
EFFICIENT AND ACCURATE FUSION OF MASSIVE VECTOR DATA ON 3D

TERRAIN

Zhendong Liu1*, Chengming Li1, Zhanjie Zhao1, Dong Zhang2, Fei Wang1, Ying Wang1

1 Institute of Cartography and Geographic Information System, Chinese Academy of Surveying and Mapping, Beijing, China -

lzdgis08@126.com, cmli@casm.ac.cn, 807551588@qq.com, wf946773243@gmail.com, fuermoying_1993@163.com
2 Tai'an City Golden Land Surveying and Mapping Company, Shandong, China - zhangdong890620@163.com

Commission IV, WG IV/8

KEY WORDS: vector data; 3D terrain; seamless fusion; multi thread; level of detail

ABSTRACT:

This paper presents a viewpoint-related fusion method of massive vector data and 3D terrain, in order to superpose the massive 2D

vector data onto the undulating multi-resolution 3D terrain precisely and efficiently. First, the method establishes an adaptive

hierarchical grid spatial index for vector data. It will determine the geographic spatial relationship between vector data and the tiles

of 3D terrain in the visible area; secondly, this method will use the improved sub-pixel graphics engine AggExt to generate

textures for vector data that has been bound to terrain tiles in real time; Finally, considering that a large amount of vector data will

generate a lot of 2D textures in the computer memory, the method should release the “expired” vector textures. In this paper, in

order to take into account the real-time convergence and the smooth interactivity of 3D scenes, this method will adopt a

multi-threading strategy. The experimental results show that this method can realize the real-time and seamless fusion of massive

vector objects on the 3D terrain, and has a high rendering frame rate. It can also reduce the aliasing produced by traditional

texture-based methods and improve the quality of vector data fusion.

* Corresponding author

1. INTRODUCTION

In recent years, with the continuous development of

computer technology and geographic data acquisition

method, and the deepening of GIS applications, more and

more people are demanding to deal with problems in real

three-dimensional space (Li et al. 2011). In the field of

3DGIS, 2D vector data is still an indispensable data type. It

mainly includes three types: points (place names, trees, etc.),

lines (roads, rivers, etc.) and surfaces (lakes, vegetation, etc.).
With the development of multi-resolution data acquisition

technologies such as remote sensing imagery and elevation,

the fusion and application of 2D vector data, 3D topographic

surface models, and global remote sensing imagery have

become a general trend (Kang et al. 2009). Therefore, it is

one of the important problems in the field of 3DGIS how to

overlay a large amount of 2D vector data on an undulating

3D terrain and ensure real-time, high-efficiency, and

high-quality visualization.

Currently, the methods for superimposing 2D vector data on

the surface of 3D terrain can be roughly divided into three

types: geometry-based rendering method, shadow-based

rendering method, and texture-based rendering method

(Wang et al. 2013).

1) Geometry-based rendering method. It represents the 2D

vector data as a geometric model and attaches the geometric

model to the surface of the 3D terrain. So as to avoid the

situation where the vector data traverses the 3D terrain and

achieves that the vector geometry model can completely

blend with the undulating terrain, new vertices or line

segments must be introduced or deleted in the vector

geometry model according to the elevation value of the

terrain in the corresponding location. The cross section is

shown in Figure 1. Foreign scholar Rui et al. (Rui et al. 2004)

used static terrain data in a small area to establish a terrain

model based on a regular quadrilateral grid, and mapped the

vector data to the terrain grid using projection and

interpolation, but he did not explain the amount of terrain

data used in the experiment; Wartell et al. (Wartell et al. 2003)

proposed a method to plot 2D line type of vector data on

multi-level terrain. Because the resolution of the 3D terrain

is dynamically changing according to the viewpoint, in order

for the vector data to perfectly match the current terrain

surface, the geometric nodes of the adjusted vector line must

be recalculated.

2) Shadow-based rendering method. Inspired by the idea of

shadows in graphics, Schneider et al. (Schneider et al. 2007)

first realized the superposition of vector data and 3D terrain.
The basic idea is to create a pixel-level precision vertical

projection of vector data in 3D terrain, extend the polygon

along the lowest point of the terrain to construct a

polyhedron, and calculate the screen space intersection of

the polyhedron and the terrain, generate a mask in the

template cache of GPU and draw it on 3D terrain. The

method can obtain a higher rendering quality, but all the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-119-2018 | © Authors 2018. CC BY 4.0 License.

119

vector data must be extended into a polyhedron in advance,

and these polyhedrons must be drawn twice. Therefore, it is

difficult to achieve real-time efficiency in large-scale vector

data drawing (Cao et al. 2013).

