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ABSTRACT: 
 
Laser scanning data are increasingly available across the globe. To maximize the data's usability requires proper storage and indexing. 
While significant research has been invested in developing storage and indexing solutions for laser scanning point clouds (i.e. using 
the discrete form of the data), little attention has been paid to developing equivalent solutions for full waveform (FWF) laser scanning 
data, especially in a distributed computing environment. Given the growing availability of FWF sensors and datasets, FWF data 
management solutions are increasingly needed. This paper presents an attempt towards establishing a scalable solution for handling 
large FWF datasets by introducing the distributed computing solution for FWF data. The work involves a FWF database built atop 
HBase – the distributed database system running on Hadoop commodity clusters. By combining a 6-dimensional (6D) Hilbert spatial 
code and a temporal index into a compound indexing key, the database system is capable of supporting multiple spatial, temporal, and 
spatio-temporal queries. Such queries are important for FWF data exploration and dissemination. The proposed spatial decomposition 
at a fine resolution of 0.05m allows the storage of each LiDAR FWF measurement (i.e. pulse, waves, and points) on a single row of 
the database, thereby providing the full capabilities to add, modify, and remove each measurement record anatomically. While the 
feasibility and capabilities of the 6D Hilbert solution are evident, the Hilbert decomposition is not due to the complications from the 
combination of the data’s high dimensionality, fine resolution, and large spatial extent. These factors lead to a complex set of both 
attractive attributes and limitation in the proposed solution, which are described in this paper based on experimental tests using a 1.1 
billion pulse LiDAR scan of a portion of Dublin, Ireland. 
 

1. INTRODUCTION 

Laser scanning or Light Detection And Ranging (LiDAR) is the 
technology that uses a laser to collect three-dimensional (3D) 
geometric data. The most common type of LiDAR uses a pulsed 
laser to measures the range to a physical object. This is based on 
the time of flight of the laser pulse reaching the object and 
returning. The ranger is integrated with a scanning mechanism to 
move the laser beam to provide complete spatial coverage of 
objects in the scene. The typical data output is a point cloud (Fig. 
1) – which is a collection of discrete sampling points of the 
measured geometries, as represented by x-, y-, z- tuples and 
possible additional attributes, most typically intensity as a 
measure of the energy backscatter. While this is what is most 
commonly delivered to the end user, these discrete points are not 
the direct sensing data but are, instead, derived from the 
integration of the raw ranging data with the position and the 
orientation of the scanning platform. Traditionally, the raw data 
have not been available to the end users and the process deriving 
the point clouds from the raw data has been proprietary to each 
LiDAR sensor manufacturer. 
 
However, in recent years, there has been a growing interest in 
exploiting the raw ranging data, which have the format of a time-
series of optical signal amplitudes as recorded by the sensor. The 
time-series data are usually digitized at a temporal resolution of 
several nanoseconds and are called full waveform (FWF) data. 

                                                             
*  Corresponding author 
 

The most dominant use of FWF LiDAR data has been in forestry 
for surveys, in which the FWF mode often surpasses the discrete 
return mode at capturing the structures under tree canopies 
(Fieber et al., 2013). To a lesser degree, non-forestry applications  
 

 
Figure 1. Sample discrete point LiDAR data 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

 
671



 

 
have also been investigated (Mallet et al., 2011). With the 
potential usefulness of FWF LiDAR being increasingly 
recognized, major LiDAR manufacturers (e.g. Riegl and Optech) 
are including direct export options for the FWF data in their latest 
aerial and terrestrial product lines. To help support this, standard 
LiDAR data formats [e.g. ASPRS’ LAS (ASPRS, 2011)] have 
been extended to enable FWF data storage and exchange [e.g. 
PulseWaves (Isenburg, 2014), Sorted Pulse Data (Bunting et al., 
2013)]. Despite these notable effort, FWF data indexing and 
retrieval remain largely neglected research topics.  
 
Approaching the problem from a different perspective, this paper 
reasons that enabling FWF data retrieval by spatial and temporal 
conditions is important to foster its complete exploitation 
including visualization. Visualization queries typically involve 
only a selected subset of the data, thereby necessitating a spatial 
and/or temporal query mechanism. Data retrieval speed is crucial 
when interactive visualization is expected and requires a spatial 
index to provide the need data access speed for the data sets that 
are readily becoming available. 
 
Given that perspective, this paper presents the development of a 
FWF data management system capable of supporting data access 
across space and time. The primary type of query investigated in 
the paper is searching data from laser beams that pass/intersect a 
predefined spatial extent. The query can be constrained to a 
single flight line, or all flight lines can be included. Fine 
resolution temporal queries are also supported, even though the 
current implementation is not optimized for this query. A 
temporal filter can be combined with a flight line restriction (i.e. 
purely temporal queries) or with a spatial condition (i.e. spatio-
temporal queries) to facilitate different possible data retrieval 
needs. 
 
