA-3′, as described previously [40]. Lnc-MALAT1 level was normalized 
to that of U6 mRNA.

Forced Lnc-MALAT1 expression
The Lnc-MALAT1 sequence was sub-cloned into the lenti-vector-plasmid pCDH-CMV-MCS-EF1-coGFP-

puro to generate pCDH-CMV-MALAT1-EF1-coGFP-puro, which was transfected into 293T cells with the 
lentiviral packaging vectors, psPAX2 and pMD2.G, to produce the lentivirus LV-MALAT1. Human osteoblastic 
cells or primary osteoblasts were seeded onto 6-well plates at a density of 1×105 cells per well. Cells were 
infected with control virus or LV-MALAT1 for 48 h, followed by culture in puromycin (1 μg/mL)-containing 
medium for another 2–3 weeks. The expression of Lnc-MALAT1 in stable cells was determined by qPCR 
assay.

Lnc-MALAT1 small interfering RNA
Small interfering RNAs (siRNAs) targeting Lnc-MALAT1,including siMALAT1-1(5′-

GAAUUCCGGUGAUGCGAGU-3′) and siMALAT1-2 (5′-GGCAAUAGAGGCCCUCUAA-3′), were obtained from 
GenePharma Co. Human osteoblastic cells or primary osteoblasts were seeded onto 6-well tissue culture 
plates at a density of 1×105 cells per well. Cells were transfected with 500 nM of Lnc-MALAT1 siRNA or 
scramble control siRNA (siR-C) by Lipofectamine 2000 (Invitrogen) for 48 h.Lnc-MALAT1 knockdown 
efficiency was determined by qPCR assay.

Western blotting
As described in our previous studies [9, 11], total cell lysates were separated bydenaturing on 

10% polyacrylamide gels [41], and then transferred to polyvinylidene difluoride membranes (Millipore, 
Shanghai, China). The membranes were blocked with 10% non-fat dry milk, followed by incubation with 
specific primary and secondary antibodies. The antigen-antibody binding was detected using enhanced 
chemiluminescence (ECL) reagents (Pierce, Shanghai, China). ImageJ software was utilized for quantification 
of the total gray area of each protein band.

Cell death assay
Human osteoblastic cells or primary osteoblasts were seeded onto 12-well plates at a density of 5×104 

cells per well. Following treatment with Dex, cells were trypsinized. Cells were stained with trypan blue, 
and cell counting was performed using a cytometer. The cell death percentage was then calculated using 
the following formula: Cell death percentage (%) = (number of trypan blue-stained cells)/(number of total 
cells) [11].

http://dx.doi.org/10.1159%2F000495159
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Cell viability assay
Human osteoblastic cells or primary osteoblasts were seeded onto 96-well plates at a density of 

3×103 cells per well. Following the treatment with Dex, cell viability was assessed by the routine 3-[4, 
5-dimethylthylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT) dye assay [9, 11]. MTT optical densities 
(ODs) at 550 nm were recorded.

Detection of apoptosis by enzyme-linked immunosorbent assay
Human osteoblastic cells or primary osteoblasts were seeded onto 96-well plates (3×103 cells per 

well). After the applied treatment, a histone-DNA enzyme-linked immunosorbent assay (ELISA) kit (Roche, 
Palo Alto, CA) was used to quantify cell apoptosis [42]. Histone-DNA ELISA OD at 450 nm was recorded.

AMPKα1 knockdown
AMPKα1 short hairpin RNA (shRNA) was used as described in our previous study [42]. Human 

osteoblastic cells or primary osteoblasts were seeded onto 6-well plates. The lentiviral AMPKα1 shRNA 
construct (10 μL virus/mL) was added directly to the cells for 24 h. Cells were cultured in puromycin (1 
μg/mL)-containing medium for 2–3 weeks. Knockdown of AMPKα1 in stable cells was verified by western 
blotting.

AMPK dominant negative mutation
Cells were seeded onto 6-well plates at a density of 1×105 cells per well. The dominant negative mutant 

of AMPKα1 (dn-AMPKα1; T172A; Flag-tagged; provided by Dr. Lu [43]) was transfected into cultured cells 
using Lipofectamine 2000 [43]. Stable cells were selected by neomycin (2 μg/mL; Sigma-Aldrich). The 
expression of dn-AMPKα1 was confirmed by western blotting.

AMPK activity assay
Following treatment, 500 μg of total cell lysate proteins were incubated with anti-AMPKα1 antibody 

(Cell Signaling Technology). As described previously, AMPK activity was measured in kinase assay buffer 
usingthe AMP-[γ-32P] ATP mixture along with the SAMS (HMRSAMSGLHLVKRR) peptide [44]. To stop the 
reaction, phosphocellulose paper was added. AMPK radioactivity was measured with a scintillation counter.

