
A 6-DIMENSIONAL HILBERT APPROACH TO INDEX FULL WAVEFORM LiDAR
DATA IN A DISTRIBUTED COMPUTING ENVIRONMENT

A.V. Vo1, N. Chauhan 1, D.F. Laefer 1,2,*, M. Bertolotto3,4

1 Center for Urban Science + Progress, New York University, USA - (anhvu.vo, nc1682, debra.laefer)@nyu.edu

2 Dept. Civil and Urban Engineering, Tandon School of Engineering, New York University, USA
3 School of Computer Science, University College Dublin, Ireland – michela.bertolotto@ucd.ie

4 Earth Institute, University College Dublin, Ireland

Commission IV, WG IV/7

KEY WORDS: aerial laser scanning, full waveform, LiDAR, spatial database, distributed database, spatial indexing, Hilbert, high
dimensional

ABSTRACT:

Laser scanning data are increasingly available across the globe. To maximize the data's usability requires proper storage and indexing.
While significant research has been invested in developing storage and indexing solutions for laser scanning point clouds (i.e. using
the discrete form of the data), little attention has been paid to developing equivalent solutions for full waveform (FWF) laser scanning
data, especially in a distributed computing environment. Given the growing availability of FWF sensors and datasets, FWF data
management solutions are increasingly needed. This paper presents an attempt towards establishing a scalable solution for handling
large FWF datasets by introducing the distributed computing solution for FWF data. The work involves a FWF database built atop
HBase – the distributed database system running on Hadoop commodity clusters. By combining a 6-dimensional (6D) Hilbert spatial
code and a temporal index into a compound indexing key, the database system is capable of supporting multiple spatial, temporal, and
spatio-temporal queries. Such queries are important for FWF data exploration and dissemination. The proposed spatial decomposition
at a fine resolution of 0.05m allows the storage of each LiDAR FWF measurement (i.e. pulse, waves, and points) on a single row of
the database, thereby providing the full capabilities to add, modify, and remove each measurement record anatomically. While the
feasibility and capabilities of the 6D Hilbert solution are evident, the Hilbert decomposition is not due to the complications from the
combination of the data’s high dimensionality, fine resolution, and large spatial extent. These factors lead to a complex set of both
attractive attributes and limitation in the proposed solution, which are described in this paper based on experimental tests using a 1.1
billion pulse LiDAR scan of a portion of Dublin, Ireland.

1. INTRODUCTION

Laser scanning or Light Detection And Ranging (LiDAR) is the
technology that uses a laser to collect three-dimensional (3D)
geometric data. The most common type of LiDAR uses a pulsed
laser to measures the range to a physical object. This is based on
the time of flight of the laser pulse reaching the object and
returning. The ranger is integrated with a scanning mechanism to
move the laser beam to provide complete spatial coverage of
objects in the scene. The typical data output is a point cloud (Fig.
1) – which is a collection of discrete sampling points of the
measured geometries, as represented by x-, y-, z- tuples and
possible additional attributes, most typically intensity as a
measure of the energy backscatter. While this is what is most
commonly delivered to the end user, these discrete points are not
the direct sensing data but are, instead, derived from the
integration of the raw ranging data with the position and the
orientation of the scanning platform. Traditionally, the raw data
have not been available to the end users and the process deriving
the point clouds from the raw data has been proprietary to each
LiDAR sensor manufacturer.

However, in recent years, there has been a growing interest in
exploiting the raw ranging data, which have the format of a time-
series of optical signal amplitudes as recorded by the sensor. The
time-series data are usually digitized at a temporal resolution of
several nanoseconds and are called full waveform (FWF) data.

* Corresponding author

The most dominant use of FWF LiDAR data has been in forestry
for surveys, in which the FWF mode often surpasses the discrete
return mode at capturing the structures under tree canopies
(Fieber et al., 2013). To a lesser degree, non-forestry applications

Figure 1. Sample discrete point LiDAR data

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

671

have also been investigated (Mallet et al., 2011). With the
potential usefulness of FWF LiDAR being increasingly
recognized, major LiDAR manufacturers (e.g. Riegl and Optech)
are including direct export options for the FWF data in their latest
aerial and terrestrial product lines. To help support this, standard
LiDAR data formats [e.g. ASPRS’ LAS (ASPRS, 2011)] have
been extended to enable FWF data storage and exchange [e.g.
PulseWaves (Isenburg, 2014), Sorted Pulse Data (Bunting et al.,
2013)]. Despite these notable effort, FWF data indexing and
retrieval remain largely neglected research topics.