The FWF database is created atop HBase – the non-relational (i.e. 
NoSQL), distributed database software in the Hadoop ecosystem. 
HBase is a replication of Google’s BigTable (Chang et al., 2006), 
which is a system built for random access to datasets at a petabyte 
scale and can operate on a group of networked commodity 
servers (i.e. commodity cluster). In addition to the extreme 
scalability, HBase is inherently parallel. As a result, the database 
system is expected to provide reasonable performance. The 
database shares many features with column-oriented database 
systems. Specifically, the stored data do not have to conform to 
a rigid schema, as occurs in relational database systems.  
 

2. BACKGROUND 

To facilitate the remaining of the paper, this section provides 
some background about computer modeling of FWF LiDAR data 
and an introduction to HBase – the distributed database software 
used in the paper. 
 
2.1 Full waveform data modelling 

The main difference between FWF LiDAR data compared to the 
typical point cloud format is the time-series, waveform 
component. In addition to the waveforms, FWF datasets often 
contain the orientation and position data of the laser beams 
associated with the waveform segments called the pulse. All of 
these elements, including the discrete point data, are inter-related. 
In this paper, the data modeling approach of the PulseWaves file 
format developed by Isenburg (2014) is extended to model the 
FWF data components and their relationships. The model 
considers a FWF dataset as composed of 3 inter-related 
components: (1) pulse; (2) wave; and (3) point. 

 

 
Figure 2. Sample full waveform data 

A “pulse” is a line segment representing the location and 
orientation of a laser beam (Fig. 2a). The pulse encapsulates 
information about the scanning process such as the location of 
the aircraft at the time of each laser measurement, the locations 
of the first and last recorded samples, and some metadata about 
the laser measurement (e.g. timestamp). In contrast, a “wave” in 
PulseWaves’ terms is a series of discrete signal magnitude values 
recorded on the sensor (Fig. 2b&c). Each laser pulse emitted can 
result in several wave samplings. There are typically at least two 
wave samplings for each laser pulse:  one from the outbound 
sensor that records the emitting signal (Fig. 2b) and one from the 
inbound sensor that captures the reflected signal (Fig. 2c). 
However, there can be more than one returning wave sampling 
per laser pulse and sometimes none return.  
 
Each sampling is decomposed further into segments. Each 
segment is a continuous recording. Fig. 2 illustrates an example 
scenario where a laser pulse hits multiple separate objects such 
as a portion of a building chimney and part of the ground surface 
(i.e. Segment 1 and Segment 2 in Fig. 2a). In that case, the sensor 
receives peak in the returning signal from the chimney so the first 
recording is invoked (Segment 1). The activation of the second 
recording (Segment 2) corresponds to the moment the laser 
reaches to the ground surface. Fig. 2a shows the two recording 
segments spatially, as two collinear line segments. The 
waveforms of the two segments are shown in Fig. 2c. The last 
component of a FWF dataset is the discrete point dataset, which 
is the most common output of laser scanning. The point set is not 
a separate piece of information, but instead a derivation of the 
processing of the pulse and waves data and is representative of 
the peak intensity response in the wave data. 
 
2.2 Distributed databases  

HBase is an open-sourced replica of Google’s BigTable (Chang 
et al., 2006), which equips the Hadoop distributed file system 
with the random data access capability. Since the data are 
distributed, HBase databases are inherently highly parallelized. 
Thus, data retrieval is very efficient. Compared to traditional 
relational database management systems (RDBMS), HBase 
provides much higher flexibility, as it does not require a rigid data 
schema or even data types. Notably, all HBase data are internally 
maintained in a universal binary form and are only decoded when 
read off the database. Thus, database designers and users have 
complete control of the data encoding. Consequently, the data do 
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not have to conform to a pre-defined data type as normally seen 
in relational databases.  
 
At the lower level, HBase data are structured as a large, sorted, 
multi-dimensional map, which can be expressed 
programmatically as in Figure 3 (George, 2011). According to 
that data structure, an HBase table is a sorted map  of pairs of 
RowKey  and List . Each element of List  is called a 
column family in HBase. A RowKey is a user-defined, unique 
identifier of each row in the HBase table. Notably, the RowKey 
plays an important role in HBase indexing, as it is the primary 
key for sorting and also distributing the data. As a result, deciding 
upon the RowKey design is of utmost importance in HBase table 
design, as will be demonstrated in the latter part of this paper. 
Each column family [i.e. SortedMap ] is composed of pairs of 
the table column  and a list  of table value and timestamp 
pairs [i.e.  and ]. The value is the actual data content stored 
in the table, while the timestamp denotes the creation time of the 
content. The timestamp allows storage of multiple versions of the 
content in HBase. The data structure of an HBase table is 
sometimes viewed at a higher level as a collection of key-value 
pairs, in which a key is composed of a row-key, a column family 
name, a column name, and a timestamp. The value is the actual 
datum. 
 