NADPH activity assay
NADPH activity was testedby a previously described method [45]. Following treatment, intracellular 

NADPH and NADP+ levels were examined [46]. Briefly, two million cells were plated onto 10cm dishes 
and lysed in 300 μL of extraction buffer after the applied treatment [27]. For NADPH extraction, 100 μL 
of the supernatant was incubated at 60 °C for 30 min. Next, 100 μL of NADP-cycling buffer [27] with 
1.0 U glucose-6-phosphate dehydrogenase (G6PD; Sigma-Aldrich) was added. After 1 min of incubation 
at 30 °C, 20 μL of 10 mM glucose 6-phosphate (G6P; Sigma-Aldrich) was added to the mixture, and 
the change in absorbance at 570 nm was measured. The concentration of NADP+ was calculated by 
subtracting [NADPH] from [total NADP] [27]. The relative NADPH activity was calculated by determining 
the NADPH/NADP+ ratio.

ROS measurement
Cells were seeded onto 12-well plates at a density of 5×104 cells per well. Following treatment, ROS 

production was measured bythe DCF-DA fluorescent dye assay. Cells were incubated with 5μM of DCF-DA 
for 30 min. Fluorescence intensity was measured using a flow cytometer (BD Biosciences, Shanghai, China).

Mitochondrial depolarization assay
After the applied treatment, mitochondrial depolarization (“∆Ψ”) was tested using the mito-dye JC-

1, which aggregates to form green monomers after mitochondrial depolarization [47]. Cells were initially 
seeded onto 24-well tissue culture plates. The protocol for mitochondrial depolarization assayusing JC-1 
has been discussed previously [48]. JC-1 fluorescence ODs were recorded at 550 nm.

http://dx.doi.org/10.1159%2F000495159
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Human tissue collection and analysis
As described previously [4], surgery-isolated necrotic femoral head tissues and thesurrounding 

normal femoral head tissues were collected from patients who were taking Dex and undergoing femoral 
head resection. Fresh tissues were dissolved in tissue lysis buffer. The protocols were approved by the Ethics 
Committee of Nantong University. Written informed consent was obtained from each patient. A total of 
nine patients were included. All clinical investigations were conducted according to the criteria set by the 
Declaration of Helsinki.

Statistical analysis
All quantitative data are presented are the mean ±standard deviation (SD) from at least three samples 

per data point. Statistical differences between groups were determined by one-way analysis of variance 
followed by multiple comparisons performed using Bonferroni post-hoc test. All analyses were performed 
with SPSS version 18.0 statistical software (SPSS Co., Chicago, IL). Values of p< 0.05 were considered 
statistically significant.

Results

Lnc-MALAT1 expression is downregulated in Dex-treated human osteoblasts and in the 
necrotic femoral head tissues of Dex-administered patients
To test whether Dex can affect Lnc-MALAT1 expression, two established human 

osteoblasticcell lines, OB-6 and hFOB1.19, were treated with Dex (1 μM) [4, 5]. After 12h of 
incubation, Lnc-MALAT1 expression level was significantly decreased in OB-6 (Fig. 1A) and 
hFOB1.19 cells (Fig. 1B), as well as in the primary human osteoblasts (Fig. 1C). Similarly, 
Lnc-MALAT1 level was also reduced in the necrotic femoral head tissues of Dex-administered 
patients [4]. However, its level in the paired surrounding normal femoral head tissues was 
relatively high (Fig. 1D).