Approaching the problem from a different perspective, this paper
reasons that enabling FWF data retrieval by spatial and temporal
conditions is important to foster its complete exploitation
including visualization. Visualization queries typically involve
only a selected subset of the data, thereby necessitating a spatial
and/or temporal query mechanism. Data retrieval speed is crucial
when interactive visualization is expected and requires a spatial
index to provide the need data access speed for the data sets that
are readily becoming available.

Given that perspective, this paper presents the development of a
FWF data management system capable of supporting data access
across space and time. The primary type of query investigated in
the paper is searching data from laser beams that pass/intersect a
predefined spatial extent. The query can be constrained to a
single flight line, or all flight lines can be included. Fine
resolution temporal queries are also supported, even though the
current implementation is not optimized for this query. A
temporal filter can be combined with a flight line restriction (i.e.
purely temporal queries) or with a spatial condition (i.e. spatio-
temporal queries) to facilitate different possible data retrieval
needs.

The FWF database is created atop HBase – the non-relational (i.e.
NoSQL), distributed database software in the Hadoop ecosystem.
HBase is a replication of Google’s BigTable (Chang et al., 2006),
which is a system built for random access to datasets at a petabyte
scale and can operate on a group of networked commodity
servers (i.e. commodity cluster). In addition to the extreme
scalability, HBase is inherently parallel. As a result, the database
system is expected to provide reasonable performance. The
database shares many features with column-oriented database
systems. Specifically, the stored data do not have to conform to
a rigid schema, as occurs in relational database systems.

2. BACKGROUND

To facilitate the remaining of the paper, this section provides
some background about computer modeling of FWF LiDAR data
and an introduction to HBase – the distributed database software
used in the paper.

2.1 Full waveform data modelling

The main difference between FWF LiDAR data compared to the
typical point cloud format is the time-series, waveform
component. In addition to the waveforms, FWF datasets often
contain the orientation and position data of the laser beams
associated with the waveform segments called the pulse. All of
these elements, including the discrete point data, are inter-related.
In this paper, the data modeling approach of the PulseWaves file
format developed by Isenburg (2014) is extended to model the
FWF data components and their relationships. The model
considers a FWF dataset as composed of 3 inter-related
components: (1) pulse; (2) wave; and (3) point.

Figure 2. Sample full waveform data

A “pulse” is a line segment representing the location and
orientation of a laser beam (Fig. 2a). The pulse encapsulates
information about the scanning process such as the location of
the aircraft at the time of each laser measurement, the locations
of the first and last recorded samples, and some metadata about
the laser measurement (e.g. timestamp). In contrast, a “wave” in
PulseWaves’ terms is a series of discrete signal magnitude values
recorded on the sensor (Fig. 2b&c). Each laser pulse emitted can
result in several wave samplings. There are typically at least two
wave samplings for each laser pulse: one from the outbound
sensor that records the emitting signal (Fig. 2b) and one from the
inbound sensor that captures the reflected signal (Fig. 2c).
However, there can be more than one returning wave sampling
per laser pulse and sometimes none return.

Each sampling is decomposed further into segments. Each
segment is a continuous recording. Fig. 2 illustrates an example
scenario where a laser pulse hits multiple separate objects such
as a portion of a building chimney and part of the ground surface
(i.e. Segment 1 and Segment 2 in Fig. 2a). In that case, the sensor
receives peak in the returning signal from the chimney so the first
recording is invoked (Segment 1). The activation of the second
recording (Segment 2) corresponds to the moment the laser
reaches to the ground surface. Fig. 2a shows the two recording
segments spatially, as two collinear line segments. The
waveforms of the two segments are shown in Fig. 2c. The last
component of a FWF dataset is the discrete point dataset, which
is the most common output of laser scanning. The point set is not
a separate piece of information, but instead a derivation of the
processing of the pulse and waves data and is representative of
the peak intensity response in the wave data.