 
Figure 3. Logical data structure of HBase 

Despite all of its favorable characteristics, HBase is not a 
replacement for a traditional relational database. While aiming 
for higher scalability and greater flexibility, the HBase design (as 
with most other non-relational database systems) loosens parts of 
the relational features such as the compliance to Codd’s 12 rules 
(Codd, 1985) and the guarantees against transaction validity 
(a.k.a. ACID: Atomicity, Consistency, Isolation, and Durability) 
– the traditional, widely-adopted RDBMS standards (George, 
2011). Even though these trade-offs are not acceptable in 
domains such as banking and medical databases, they are not 
fatally problematic in many applications such as web searching 
or LiDAR data visualization. The decision between an RDBMS 
and a more relaxed non-relational option must be based on a 
rigorous justification of the features of the candidate technologies 
with respect to the specifics of the data and the affiliated storage 
and retrieval demands. 
 

3. RELATED WORKS 

While several data exchange formats have been developed to 
accommodate FWF LiDAR data [e.g. ASPRS’ LAS (ASPRS, 
2011), PulseWaves (Isenburg, 2014)], there are few efforts in 
data management systems for FWF data. The Sorted Pulse Data 
system by (Bunting et al., 2013) and the authors’ own previous 
development of a FWF data extension for the Oracle DBMS 
(Laefer et al., 2018) are the only established works known to the 
authors.   
 
The Sorted Pulse Data (SPD) approach by Bunting et al., (2013) 
offers two options for organizing pulse data:  (1) non-sequential 
SPD index and (2) sequential SPD index. Using the non-
sequential option, nearby pulses can be distributed over various 
locations on the storage device. In contrast, the pulses are 
physically sorted so that pulses in close spatial proximity to each 

other are stored near other on a computer disk in the sequential 
SPD option. The sorting requires additional data processing steps 
but can provide better querying performance. The spatial 
indexing approach in SPD is a regular, 2D grid based on either 
the first or the last returns of the laser pulses (Bunting et al. 2013). 
In other words, that work degrades a line-indexing problem to 
that of a point-indexing problem. Within that context, the spatial 
indices (maintained as 2D arrays within the HDF5 structure) 
facilitate direct spatial access to grid cells relevant to a spatial 
query. This simple indexing mechanism constrains the type of 
spatial access to selection of the indexing point (i.e. the first or 
the last sample). For example, if the first sample is chosen, then 
only querying on the first echo is supported. 
 
In an attempt to overcome those limitations and enhance the 
capability of spatial and temporal queries on FWF LiDAR data, 
Laefer et al. (2018) developed a hybrid data indexing system atop 
an Oracle database. The spatio-temporal index comprises a 
Hilbert coded, 2D grid at the top level, and a bottom layer with 
multiple 3D, regional octrees. These can be transferred between 
the computer’s disk and the main memory via a serialization 
mechanism. The temporal elements are integrated in the indexing 
structure at two levels:  flight line level and timestamp level (at a 
microsecond resolution). Unlike what is supported in SPD, the 
spatial indexing structure by Laefer et al. (2018) wholly preserves 
the data by not degrading the index and the queries to the point 
level. Specifically, the laser pulse data were modelled as line 
segments, and queries were performed directly on the line 
segment data. The scalability of the system was successfully 
evaluated on a real-life, dense dataset of 1.1 billion pulses. 
However, the size of the current index was relatively large (i.e. 
20 bytes/pulse). In addition, there was a certain level of 
redundancy in the octree structure, since a laser pulse can spread 
over multiple octree nodes and is, thus, indexed multiple times.  
 
There also exists a number of line indexing methods in the 
literature which are not dedicated to FWF LiDAR data [e.g. 
(Bertino et al., 1998; Hoelt and Samet, 1992; Jagadish, 1990; 
Kolovson and Stonebraker, 1991)]. Unfortunately, none of the 
methods known to the authors are truly usable for the type of line 
segment data investigated in the paper. Many of the cited 
methods were built for two-dimensional data such as those of a 
cadastral database or a circuit board’s model. For instance, the 
approaches proposed by Bertino et al., (1998) and Jagadish, 
(1990) are not naturally extensible to 3D. In addition to the 
dimensionality mismatch, the density and spatial distribution of 
the data addressed in the previous research differ significantly 
from those of the FWF LiDAR data. For example, the multi-
dimensional interval method presented by Kolovson and 
Stonebraker, (1991) would be inefficient for FWF data, because 
of the huge level of overlapping between the laser pulses if they 
were represented as intervals (Fig. 2a). Some of the methods rely 
on certain assumptions about the data such as non-crossing lines 
(e.g. Bertino et al., 1998). Such an assumption totally precludes 
the method from being utilized for FWF data indexing. Amongst 
the cited approaches, the region quadtree solution introduced by 
Hoelt and Samet (1992) has the most promising potential in 
solving the FWF data indexing problem. A 3D version of the 
method is actually used in the authors’ previous FWF data 
management system (Laefer et al. 2018). However, the tree 
structure does not well suit the key-value architecture of HBase, 
thus requiring some modifications to be adopted for FWF data.  
 