Fig. 1. Lnc-MALAT1 expression is downregulated in Dex-treated human osteoblasts and in the necrotic 
femoral head tissues of Dex-administered patients. Human osteoblastic OB-6 (A) and hFOB1.19 cells (B) or 
primary human osteoblasts (C) were treated with or without Dex (1 μM) for 12 h. Lnc-MALAT1 expression 
(vs. U6 mRNA) was analyzed (A–C). qPCR analysis of the relative Lnc-MALAT1 expression (vs. U6 mRNA) in 
the surgery-isolated femoral head tissues (both normal and necrotic) from a total of nine Dex-administered 
patients (D). “Ctrl” represents untreated control group. All quantitative data are presented as the mean 
±SD (same for all figures).*p<0.05 vs. Ctrl cells (A–C; n=5). *p<0.05 vs. “S” tissues (surrounding normal 
femoral head tissues) (D; n=9). Experiments in this figure were repeated three times, and similar results 
were obtained.
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Fig. 2. Forced overexpression of Lnc-MALAT1 protects human osteoblasts from Dex-induced injuries. 
Stable osteoblastic OB-6 (A–D) and hFOB1.19 cells (E) or primary human osteoblasts (F) transfected with 
Lnc-MALAT1-expressing lentivirus (two stable lines:LV-MALAT1-L1/LV-MALAT1-L2) or non-sense control 
lentivirus (LV-C), were treated with or without Dex (1 μM) for 24 h. Lnc-MALAT1 expression (vs. U6 mRNA) 
was analyzed (A).Cell viability (MTT assay; B, E, and F), cell apoptosis (histone-DNA ELISA assay; C), and 
cell death (trypan blue staining assay; D) were evaluated. For each assay, n=5. “Ctrl” represents untreated 
control group. *p<0.05 vs. Ctrl cells. #p<0.05 vs.LV-C cells with Dex treatment. Experiments in this figure 
were repeated four times, and similar results were obtained.
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Fig. 3. Lnc-MALAT1 silencing aggravates Dex-induced cytotoxicity in human osteoblasts. Human osteoblastic 
OB-6 (A–D) and hFOB1.19 cells (E) or primary human osteoblasts (F) were transfected with Lnc-MALAT1 
siRNA (siMALAT1-S1/S2; 500 nM, for 48 h) or scramble control siRNA (si-C; 500 nM, for 48 h). Cells were 
then treated with Dex (1 μM) for 24 h. Lnc-MALAT1 expression (vs. U6 mRNA) was analyzed (A). Cell 
viability (MTT assay; B, E, and F), cell apoptosis (histone-DNA ELISA assay; C), and cell death (trypan blue 
staining assay; D) were evaluated. For each assay, n=5. “Ctrl” represents untreated control group. *p<0.05 vs. 
Ctrl cells. #p<0.05 vs. Dex-treated si-C cells. Experiments in this figure were repeated four times, and similar 
results were obtained.
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Forced overexpression of Lnc-MALAT1 protects human osteoblasts from Dex-induced 
injuries
Lnc-MALAT1 expression was downregulated following Dex treatment in human 

osteoblasts, indicating its potential activity in Dex-induced cytotoxicity. Next, a lentiviral 
Lnc-MALAT1 expression construct (LV-MALAT1) was transfected into OB-6 cells. Following 
puromycin selection, two stable OB-6 cell lines were established: LV-MALAT1-L1 and LV-
MALAT1-L2. By performing qPCR assay, we showed that Lnc-MALAT1 expression level 
was significantly increased in the stable cells transfected with LV-MALAT1, even after Dex 
treatment (Fig. 2A). Additionally, Dex-induced viability reduction (MTT OD) was attenuated 
following LV-MALAT1 transfection in OB-6 cells (Fig. 2B). Furthermore, results from Histone-
DNA ELISA apoptosis assay and trypan blue staining assay showed that Dex-induced cell 
apoptosis and death were significantly inhibited in stable OB-6 cells transfected with LV-
MALAT1 (Fig. 2C and D). Treatment with LV-MALAT1 alone failed to affect OB-6 cell survival, 
death, or apoptosis (Fig. 2B–D).

In hFOB1.19 osteoblastic cells, forced overexpression of Lnc-MALAT1 attenuated 
Dex-induced viability reduction (Fig. 2E). In primary human osteoblasts, cells transfected 
with LV-MALAT1 were protected from Dex-induced injury (Fig. 2F). Together, these results 
indicate that forced overexpression of Lnc-MALAT1 protects human osteoblasts from Dex-
induced injury.

Lnc-MALAT1 silencing aggravates Dex-induced cytotoxicity in human osteoblasts
Next, we hypothesized that Lnc-MALAT1 silencing enhances Dex-induced cytotoxicity. 

To test this hypothesis, Lnc-MALAT1 siRNAs (siMALAT1-S1/S2) were transfected into OB-6 
cells. As shown in Fig. 3A, each of the applied siRNA induced over 90% reduction of Lnc-
MALAT1 expression in OB-6 cells. Lnc-MALAT1 siRNA induced minor but significant viability 
reduction (Fig. 3B), apoptosis (Fig. 3C), and death (Fig. 3D) in OB-6 cells. Additionally, 
Lnc-MALAT1 silencing aggravated Dex-induced cytotoxicity, thereby enhancing viability 
reduction (Fig. 3B), cell apoptosis (Fig. 3C), and death (Fig. 3D). In hFOB1.19 osteoblastic 
cells and primary human osteoblasts, similar results were obtained. Lnc-MALAT1 siRNA 
transfection significantly enhanced Dex-induced viability reduction (Fig. 3E and F). Lnc-
MALAT1 silencing alone only slightly inhibited the viability of hFOB1.19 cells and primary 
osteoblasts (Fig. 3E and F). These results further support the role of Lnc-MALAT1 in Dex-
induced osteoblast injury.