2.2 Distributed databases

HBase is an open-sourced replica of Google’s BigTable (Chang
et al., 2006), which equips the Hadoop distributed file system
with the random data access capability. Since the data are
distributed, HBase databases are inherently highly parallelized.
Thus, data retrieval is very efficient. Compared to traditional
relational database management systems (RDBMS), HBase
provides much higher flexibility, as it does not require a rigid data
schema or even data types. Notably, all HBase data are internally
maintained in a universal binary form and are only decoded when
read off the database. Thus, database designers and users have
complete control of the data encoding. Consequently, the data do

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

672

not have to conform to a pre-defined data type as normally seen
in relational databases.

At the lower level, HBase data are structured as a large, sorted,
multi-dimensional map, which can be expressed
programmatically as in Figure 3 (George, 2011). According to
that data structure, an HBase table is a sorted map of pairs of
RowKey and List . Each element of List is called a
column family in HBase. A RowKey is a user-defined, unique
identifier of each row in the HBase table. Notably, the RowKey
plays an important role in HBase indexing, as it is the primary
key for sorting and also distributing the data. As a result, deciding
upon the RowKey design is of utmost importance in HBase table
design, as will be demonstrated in the latter part of this paper.
Each column family [i.e. SortedMap] is composed of pairs of
the table column and a list of table value and timestamp
pairs [i.e. and]. The value is the actual data content stored
in the table, while the timestamp denotes the creation time of the
content. The timestamp allows storage of multiple versions of the
content in HBase. The data structure of an HBase table is
sometimes viewed at a higher level as a collection of key-value
pairs, in which a key is composed of a row-key, a column family
name, a column name, and a timestamp. The value is the actual
datum.

Figure 3. Logical data structure of HBase

Despite all of its favorable characteristics, HBase is not a
replacement for a traditional relational database. While aiming
for higher scalability and greater flexibility, the HBase design (as
with most other non-relational database systems) loosens parts of
the relational features such as the compliance to Codd’s 12 rules
(Codd, 1985) and the guarantees against transaction validity
(a.k.a. ACID: Atomicity, Consistency, Isolation, and Durability)
– the traditional, widely-adopted RDBMS standards (George,
2011). Even though these trade-offs are not acceptable in
domains such as banking and medical databases, they are not
fatally problematic in many applications such as web searching
or LiDAR data visualization. The decision between an RDBMS
and a more relaxed non-relational option must be based on a
rigorous justification of the features of the candidate technologies
with respect to the specifics of the data and the affiliated storage
and retrieval demands.

3. RELATED WORKS

While several data exchange formats have been developed to
accommodate FWF LiDAR data [e.g. ASPRS’ LAS (ASPRS,
2011), PulseWaves (Isenburg, 2014)], there are few efforts in
data management systems for FWF data. The Sorted Pulse Data
system by (Bunting et al., 2013) and the authors’ own previous
development of a FWF data extension for the Oracle DBMS
(Laefer et al., 2018) are the only established works known to the
authors.

The Sorted Pulse Data (SPD) approach by Bunting et al., (2013)
offers two options for organizing pulse data: (1) non-sequential
SPD index and (2) sequential SPD index. Using the non-
sequential option, nearby pulses can be distributed over various
locations on the storage device. In contrast, the pulses are
physically sorted so that pulses in close spatial proximity to each

other are stored near other on a computer disk in the sequential
SPD option. The sorting requires additional data processing steps
but can provide better querying performance. The spatial
indexing approach in SPD is a regular, 2D grid based on either
the first or the last returns of the laser pulses (Bunting et al. 2013).
In other words, that work degrades a line-indexing problem to
that of a point-indexing problem. Within that context, the spatial
indices (maintained as 2D arrays within the HDF5 structure)
facilitate direct spatial access to grid cells relevant to a spatial
query. This simple indexing mechanism constrains the type of
spatial access to selection of the indexing point (i.e. the first or
the last sample). For example, if the first sample is chosen, then
only querying on the first echo is supported.