The shortage in spatio-temporal solutions for FWF data 
management and the unsuitability of existing line indexing 
methods motivated the development of the line indexing solution 
established in the remaining sections of this paper.  The research 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

 
673



 

presented in this paper extends the previous RDBMS solution by 
Laefer et al. (2018) to one in a distributed computing 
environment using a novel indexing design, and thus introducing 
the first distributed computing solution for FWF data. 
 

4. LINE SEGMENT DATABASE INDEXING FOR 
INTERSECTION QUERIES 

The primary type of query considered in the paper is the search 
for laser beams that intersect a 3D polygonal geometry. Even 
though the querying result can include any combination of the 
pulse, wave, and point datasets, the element that is essentially 
relevant to the query processing is the pulse portion of the data, 
which has the form of a line segment. In other words, a 3D line 
segment database needs to be searched to retrieve entities that 
intersect the queried geometry. In this section, the spatial index 
established to enable the primary querying type is described. 
Essentially, the index is constructed by transforming the spatial 
query into a multi-dimensional range search so that it can be later 
implemented in the key-value data store. 
 

 
Figure 4. Box intersection 

The formulation starts with a system of linear inequalities (Eqn. 
1) that defines the intersection relationship between 2 rectilinear 
boxes (i.e. box A and box B in Fig. 4). The minimum vertices 
[xmin, ymin, zmin] and maximum vertices [xmax, ymax, zmax] of both 
of the boxes are needed to identify the spatial relationship. 

⎩
⎪
⎨

⎪
⎧
𝐴. 𝑥()* ≤ 𝐵. 𝑥(-.
𝐴. 𝑦()* ≤ 𝐵. 𝑦(-.
𝐴. 𝑧()* ≤ 𝐵. 𝑧(-.
𝐴. 𝑥(-. ≥ 𝐵. 𝑥()*
𝐴. 𝑦(-. ≥ 𝐵. 𝑦()*
𝐴. 𝑧(-. ≥ 𝐵. 𝑧()*

 (1) 

 
Eqn. 1 can also be used as a requisite for a line segment L 
bounded by the box A to intersect the box B (Fig. 4). Stated 
formally, a line L intersects a box B only, if the bounding box A 
of L intersects B. Thus, Equation 1 holds true for the coordinates 
of the line segments. After substituting the box vertices by the 
line vertices and constraining the ranges by some prior 
knowledge, Eqn. 1 can be rewritten as in Eqn. 2; where Hmax and 
Vmax are the maximum horizontal and vertical extents of the 
pulses - which can be computed given the knowledge of the data 
acquisition process (i.e. pulse length, scan angle). Those 
constants are computed using Eqn. 3; where ρmax and θmax are the 
maximum pulse length and the maximum scanning angle. 
 
According to Eqn. 2, the coordinates of the pulses’ bounding 
boxes [L.xmin, L.ymin, L.zmin, L.xmax, L.ymax, L.zmax] can be used 
to index the pulse data for the spatial intersection query. The role 
of the index is to rapidly filter and exclude line segments that fail 
any of the inequalities in Eqn. 2. Those pulses can be 
immediately excluded from the querying result. Only the pulses 
that pass all six inequalities need further processing to determine 
whether or not they intersect the queried geometry. 
 
  
 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐿. 𝑥()* ∈ (𝐵. 𝑥()* − 𝐻(-., 𝐵. 𝑥(-.)
𝐿. 𝑦()* ∈ (𝐵. 𝑦()* − 𝐻(-., 𝐵. 𝑦(-.)
𝐿. 𝑧()* ∈ (𝐵. 𝑧()* − 𝑉(-., 𝐵. 𝑧(-.)
𝐿. 𝑥(-. ∈ (𝐵. 𝑥()*, 𝐵. 𝑥(-. + 𝐻(-.)
𝐿. 𝑦(-. ∈ (𝐵. 𝑦()*, 𝐵. 𝑦(-. + 𝐻(-.)
𝐿. 𝑧(-. ∈ (𝐵. 𝑧()*, 𝐵. 𝑧(-. + 𝑉(-.)

 (2) 

   
 ; 𝐻(-. = 𝜌(-.

𝑉(-. = 𝜌(-.. 𝑠𝑖𝑛(𝜃(-.)
 (3) 

 
5. IMPLEMENTATION  

This section presents the implementation details of the spatial 
index established in Section 4 atop an HBase architecture and the 
needed extensions include the temporal queries.   
 