AMPK activation mediates LV-MALAT1-induced protection against Dex-induced 
cytotoxicity
Our previous study showed that activation of Ppm1e-AMPK signaling could protect 

human osteoblasts from Dex-induced injuries [4]. The potential effect of Lnc-MALAT1 on 
this signaling was tested. By performing qPCR assay, we showed that transfection with LV-
MALAT1 decreasedPpm1e mRNA expression in OB-6 cells (Fig. 4A). Ppm1e protein expression 
was also downregulated, causing increased phosphorylation of AMPKα1 (at Thr-172) and 
its major downstream protein, acetyl-coA carboxylase (ACC; at Ser-79) (Fig. 4B). Further 
studies showed that AMPK activity was also increased in LV-MALAT1-expressing OB-6 cells 
(Fig. 4C). These results suggestthat forced overexpression of Lnc-MALAT1 activates AMPK 
signaling in OB-6 cells.

Next, genetic strategies were employed to inhibit AMPK activation. As described 
previously [4], OB-6 cells were treated with AMPKα1 shRNA lentivirus (sh-AMPKα1) to 
stably knockdown AMPKα1 (Fig. 4D). Additionally, a dominant negative mutant of AMPKα1 
(dn-AMPKα1; T172A) was transfected into OB-6 cells (Fig. 4D). As demonstrated in Fig. 
4D, transfection with sh-AMPKα1 or dn-AMPKα1 almost completely blocked LV-MALAT1-
induced AMPK activation (AMPKα1-ACC phosphorylation) in OB-6 cells. Moreover, LV-
MALAT1 treatment was ineffective against Dex-induced injury in OB-6 cells transfected 
with sh-AMPKα1 or dn-AMPKα1 (Fig. 4E and F). Therefore, when AMPKα1 was silenced or 
mutated, LV-MALAT1 failed to inhibit Dex-induced OB-6 cell injuries. These results suggest 
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Fig. 4. AMPK activation mediates LV-MALAT1-induced osteoblast cytoprotection against Dex-induced 
injuries. The expression of Ppm1e mRNA (A and G) and listed proteins (B and H), and relative AMPK activity 
(C and I) were assessed in stable OB-6 cells (A–C) or primary human osteoblasts (G–I) transfected with 
Lnc-MALAT1-expressing lentivirus (LV-MALAT1) or non-sense control lentivirus (LV-C). Stable OB-6 cells 
transfected with AMPKα1 shRNA (sh-AMPKα1), dominant negative AMPKα1 (dn-AMPKα1-flag, T172A), 
or scramble control shRNA (scr shRNA), were infected with LV-MALAT1 for 48 h, and the expression of 
listed proteins was analyzed (D).Cells were further treated with Dex (1 μM) for 24 h, and cell viability (MTT 
assay; E) and cell death (trypan blue staining assay; F) were evaluated. Expression of the listed proteins was 
quantified (B, D, and H). For each assay, n=5. “Ctrl” represents untreated control group. *p<0.05 vs. LV-C cells 
(A, C, G, and I). #p<0.05 vs. scr shRNA cells (E and F). Experiments in this figure were repeated three times, 
and similar results were obtained.
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Fig. 5. Lnc-MALAT1 inhibits Dex-induced oxidative stress in human osteoblasts. The expression of 
listed mRNAs (A and F) and proteins (B), and relative NADPH activity (C and G) were assessed in stable 
osteoblastic OB-6 cells (A–C) or primary human osteoblasts (F and G) transfected with Lnc-MALAT1-
expressing lentivirus (LV-MALAT1) or non-sense control lentivirus (LV-C). Cells were further treated with 
Dex (1 μM) for 8 h, and relative ROS production and mitochondrial depolarization were tested by DCF-DA 
fluorescence dye assay (D) and JC-1 fluorescence dye assay (E), respectively. Expression of listed proteins 
was quantified (B). “Ctrl” represents untreated control group. *p<0.05 vs. LV-C cells (A, C, F, and G). *p<0.05 
vs. Ctrl cells (D and E). #p<0.05 vs. Dex-treated LV-C cells (D and E). Experiments in this figure were repeated 
three times, and similar results were obtained.
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that AMPK activation is required for LV-MALAT1-induced osteoblast cytoprotection against 
Dex-induced injuries. In primary human osteoblasts, transfection with LV-MALAT1 similarly 
induced Ppm1e downregulation (Fig. 4G and H), AMPKα1-ACC phosphorylation (Fig. 4H), 
and AMPK activation (Fig. 4I).