In an attempt to overcome those limitations and enhance the
capability of spatial and temporal queries on FWF LiDAR data,
Laefer et al. (2018) developed a hybrid data indexing system atop
an Oracle database. The spatio-temporal index comprises a
Hilbert coded, 2D grid at the top level, and a bottom layer with
multiple 3D, regional octrees. These can be transferred between
the computer’s disk and the main memory via a serialization
mechanism. The temporal elements are integrated in the indexing
structure at two levels: flight line level and timestamp level (at a
microsecond resolution). Unlike what is supported in SPD, the
spatial indexing structure by Laefer et al. (2018) wholly preserves
the data by not degrading the index and the queries to the point
level. Specifically, the laser pulse data were modelled as line
segments, and queries were performed directly on the line
segment data. The scalability of the system was successfully
evaluated on a real-life, dense dataset of 1.1 billion pulses.
However, the size of the current index was relatively large (i.e.
20 bytes/pulse). In addition, there was a certain level of
redundancy in the octree structure, since a laser pulse can spread
over multiple octree nodes and is, thus, indexed multiple times.

There also exists a number of line indexing methods in the
literature which are not dedicated to FWF LiDAR data [e.g.
(Bertino et al., 1998; Hoelt and Samet, 1992; Jagadish, 1990;
Kolovson and Stonebraker, 1991)]. Unfortunately, none of the
methods known to the authors are truly usable for the type of line
segment data investigated in the paper. Many of the cited
methods were built for two-dimensional data such as those of a
cadastral database or a circuit board’s model. For instance, the
approaches proposed by Bertino et al., (1998) and Jagadish,
(1990) are not naturally extensible to 3D. In addition to the
dimensionality mismatch, the density and spatial distribution of
the data addressed in the previous research differ significantly
from those of the FWF LiDAR data. For example, the multi-
dimensional interval method presented by Kolovson and
Stonebraker, (1991) would be inefficient for FWF data, because
of the huge level of overlapping between the laser pulses if they
were represented as intervals (Fig. 2a). Some of the methods rely
on certain assumptions about the data such as non-crossing lines
(e.g. Bertino et al., 1998). Such an assumption totally precludes
the method from being utilized for FWF data indexing. Amongst
the cited approaches, the region quadtree solution introduced by
Hoelt and Samet (1992) has the most promising potential in
solving the FWF data indexing problem. A 3D version of the
method is actually used in the authors’ previous FWF data
management system (Laefer et al. 2018). However, the tree
structure does not well suit the key-value architecture of HBase,
thus requiring some modifications to be adopted for FWF data.

The shortage in spatio-temporal solutions for FWF data
management and the unsuitability of existing line indexing
methods motivated the development of the line indexing solution
established in the remaining sections of this paper. The research

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

673

presented in this paper extends the previous RDBMS solution by
Laefer et al. (2018) to one in a distributed computing
environment using a novel indexing design, and thus introducing
the first distributed computing solution for FWF data.

4. LINE SEGMENT DATABASE INDEXING FOR
INTERSECTION QUERIES

The primary type of query considered in the paper is the search
for laser beams that intersect a 3D polygonal geometry. Even
though the querying result can include any combination of the
pulse, wave, and point datasets, the element that is essentially
relevant to the query processing is the pulse portion of the data,
which has the form of a line segment. In other words, a 3D line
segment database needs to be searched to retrieve entities that
intersect the queried geometry. In this section, the spatial index
established to enable the primary querying type is described.
Essentially, the index is constructed by transforming the spatial
query into a multi-dimensional range search so that it can be later
implemented in the key-value data store.

Figure 4. Box intersection

The formulation starts with a system of linear inequalities (Eqn.
1) that defines the intersection relationship between 2 rectilinear
boxes (i.e. box A and box B in Fig. 4). The minimum vertices
[xmin, ymin, zmin] and maximum vertices [xmax, ymax, zmax] of both
of the boxes are needed to identify the spatial relationship.