5.1 Row-key design 

Key-value data stores, such as the HBase database used in this 
research, are optimized for data retrieval by a key or by a range 
of consecutive keys [i.e. one-dimensional (1D) range query]. The 
keys can be alphanumeric or arbitrary binary strings, as long as 
they can be sorted by an order (e.g. lexicographical order). Key-
value data storage systems have previously been transformed to 
facilitate multi-dimensional range searches via space filling 
curves (Nishimura, 2011; Whitby et al., 2017). A space filling 
curve [e.g. Morton curve, Hilbert curve] maps data from a high-
dimensional space onto a 1D space. The mapping allows data 
indexes and queries in the high-dimensional space to be 
transformed into the counterparts in a 1D space so that they can 
suit the key-value architecture of the database. The ability to 
preserve the spatial proximity of the original space during the 
mapping is a desirable feature, as it represents the quality of a 
space filling curve. Starting from the multi-dimensional range 
search derived in Section 4, this paper uses a 6-dimensional 
Hilbert curve to transform each tuple of (L.xmin, L.ymin, L.zmin, 
L.xmax, L.ymax, L.zmax)] to a binary Hilbert code. The Hilbert 
transformation in this paper is facilitated by the Java libraries by 
Aioanei, (2008) and Whitby et al., (2017). The spatial resolution 
of the Hilbert space is selected at a sufficiently fine level (e.g. 5 
cm) so that the Hilbert codes are unique for each pulse.  
 
The Hilbert code is prefixed with a flight line ID; a unique 
identifier corresponding for the given pulse (Fig. 5a). Having the 
flight ID as the first component of the row-key allows restriction 
of the querying results to a single flight line. When data from all 
available flight lines are desired, the query resolver invokes 
multiple searches across all relevant flight lines. The design 
allows searches to be handled concurrently by HBase, thereby 
maximizing parallelism capabilities of the distributed system. 
The list of flight IDs is obtained by querying a secondary table, 
herein called the coarse indexing table, which provides a light-
weight spatial index for the flight lines. Each row of the table 
represents a 5m×5m cell (C) within the spatial coverage of the 
dataset. The row is indexed by a 4D Hilbert code similar to the 
6D Hilbert code used for the main table (Section 4) but 
encapsulates only the x and y coordinates of the cell [(C.xmin, 
C.xmax, C.ymin, C.ymax)] (Fig. 5b).  
 

 
Figure 5. Row-key structures 

(1 byte)

(a) Main table (b) Coarse indexing table

Flight IDIndexed attributes

Encoding Byte

Row-key

L.xmin L.ymin L.zmin

L.xmax L.ymax L.zmax

6D Hilbert

(12 bytes)

L.xmin L.ymin

L.xmax L.ymax

4D Hilbert

(7 bytes)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

 
674



 

The aggregation of multiple components into the content of a 
row-key for the main table is relatively common in key-value 
data stores. The approach is often called the compound key 
method (George, 2011). Given the FWF LiDAR data stored in 
HBase and indexed by the compound row-key, the pulse 
intersection query can be resolved by firstly decomposing the 
given querying window to a series of Hilbert segments in the 
same 6D space, which is used to construct the index. The relevant 
flight IDs retrieved from the coarse indexing table are then added 
to the minimum and maximum values of each Hilbert range. The 
resulting ranges are used to query directly the row-key of the 
HBase database for intersecting candidates. After being read off 
disks, the candidate pulse records continue to be filtered by their 
bounding boxes and then by their actual geometries. This is done 
to identify those pulses actually intersecting the queried 
geometry. The additional filtering layers can be skipped to reduce 
the querying time at the cost of including false positive results in 
the resulting set. Another technique which can be used to reduce 
the querying time is to ignore the small gaps between the Hilbert 
segments to reduce the number of segments (Whitby et al., 2017). 
The technique is effective, as the querying time is often governed 
by the number of calls invoked against the database, which is 
equivalent to the number of Hilbert segments. The downside of 
this technique is that it leaves a larger number of false positive 
records for subsequent data filtering layers.  
 
5.2 Custom temporal filter 

While the compound row-key design in Section 5.1 can support 
the primary intersection query with an option of adding flight line 
constraints, the key does not allow actual temporal queries (i.e. 
search for pulses collected within a temporal range). In the 
current implementation, the temporal queries are supported via a 
custom filter In HBase, a custom filter is a mechanism that allows 
interim querying results to be filtered on the server-side before 
returning results to the client requesting the data. Using a filter is 
not as efficient as an index, since every data candidate passed to 
the filter needs to be checked. However, having the filter 
implemented on the server-side as in HBase is significantly better 
than filtering the data on the client side. This is because the 
former solution requires less data to be transferred over the 
network, which is often the main bottle neck in a computing 
system. In addition, there is often more computing power on the 
server side to facilitate demanding operations such as spatial 
checks. In this paper, the temporal constraint is processed by 
partially processing the interim querying results, which are 
derived from the search by the row-key, to read the timestamp of 
each laser pulse. Prior to being returned to the querying client, 
the FWF data entries are checked against the specified temporal 
range to remove unqualified candidates. 
 