3) Texture-based rendering method. The basic idea of this

method is to rasterize vector data to generate a 2D texture,

and then map the texture to 3D terrain so as to achieve the

seamless overlay of vector data on the terrain surface (Hong

et al. 2010). The cross section is shown in Figure 2. Since

this method does not need to perform geometry matching

calculation processing related to terrain complexity, it

overcomes the deficiencies of Geometry-based rendering

method, but its main shortcomings is that the limited texture

resolution can easily cause a problem of texture aliasing

when the 3D terrain is enlarged. In order to solve the

problem, scholars proposed a dynamic vector texture

rendering method. For example, Kersting et al. (Kersting et

al. 2002) used frame buffering technology to dynamically

draw vector data into a 2D texture, and used a real-time

texture pyramid technique to draw a high resolution texture

to adopt the close viewpoint. This method can greatly save

the texture overhead and time wasted scheduling. However,

texture aliasing can occur at steep terrain because of the

different resolutions of vector textures. Li Rong et al. (Li et

al. 2011) used depth segmentation and screen space

segmentation to cut up the scene volume and proposed a

multi-cascade drawing method, but the efficiency was low

and the rendering frame rate was not high yet.

Figure 1. The Geometry-based rendering method

Figure 2. The Texture-based drawing method

On the whole, in the most common multi-resolution 3D

terrain, the traditional several types of vector data fusion

rendering methods usually have a large amount of

computation and cannot achieve a better fusion effect. In

particular, when faced with massive vector data, most of the

methods consume too much time and cannot achieve the

purpose of real-time fusion.

2. THE METHOD PROPOSED IN THIS ARTICLE

As with most graphics algorithms, texture-based rendering

method will bring major problems such as texture aliasing

(Wang et al. 2003) and real-time rendering. This paper

presents a viewpoint-related fusion method of massive

vector data and 3D terrain based on multi-thread, which

mainly includes the establishment of spatial relationship

between 2D vector data and 3D terrain tiles, vector objects’

textures real-time rendering, and vector objects’ textures

released mechanism, as shown in Figure 3. Different from

previous texture-based rendering methods, this paper uses

the improved texture sub-pixel rendering engine AggExt to

generate textures of vector data without using OpenGL's

Frame Buffer Object (FBO) (Green et al. 2005) and

calculating coordinate of textures. At the same time, the

method uses multi-thread parallel processing technology to

implement the step-by-step, phased implementation of the

entire fusion process, so that when millions or even millions

of vector data are superimposed on 3D terrain, it can be

combined efficiently and seamlessly, and it can reduce the

degree of texture aliasing of traditional methods.

Figure 3. The multi-threaded viewpoint-related fusion framework

2.1 Establish relationships between 2D vector data and

3D terrain tiles

In order to quickly find vector objects that intersect with the

tiles of terrain, an adaptive hierarchical grid spatial index

must be established for massive vector data (Wang et al.

2003).

After an adaptive hierarchical grid spatial index is

established, combined with the 3D scene clipping, the

method of this paper needs to dispatch the vector objects in

the visible area into the computer memory, and then perform

the operation of spatial intersection with the 3D terrain tiles.
Because this article uses a quad-tree structure to organize 3D

terrain. The hidden spatial relationship between the "father"

tiles and their four "children" tiles can be used. According to

the principle that "father" tiles do not intersect with a vector

object, all its "children" tiles must not intersect with the

object. It can significantly improve efficiency. Specific

procedures are described below:

Step 1. To sequentially acquire the block (Blockn) where the

vector objects are located. Blockn is the current block;

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-119-2018 | © Authors 2018. CC BY 4.0 License.

120

Step 2. With Blockn as a processing unit, the circumscribed

rectangle of the Blockn will be spatially intersected with the

root tiles of terrain. If intersected, go to the next step;

otherwise, get the next block Blockn+1 as the current block

(n=n+1), perform step 2 again;

Step 3. Traverses each vector object within Blockn. It will

determine if the vector object intersects with root tiles. If

true, the tile will bind the vector object. In particular, the

vector object does not need to perform the intersection

operation of the child of the root tile in advance, which can

greatly save CPU computing time.

Step 4. Traverse the currently rendered tiles named Tilei.

Then acquire the vector object that has been bound to

"father" tile of Tilei, and then determine whether the vector

object intersects with Tilei. If true, the vector object will be

bound to Tilei. Taking into account that millions of vector

objects participate in the intersection operation, in order to

not affect the real-time and smooth interaction of the 3D

scene, the task is put into a separate thread to complete.