⎩
⎪
⎨

⎪
⎧
𝐴. 𝑥()* ≤ 𝐵. 𝑥(-.
𝐴. 𝑦()* ≤ 𝐵. 𝑦(-.
𝐴. 𝑧()* ≤ 𝐵. 𝑧(-.
𝐴. 𝑥(-. ≥ 𝐵. 𝑥()*
𝐴. 𝑦(-. ≥ 𝐵. 𝑦()*
𝐴. 𝑧(-. ≥ 𝐵. 𝑧()*

 (1)

Eqn. 1 can also be used as a requisite for a line segment L
bounded by the box A to intersect the box B (Fig. 4). Stated
formally, a line L intersects a box B only, if the bounding box A
of L intersects B. Thus, Equation 1 holds true for the coordinates
of the line segments. After substituting the box vertices by the
line vertices and constraining the ranges by some prior
knowledge, Eqn. 1 can be rewritten as in Eqn. 2; where Hmax and
Vmax are the maximum horizontal and vertical extents of the
pulses - which can be computed given the knowledge of the data
acquisition process (i.e. pulse length, scan angle). Those
constants are computed using Eqn. 3; where ρmax and θmax are the
maximum pulse length and the maximum scanning angle.

According to Eqn. 2, the coordinates of the pulses’ bounding
boxes [L.xmin, L.ymin, L.zmin, L.xmax, L.ymax, L.zmax] can be used
to index the pulse data for the spatial intersection query. The role
of the index is to rapidly filter and exclude line segments that fail
any of the inequalities in Eqn. 2. Those pulses can be
immediately excluded from the querying result. Only the pulses
that pass all six inequalities need further processing to determine
whether or not they intersect the queried geometry.

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐿. 𝑥()* ∈ (𝐵. 𝑥()* − 𝐻(-., 𝐵. 𝑥(-.)
𝐿. 𝑦()* ∈ (𝐵. 𝑦()* − 𝐻(-., 𝐵. 𝑦(-.)
𝐿. 𝑧()* ∈ (𝐵. 𝑧()* − 𝑉(-., 𝐵. 𝑧(-.)
𝐿. 𝑥(-. ∈ (𝐵. 𝑥()*, 𝐵. 𝑥(-. + 𝐻(-.)
𝐿. 𝑦(-. ∈ (𝐵. 𝑦()*, 𝐵. 𝑦(-. + 𝐻(-.)
𝐿. 𝑧(-. ∈ (𝐵. 𝑧()*, 𝐵. 𝑧(-. + 𝑉(-.)

 (2)

 ; 𝐻(-. = 𝜌(-.

𝑉(-. = 𝜌(-.. 𝑠𝑖𝑛(𝜃(-.)
 (3)

5. IMPLEMENTATION

This section presents the implementation details of the spatial
index established in Section 4 atop an HBase architecture and the
needed extensions include the temporal queries.

5.1 Row-key design

Key-value data stores, such as the HBase database used in this
research, are optimized for data retrieval by a key or by a range
of consecutive keys [i.e. one-dimensional (1D) range query]. The
keys can be alphanumeric or arbitrary binary strings, as long as
they can be sorted by an order (e.g. lexicographical order). Key-
value data storage systems have previously been transformed to
facilitate multi-dimensional range searches via space filling
curves (Nishimura, 2011; Whitby et al., 2017). A space filling
curve [e.g. Morton curve, Hilbert curve] maps data from a high-
dimensional space onto a 1D space. The mapping allows data
indexes and queries in the high-dimensional space to be
transformed into the counterparts in a 1D space so that they can
suit the key-value architecture of the database. The ability to
preserve the spatial proximity of the original space during the
mapping is a desirable feature, as it represents the quality of a
space filling curve. Starting from the multi-dimensional range
search derived in Section 4, this paper uses a 6-dimensional
Hilbert curve to transform each tuple of (L.xmin, L.ymin, L.zmin,
L.xmax, L.ymax, L.zmax)] to a binary Hilbert code. The Hilbert
transformation in this paper is facilitated by the Java libraries by
Aioanei, (2008) and Whitby et al., (2017). The spatial resolution
of the Hilbert space is selected at a sufficiently fine level (e.g. 5
cm) so that the Hilbert codes are unique for each pulse.