5.3 Column structure 

The row-key design presented in Section 5.1 designates one row 
in the database for all data available from a laser measurement. 
The data include the pulse (in the form of a line segment) and 
several waveform segments (time-series data). The pulse has a 
fixed length, while the number of waveform segments and the 
waveform’s length are variable. The examples in Fig. 6 illustrate 
the complex structure of the FWF data; Pulse A has one outgoing 
wave segment, one returning wave segment corresponding with 
one discrete return, while the number of returning wave segments 
(i.e. also the number of discrete returns) of Pulse B is one. For 
such diverse, non-tabular data, the schema-less feature of HBase 
is beneficial. Since there is not an anticipation that any 
compositions of the data components are more frequently queried 
together, all the data are stored in one single column family (i.e. 

column family ‘s’ in Fig. 7a). Depending on the expected data 
usage pattern, the design can be changed so that only the highly 
related components are grouped into the same column family to 
optimize the data retrieval performance. 

 
Figure 6. Examples of single segment and multiple segment 

LiDAR waveforms  
 
The complex structure of the FWF data is modeled using the 
column structure in HBase. This consists of one pulse column 
(named “pls”) per measurement. The actual datum of the pulse is 
encoded as a binary string closely following the format used in 
the PulseWaves format (Isenburg 2014). For the waveform data, 
each wave segment requires 2 columns. The first (named “dij”) 
stores the temporal offset from the moment the laser pulse leaves 
the emitter to the time corresponds to the first echo of the wave 
segment. The terms i and j are the indices of the sampling and the 
segment, which are encoded directly in the column names. The 
second column type (named “wij”) is for the waveform’s echo 
values. That encoding allows retrieval of the raw waveforms by 
the sampling and segment indices. By combining waveforms 
with the associating duration value and metadata of the laser 
beam encoded in the pulse column, each waveform echo can be 
registered into a 3D space similar to what is typically done with 
the discrete return point. The separation of the duration value in 
a separate column allows the pulse geometry to be rapidly geo-
referenced without registering all waveform echoes in the 3D 
space. Notably, the rows in the main table need not conform to 
the same column structure thanks to the schema-less feature of 
HBase. Also, empty column values do not occupy storage space.     
 
The column structure of the coarse indexing table is illustrated in 
Fig. 7b. The table contains one column family (i.e. ‘f’). The flight 
line identification numbers in the integer format are used as the 
column name. If a rectilinear cell (i.e. a row) contains data of a 
flight line, a 1-byte dummy value is written to the HBase cell 
corresponding to the row and the column. Otherwise, the cell is 
left empty, thereby not consuming any storage space.  
 
 

 
Figure 7. Table schema 

Row-key:

Column family: s

Col: pls

...

Col: d00 Col: w00 Col: d00 Col: w00 Col: d10 Col: w11 ...

...

(a) Main table

Row-key:

Column family: f

Col: 0

...

...

...

(b) Coarse indexing table

Col: 1 Col: 2

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

 
675



 

 
6. PERFORMANCE EVALUATION 

6.1 Study data  

To aid in evaluating the proposed FWF data storage models, a 
2015 FWF ALS data set over a 2 km2 area of the city center of 
Dublin, Ireland was employed (Laefer et al., 2017). The data 
acquisition was conducted in March 2015, using a Riegl Q680i 
system with full waveform digitization. The ALS flight followed 
the approach proposed by Hinks et al., (2009) to maximize data 
coverage on building façades. Specifically, the scan was 
conducted at the lowest permissible altitude (approximately 
300m) with scanning angles ranging from -30o to 30o. The flight 
paths were oriented at 45o to the city's major street axes to 
minimize self-shadowing effects. The flight paths within each 
parallel set were spaced at 100m intervals so that each location in 
the scanned area was measured up to 6 times and from multiple 
angles. The original FWF data were available in 2 formats: 
APSRS’ LAS with external waveform data packets and 
Rapidlasso’s PulseWaves. The total file sizes are 217.5GB for the 
LAS format and 172.5GB for PusleWaves format. In this paper, 
the dataset in PulseWaves format was used as the input. In order 
to evaluate the database’s scalability, the data ingestion and 
querying speed were evaluated in two subsets of varying sizes 
(i.e. Small and Medium in Fig. 8a) in addition to the original 
PulseWaves dataset (i.e. Large).  
 

 
Figure 8. 2015 Dublin dataset 

 

6.2 Data ingestion 

Table 1 shows the disk consumption and the data ingestion time 
for the three datasets when loaded into the HBase structure 
described in Section 5. The data in the HBase database were 20% 
more compact than the input PulseWaves files, even though the 
HBase disk consumption includes the indexing structures, while 
the original PulseWaves data are not indexed. The compactness 
of the HBase solution is attributable to the use of the Snappy 
compression in the database (Google, 2018). Compared to the 
authors’ previous FWF database (Laefer et al., 2018), ingesting 
data into the HBase data model was 2.5 times faster. The disk 
consumption and ingestion time for the 3 datasets are relatively 
constant, thereby demonstrating the scalability of the design.  
 