2.2 Draw textures of viewpoint-related vector objects

At present, for the problem of texture aliasing, scholars have

made improvements and achieved better results. However,

there are still major problems as follows: First, most

texture-based methods need to use OpenGL's FBO to

dynamically generate textures and calculate textures’

coordinates for vector objects in real time. A vector object

will be dynamically drawn to the FBO's color buffer, then

the color buffer will be given to the texture object which

should be as a texture of terrain. There is no doubt that this

will bring a heavy burden to the GPU, because the GPU

renders the vector object twice. Secondly, these methods

must calculate the texture coordinates. When a large number

of vector objects need to be frequently drawn into a signal

2D texture, they will bring a lot of calculations to the CPU,

and it is also difficult to ensure that the sampling density is

uniform and some pixels of the texture are stretched.

2.2.1 Real-time texture drawing framework for vector

objects. After the spatial relationship are established, each

tile of terrain can obtain Intersect Vector Objects (IVO). The

next major work is to draw the IVO into the 2D textures. Here

we propose real-time texture drawing framework for vector

objects.

In the 3D terrain scene, according to the viewpoint-related

LOD control rules (Yang et al. 2010), IVO will follow the

dynamic changes of terrain to draw textures of vector objects

with different resolutions. Therefore, under the premise that

there is no need to increase the pixel resolution of the texture,

the pixels of each texture can be used more effectively. In

addition, we propose the real-time texture drawing

framework for vector objects, as shown in Figure 4 which

uses an improved sub-pixel graphics engine AggExt,

combined with multi thread parallel processing and view

frustum cutting techniques. The main flow of the framework

is as follows:

Step 1. The render thread sends drawing requests. According

to the dynamic change of terrain, the IVOs in the visible area

will be marked for drawing texture, and then these IVOs will

be put into a request list in priority order;

Step 2. Adopt a multi-threading strategy. According to the

request list and the computer CPU cores number to

determine the optimal number of thread parallelism and start

threads;

Step 3. AggExt engine draws textures. Each thread of texture

drawing in the active state will call AggExt to perform

texture drawing work. According to the vector type (point,

line, surface, etc.), texture object size, the bounding box of

tile and other parameters to determine the final drawing of

the texture size and quality;

Step 4. The tiles bind and render textures. After AggExt

generates the textures, it passes them to the render thread

and binds them as an ordinary 2D textures to the associated

the tiles. Then, it shares texture coordinates with the remote

sensing imagery and sends them to the GPU rendering

pipelines to complete the fusion rendering.

Different from other texture-based rendering methods, the

method proposed in this paper no longer needs to use

complex formulas to calculate the texture coordinates of the

vector data’s texture based on the parameters such as model

view matrix and projection matrix in the terrain scene. It can

significantly improve the efficiency of fusion.

Figure 4. Real-time texture drawing framework for vector objects

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-119-2018 | © Authors 2018. CC BY 4.0 License.

121

2.2.2 Graphics rendering engine AggExt. It can be seen

from real-time texture drawing framework that we need an

independent graphics engine instead of directly using the

GPU to draw textures of vector objects, thereby reducing the

GPU's rendering burden effectively. When choosing a

graphics rendering engine, we consider the major factors such

as rendering efficiency and the minimization of texture

aliasing, cross-platform. After sufficient experimental

comparison, the subpixel rendering engine Agg (AGG is an

open source, efficient cross-platform 2D graphics library.)

was selected. The experimental conclusions are: 1) as shown

in Table 1, the experiment uses Agg and the most widely used

GDI+ graphics engine (Xue et al. 2015) to draw 100000 point,

line, and surface objects, respectively. The latter is 2~3 times

longer than the former; 2) the aspect of texture anti-aliasing.
When comparing a line texture that is only a few pixels wide,

it can be clearly seen from Figure 5 that the edges of the lines

drawn by Agg are smoother and the effect is better.

Graphic Engine Agg GDI+

Point Type 1252ms 3247ms

Line Type 6255ms 14149ms

Polygon Type 3151ms 5492ms

Anti-aliasing ability Subpixel

anti-aliasing

Ordinary

anti-aliasing

Table 1. Agg and GDI+ performance comparison

Figure 5. Anti-aliasing contrast

A lot of experiments have found that when using the Agg to

draw a line with a certain width, the texture of the

high-resolution will appear missing. To solve this problem,

this paper analyzes and improves Agg's line object drawing

algorithm.