Lnc-MALAT1 inhibits Dex-induced oxidative stress in human osteoblasts
Dex induces ROS production to mediate osteoblast injuries [4, 30, 31]. Studies have 

shown that AMPK activation can inhibit Dex-induced ROS production [4, 30, 31, 49, 50]. 
Activated AMPK can increase NADPH content and activity to attenuate oxidative stress 
[49, 51]. AMPK can also induce activation of Nrf2 signaling [28-30], which is a key cellular 
defense mechanism against oxidative stress [52-54]. In OB-6 cells, transfection with LV-
MALAT1 significantly enhanced the mRNA and protein expression of several key Nrf2-
dependent enzymes, including HO1, NOQ1, and GCLC (Fig. 5A and B). Nrf2 mRNA level was 
not significantly altered by LV-MALAT1 transfection in OB-6 cells (Fig. 5A). Nrf2 protein 
level was, however, significantly increased (Fig. 5B). These results indicate that LV-MALAT1 
activates Nrf2 signaling in OB-6 cells.

Further studies showed that in LV-MALAT1-expressing OB-6 cells, NADPH activity was 
enhanced (Fig. 5C), while Dex-induced increase in ROS production or DCF-DA intensity 
was attenuated (Fig. 5D). Additionally, Dex-induced mitochondrial depolarization (JC-1 OD 
increase) was also attenuated (Fig. 5E). These results suggest that LV-MALAT1 activates Nrf2 
and NADPH signaling, thereby inhibiting Dex-induced oxidative stress. In primary human 
osteoblasts, transfection with LV-MALAT1 similarly enhanced the mRNA expression of Nrf2-
dependent genes (Fig. 5F) as well as NADPH activity (Fig. 5G).

Discussion

Prolonged and/or excessive Dex usage can cause secondary osteoporosis [55, 56] or 
osteonecrosis [57]. Reduced number of osteoblasts, decreased osteoblastogenesis, and 
increased osteoblast apoptosis were detected in the bones of Dex-administered patients [55, 
56]. In the present study, in both osteoblastic cells (OB-6 and hFOB1.19 lines) and primary 
human osteoblasts, overexpression of Lnc-MALAT1 by LV-MALAT1 inhibited Dex-induced 
viability reduction, cell death, and apoptosis. Conversely, transfection with Lnc-MALAT1 
siRNA aggravated Dex-induced injuries. Lnc-MALAT1 overexpression downregulated Ppm1e 
expression to activate AMPK signaling. Conversely, transfection with AMPKα1 shRNA 
or its dominant negative mutation almost abolished Lnc-MALAT1-mediated osteoblast 
cytoprotection. Thus, Lnc-MALAT1 protects human osteoblasts from Dex-induced injury 
possibly via activation of Ppm1e-AMPK signaling.

AMPK activation can inhibit ROS production and oxidative injury [27, 51]. AMPK 
activation is essential for NADPH homeostasis [27, 51]. Activated AMPK phosphorylates 
ACC to prevent NADPH consumption [27]. Furthermore, fatty-acid oxidation by AMPK 
promotes NADPH synthesis [27]. Recent studies have proposed another mechanism to 
explain AMPK-induced antioxidant capacity, which involves activation of Nrf2 signaling. 
Nrf2 binds tokelch-like ECH-associated protein 1 (Keap1), an adaptor protein, which is 
responsible for cullin 3-dependent Nrf2 ubiquitination and proteasomal degradation [53, 
58, 59]. Activated Nrf2 disassociates with Keap1, which leads to Nrf2 protein accumulation, 
nuclear translocation, and activation [53, 58, 59]. AMPK is shown to directly phosphorylate 
Nrf2 (at Ser-550) to increase Nrf2 nuclear translocation and activation [29]. Zimmermann et 
al. previously reported a signaling crosstalk between AMPK and Nrf2 [28]. Compound 991 
and PF-06409577, two well-known AMPK activators, have also been shown to activate Nrf2 
signaling [30, 45].
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In this study, we showed that transfection with LV-MALAT1 increased NADPH activity 
and the expression of Nrf2-dependent genes, and attenuated Dex-induced ROS production 
in human osteoblastic cells and primary osteoblasts. Therefore, Lnc-MALAT1 could provoke 
AMPK-dependent antioxidant mechanisms to protect human osteoblasts from Dex-induced 
injury [22].

Conclusion

Our results suggest that Lnc-MALAT1 protects human osteoblasts from Dex-induced 
injuries possibly via activation of Ppm1e-AMPK signaling.
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