Dataset Number of 
pulses 

Disk 
consumption 

Data 
ingestion time 

  bytes/pulse pulses/s 
small 78,618,244 138.2 105,349 
medium 316,454,155 137.8 112,072 
large 1,010,310,084 138.2 94,173 

Table 1. Data ingestion costs 

6.3 Data querying  

As described in Section 5, the pulse intersection query presented 
in this paper is processed in multiple steps:  (1) obtain the flight 
IDs from the coarse, 4D indexing table; (2) decompose the 
querying windows to a set of 6D Hilbert segments; (3) retrieve 
data from the main HBase table using the RowKey derived from 
the previous steps. The following subsections analyze the 
runtime of each individual step.  
 
6.3.1 Data retrieval from HBase 
 
Retrieving FWF data from the main HBase table is arguably the 
most important and time-consuming step of the data querying 
process. During this step, the physical locations of the candidate 
data records are identified based on their RowKeys, the relevant 
data segments are read off the disks, and further filtering is 
applied to decide the data records to be returned. Fig.s 9&10 
present the data querying speed for two different cases: small and 
large querying window. The querying windows are constructed 
from a set of 200 data points randomly selected from the Small 
dataset (Fig. 8). Since the Small dataset is subset of the Medium 
and the Large sets, the 200 samples extracted from the Small 
dataset are contained in all of the 3 testing datasets. The points 
are the center of the querying boxes which have the dimensions 
of [1m×1m×1m] for the small queries and [50m×50m×50m] in 
the large querying cases.  
 

 
Figure 9. Data retrieval from HBase for small queries 

(1m×1m×1m) 
 

 
Figure 10. Data retrieval from HBase for large queries 

(50m×50m×50m) 
 
Each black dot in Fig.s 9&10 represents the time required to 
retrieve the data for each querying window being tested and the 
number of pulses intersecting the window. The contour lines and 
the two histograms are resulted from the Kernel Density 
Estimation, which summarizes and smoothens the distribution of 
the testing results. The median data retrieval times are 
approximately 0.5s and 2.5s for the small and large querying 
cases, respectively. Even though the speed (2.5s per 0.85 million 
pulses) does not surpass the authors’ previous relational database 
(Laefer et al., 2018), the speed is sufficiently high to make the 
database useful for many applications such as data dissemination. 
In terms of data scalability, there is no performance degradation 
observed when the data volume increases up to 1 billion pulses. 
 

(a) 79 million pulse dataset (b) 316 million pulse dataset (c) 1.01 billion pulse dataset

(a) 79 million pulse dataset (b) 316 million pulse dataset (c) 1.01 billion pulse dataset
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To further understand the efficiency of the RowKey design 
presented in Section 4, the numbers of false positives (FP) and 
the false positive rates of the RowKey filtering step are reported 
in Table 2. The number of FPs are the number of data records that 
pass the rowkey filtering layer but ultimately do not satisfy the 
querying conditions. From the results presented in Table 2, the 
numbers of FPs (i.e. the number of data records have to be 
forwarded for further spatial filtering) are approximately 160,000 
in the small querying case and 2.5 million in the large querying 
case. The number of FPs is equivalent to the FP rates of 0.02% 
for the small queries and 0.26% for the large queries. FP rates are 
computed as the ratio of the number of FP to the total number of 
negatives. In other words, the FP rates represents the amount of 
unqualified data records that the system failed to filter out, with 
respect to the number of unqualified records successfully filtered 
by the RowKeys. The relatively small FP rates prove that the 
RowKey design is reasonably efficient in helping to bypass 
irrelevant data records.  
 
Query Number of FPs FP rate 
 Median Std. Dev. Median Std. Dev. 

[1×1×1] 160,212 88,845 0.02% 0.01% 
[50×50×50] 2,560,149 1,396,375 0.26% 0.14% 

Table 2. False positive rates of the RowKey filtering step 
 
6.3.2 Hilbert decomposition 
The Hilbert decomposition transforms a querying window in a 
high dimensional space to a set of 1D, Hilbert segments. The 
Hilbert encoding technique is well proven and widely used for 
managing spatial data, including spatial data handling in 
distributed, key-value data stores (Dimiduck and Khurama, 2012; 
Nishimura, 2011; Whitby et al., 2017). The computational cost 
of the Hilbert decomposition is often inconsiderable compared to 
the costs of retrieving data from the database. For example, the 
range decomposition time rarely exceeds 100ms in the authors’ 
previous adoption of 3D Hilbert encoding for point cloud 
management (Vo et al., 2018). However, this supposedly 
insignificant step is actually a major bottle neck in the query 
processing pipeline in the 6D Hilbert solution presented in this 
paper (Fig. 11).  
 