Algorithm description and problem analysis: (1) Calculate

the parameters of line texture 。 First of all, calculate

geographic range and texture ratio of tiles:

 max min max min()TextureRatio TextureSiz X X Y Ye    , in the

formula, TextureSize generally consistent with the size of the

tile imagery texture, (Xmin, Ymin, Xmax, Ymax) is the

geographic extent of the tile; Second, the line texture width:

TextureLineWidth LineWidth TextureRatio  , where

LineWidth is the user-specified line width (for example, the

specified railway line width is 2 meters). It can be concluded

that the higher the resolution of the tiles (the smaller the

geographic range), the greater the value of the

TextureLineWidth; (2) The TextureLineWidth and vertex

coordinates are transmitted to the Agg, through the stages of

Vertex Source, Coordinate Conversion Pipeline, Scanline

Rasterizer, and Render. The algorithm will eventually

generate a 2D raster texture. During the rasterization scan

phase, when sampling textures based on TextureLineWidth,

the sampling interval step is determined by

TextureLineWidth and Agg's predefined line_half_width.

Therefore, the greater the TextureLineWidth, the larger the

step, so fewer pixels can be stored in the sampling texture

array (Render Buffer Array). Therefore, there is a problem of

texture missing in the red line box in Figure 6.

Solution: In order to solve the texture missing problem, it is

sufficient to effectively interpolate and sample the texture

pixels. It proposes to use the associative container instead of

the Render Buffer Array, and use the effective sampling

interval value as the key value of the container, and store the

sampled pixel of the texture into the container to form a

Render Buffer Map; At the same time, the pixels of the

texture should be interpolated and sampled according to the

number of key values of the sampling container, instead of

the number of sampling intervals as the termination

condition. Figure 7 shows the improved algorithm drawn

texture.

2.3 The textures of vector objects release mechanism

Taking into account the massive vector objects will generate

a large amount of textures in real time, in order to avoid the

textures growth caused by computer memory overflow. We

designs and achieve the textures of vector objects released

mechanism. As shown in Figure 8, only the textures of the

vector objects in the VP range (the RS part) needs to be

fusion-rendered; for the ES parts on both sides of the figure,

if there are textures of the vector objects, they should be put

into Waiting Buckets and are released at the appropriate time;
In addition, in order to avoid the 3D scene is not smooth

roaming, we will be distributed to a separate thread to deal

with the task.

Figure 6. Fusion of line vector object at high resolutions

Figure 7. The correct fusion of high resolution

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-119-2018 | © Authors 2018. CC BY 4.0 License.

122

Figure 8. View frustum of vector objects

3. EXPERIMENTS AND ANALYSIS

This article relies on the NewMap software platform

developed by the China Academy of Surveying and Mapping,

and achieved the fusion method of this paper. It also

performs experimental verification and analysis from various

aspects. The experiments adopted global elevation and

remote sensing imagery as basic data, and various types of

vector data such as rivers, hospitals, and meadows in China

were used as experimental verification data.

As shown in Figures 9 to 11, the method of this paper

seamlessly merges point, line, and surface vector data with

undulating terrain. Figure 9 shows the result of the fusion of

point data of the national hospital with 3D terrain. Figure 10

shows the results of the fusion of meadow surface vector

objects and multi-resolution terrain. It can be seen that there

is no crossing phenomenon. The two graphs in Figure 11

show that as the point of view extends from the entire

southwest region of China to the Chengdu region, the terrain

scene gradually shows the texture of river lines with

different resolutions. The method guarantees a smooth

transition of the textures; From Figure 11(b), it can be seen

that at a very close distance, the detail of the line texture

boundary is almost no jagged phenomenon, and the texture

aliasing is also reduced to the degree that the eyes cannot

distinguish.

Figure 9. The fusion of hospital's point data

Figure 10. The fusion of meadow's surface data

(a) The fusion of longer distance

(b) The fusion of closer distance

Figure 11. The fusion of river's line data

To compare the performance of the method, we need to

verify the real-time capabilities of the fusion and the

efficiency of drawing the textures of vector objects. We

select the national railway line data, the data size is 46.5MB,

the vector object is 32830, the coordinate point is 265819,

and a certain viewpoint in the scene is randomly selected. As

shown in Figure 12, it can be seen that as the number of

threads increases, the time taken to draw the textures

continues to decrease. When the number of threads reaches 8

or more, the time required for drawing textures will be stable

within a relatively small interval. At the same time, the

rendering frame rate of the terrain scene will also steadily

and slowly increase with the increase of texture threads, and

it will be maintained at 180~200 frames.