Compared to the data retrieval time of less than 3s, the Hilbert 
decomposition time as high as 30s as shown in Fig. 11 are 
forbiddingly high. In addition, both the size and the location of 
the querying windows influence the Hilbert decomposition time 
in an untenable manner. As observed in Fig. 11a, the 
decomposition cost increases with the size of querying window 
up to a certain level before the cost drastically drops. These rises 
and drops occur in a periodic manner when the size of the 
querying window incrementally increases. There is not a 
comparable clear pattern in the relationship between the Hilbert 
decomposition time and the location of the querying window 
(Fig. 11b). Nevertheless, the decomposition costs appear to vary 
broadly when the querying window moves. Even though the 
adverse effects may be specific to the particular Hilbert 
implementation adopted in the paper (Aioanei, 2008; Whitby et 
al., 2017), the issue does demonstrate an unfavourable 
characteristic observed in a high-dimensional application but are 
unobvious in the lower-dimensional cases.   
 
6.3.3 Other overheads  
The majority of the querying time is consumed by the Hilbert 
decomposition and the HBase data retrieval steps discussed in 
Section 6.3.2 and 6.3.1. Other overhead including the time 
required to obtain flight IDs from the coarse indexing table is 
marginal. More particularly, the overhead is approximately 90ms 

in the large querying window cases and 20ms in the small 
querying window cases. The insignificant overhead justifies the 
usage of the coarse indexing table.  
 

 
Figure 11. Hilbert decomposition time 

 
7. CONCLUDING REMARKS 

This paper presents the first distributed computing based spatio-
temporal indexing solution for FWF LiDAR data. The index 
maps the laser pulses to a 6D Hilbert space that encodes the x, y, 
and z coordinates of the two ends of the laser pulses. The primary 
type of query supported by the 6D Hilbert index is the 
intersection query against a rectilinear bounding box. The Hilbert 
codes are prefixed by a flight line ID to form a compound 
RowKey for structuring the data in HBase - a distributed, non-
relational, key-value data store. Having the flight ID as the first 
component of the compound RowKey allows the data to be 
temporally filtered at the flight line level prior to the spatial 
evaluation. When data from all flight lines are needed, a light-
weight, coarse indexing table is used to identify the flight lines 
needing to be scanned. The identified flight lines are then 
processed concurrently by HBase. The solution is successfully 
implemented. The column structure is designed to exploit the 
schema-less feature of HBase for accommodating the irregular 
and complex structure of the FWF data. The developed database 
is capable of providing a wide range of spatial, temporal, and 
spatio-temporal queries useful for FWF data exploration. The 
temporal constraints can be enforced at the flight line level or at 
the LiDAR timestamp level (i.e. micro-seconds). The fine 
temporal filtering is provided by a custom filter which processes 
the data in parallel on the server side. The spatial evaluation can 
be set at different levels of accuracy depending on users’ 
expectations. At the lowest level, the data are only spatially 
evaluated by the Hilbert codes. This querying mode is likely to 
be optimal for querying time. However, some false positive 
records may remain in the resulting data. Additional filtering 
layers by bounding boxes and by the line geometries can be 
added to eliminate the false positive records, but at the cost of 
increased querying time.  
 
The database implementation was rigorously evaluated using a 
FWF dataset of 1.1 billion pulses, covering more than 2km2 of 
Dublin city. The experiments prove that the design can 
comfortably scale to accommodate large geo-spatial data sets. 
Specifically, no performance degradation was observed when the 
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dataset grew from 79 million to 1.1 billion pulses. Due to the use 
of a compression mechanism native in HBase and the light-
weight design of the index, the total disk consumption of the data 
and the index in HBase was 20% less than the original FWF data 
in PulseWaves format. This was done while providing extensive 
additional functionality. The data ingestion speed of 
approximately 100,000 pulses/sec is 2.5 times faster than the 
speed of the previous relational database implementation by 
Laefer et al. (2018). The rowkey design is justified by the 
relatively small false positive rate (i.e. 0.02% and 0.26% for the 
small and large querying cases, respectively) and the reasonable 
HBase data retrieval (i.e. 0.5s and 2.5s the 2 cases). The HBase 
data retrieval time is the time required for fetching the data from 
HBase given that the rowkey ranges are already known. 
However, the experimental evaluation revealed a significant 
bottleneck in the query processing pipeline – the Hilbert 
decomposition – which takes place outside HBase and is 
independent of the table design. The Hilbert decomposition time 
was affected by the size and location of the querying window. 
While the observed issue may be specific to the implementations 
by Aioanei (2008) and Whitby et al. (2017), which is adopted in 
the paper, the observation does demonstrate an adverse effect 
caused by the increase in dimensionality. Notably, the same 
library has been successfully utilized in lower dimensional 
spaces, including the use for LiDAR point cloud data 
management in 3D (Vo et al., 2018; Whitby et al., 2017) without 
exhibiting this problem. 
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