Figure 12. The trend with the number of threads

Figure 13. The trend of Computer memory

In addition, to verify the textures of vector objects released

mechanism can avoid the textures growth caused by

computer memory overflow. We integrate data from the

national geographic range, including remote sensing imagery

and elevations, seamlessly with county-level water system

data with 129,181 vector objects. The rendering system will

open up a piece of memory space, which can be used to

calculate the change of vector objects’ textures memory size.
Figure 13 shows the change of vector objects’ textures

memory within three hours of random roaming the terrain

scene. It can be seen that the computer memory occupied by

vector objects’ textures is basically maintained between

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-119-2018 | © Authors 2018. CC BY 4.0 License.

123

30~50MB, and the released computer memory is maintained

between 20~30MB. Therefore, the mechanism plays a

significant role in preventing the rapid growth of computer

memory.

4. CONCLUSION

This paper presents a viewpoint-related fusion method of

massive vector data and 3D terrain based on multi-thread,

which mainly includes the establishment of adaptive spatial

indexing on vector data, the use of improved sub-pixel

graphics engine AggExt generate vector objects’ textures,

the vector objects’ textures released mechanism. Theoretical

analysis and experimental results show that this method

which adopts a multi-threading strategy, can ensure the

rendering efficiency and real-time interactivity of the 3D

scene while seamlessly blending the vector data with the

undulating 3D terrain. The AggExt engine is combined with

the LOD mechanism of the terrain so that it minimizes the

aliasing caused by traditional methods and improves the

quality of vector data fusion. In general, this method is more

suitable for massive vector data and is more practical.

ACKNOWLEDGEMENTS (OPTIONAL)

This study was funded by the Basic Surveying and Mapping

Project (A1705).

REFERENCES

Li, R., & Zheng, W. 2011. Real-time rendering high-quality

vector data on 3d terrain. Journal of Computer-Aided Design

& Computer Graphics, 23(7), pp. 1106-1114.

Kang, L. 2009. Terrain matching for three-dimensional

visualization of two-dimensional gis vector data. Computer

Science, 36(11), pp. 262-264.

Wang, J. J. 2013. Research progress on 3d visualization of

vector data. Guangdong Agricultural Sciences.

Hong, C., Tang, X., Xie, Y., & Maoyin, A. S. 2010.

Rendering vector data over 3d terrain with view-dependent

perspective texture-mapping. Journal of Computer-Aided

Design & Computer Graphics, 22(5), pp. 753-761.

Rui, X., & Zhang, Y. 2004. Overlaying vector data on 3D

terrain. Geoscience and Remote Sensing Symposium, 2004.

IGARSS '04. Proceedings. 2004 IEEE International (Vol.7,

pp.4560-4563 vol.7). IEEE.

Wartell, Z., Kang, E., Wasilewski, T., Ribarsky, W., & Faust,

N. 2003. Rendering vector data over global, multi-resolution

3D terrain. Symposium on Data Visualisation (pp.213-222).

Eurographics Association.

Schneider, M., & Klein, R. 2007. Efficient and accurate

rendering of vector data on virtual landscapes. Journal of

Wscg, 15(15), 1--3.

Kersting, O., & Döllner, J. 2002. Interactive 3D visualization

of vector data in GIS. ACM International Symposium on

Advances in Geographic Information Systems (pp.107-112).

ACM.

Schneider, M., Guthe, M., & Klein, R. 2005. Real-time

Rendering of Complex Vector Data on 3d Terrain Models.

International Conference on Virtual Systems & Multimedia.

Ghent. pp. 573-582

Green, S. 2005. The opengl framebuffer object extension.

http: download.nvidia.com

Wang, Y. 2003. An algorithm of self-adaptation layer-grid

spatial index. Computer Engineering & Applications.

Zou, W., Fang, J. Y., & Liu, J. G. 2006. Research about

visualization of hybrid multi-resolution terrain and vector

data. Journal of System Simulation.

Cao, X. F., Wan, G., Feng, L. I., Ke, L. I., & Xiong, Z. M.

2013. Real time symbolization rendering method of vector

map in 3d terrain environment. Journal of System

Simulation.

Yang, L., Gong, A., & Jing, L. I. 2010. A model for massive

3d terrain simplification based on data block partition and

quad-tree. Acta Geodaetica Et Cartographica Sinica, 39(4),

pp.410-415.

Xue, Z. Y., & Wen, J. L. 2015. A method of processing the

overlapping relations between annotation texts and the same

color symbols based on gdi. Engineering of Surveying &

Mapping.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-119-2018 | © Authors 2018. CC BY 4.0 License.

124