The Hilbert code is prefixed with a flight line ID; a unique
identifier corresponding for the given pulse (Fig. 5a). Having the
flight ID as the first component of the row-key allows restriction
of the querying results to a single flight line. When data from all
available flight lines are desired, the query resolver invokes
multiple searches across all relevant flight lines. The design
allows searches to be handled concurrently by HBase, thereby
maximizing parallelism capabilities of the distributed system.
The list of flight IDs is obtained by querying a secondary table,
herein called the coarse indexing table, which provides a light-
weight spatial index for the flight lines. Each row of the table
represents a 5m×5m cell (C) within the spatial coverage of the
dataset. The row is indexed by a 4D Hilbert code similar to the
6D Hilbert code used for the main table (Section 4) but
encapsulates only the x and y coordinates of the cell [(C.xmin,
C.xmax, C.ymin, C.ymax)] (Fig. 5b).

Figure 5. Row-key structures

(1 byte)

(a) Main table (b) Coarse indexing table

Flight IDIndexed attributes

Encoding Byte

Row-key

L.xmin L.ymin L.zmin

L.xmax L.ymax L.zmax

6D Hilbert

(12 bytes)

L.xmin L.ymin

L.xmax L.ymax

4D Hilbert

(7 bytes)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

674

The aggregation of multiple components into the content of a
row-key for the main table is relatively common in key-value
data stores. The approach is often called the compound key
method (George, 2011). Given the FWF LiDAR data stored in
HBase and indexed by the compound row-key, the pulse
intersection query can be resolved by firstly decomposing the
given querying window to a series of Hilbert segments in the
same 6D space, which is used to construct the index. The relevant
flight IDs retrieved from the coarse indexing table are then added
to the minimum and maximum values of each Hilbert range. The
resulting ranges are used to query directly the row-key of the
HBase database for intersecting candidates. After being read off
disks, the candidate pulse records continue to be filtered by their
bounding boxes and then by their actual geometries. This is done
to identify those pulses actually intersecting the queried
geometry. The additional filtering layers can be skipped to reduce
the querying time at the cost of including false positive results in
the resulting set. Another technique which can be used to reduce
the querying time is to ignore the small gaps between the Hilbert
segments to reduce the number of segments (Whitby et al., 2017).
The technique is effective, as the querying time is often governed
by the number of calls invoked against the database, which is
equivalent to the number of Hilbert segments. The downside of
this technique is that it leaves a larger number of false positive
records for subsequent data filtering layers.

5.2 Custom temporal filter

While the compound row-key design in Section 5.1 can support
the primary intersection query with an option of adding flight line
constraints, the key does not allow actual temporal queries (i.e.
search for pulses collected within a temporal range). In the
current implementation, the temporal queries are supported via a
custom filter In HBase, a custom filter is a mechanism that allows
interim querying results to be filtered on the server-side before
returning results to the client requesting the data. Using a filter is
not as efficient as an index, since every data candidate passed to
the filter needs to be checked. However, having the filter
implemented on the server-side as in HBase is significantly better
than filtering the data on the client side. This is because the
former solution requires less data to be transferred over the
network, which is often the main bottle neck in a computing
system. In addition, there is often more computing power on the
server side to facilitate demanding operations such as spatial
checks. In this paper, the temporal constraint is processed by
partially processing the interim querying results, which are
derived from the search by the row-key, to read the timestamp of
each laser pulse. Prior to being returned to the querying client,
the FWF data entries are checked against the specified temporal
range to remove unqualified candidates.

5.3 Column structure

The row-key design presented in Section 5.1 designates one row
in the database for all data available from a laser measurement.
The data include the pulse (in the form of a line segment) and
several waveform segments (time-series data). The pulse has a
fixed length, while the number of waveform segments and the
waveform’s length are variable. The examples in Fig. 6 illustrate
the complex structure of the FWF data; Pulse A has one outgoing
wave segment, one returning wave segment corresponding with
one discrete return, while the number of returning wave segments
(i.e. also the number of discrete returns) of Pulse B is one. For
such diverse, non-tabular data, the schema-less feature of HBase
is beneficial. Since there is not an anticipation that any
compositions of the data components are more frequently queried
together, all the data are stored in one single column family (i.e.

column family ‘s’ in Fig. 7a). Depending on the expected data
usage pattern, the design can be changed so that only the highly
related components are grouped into the same column family to
optimize the data retrieval performance.

Figure 6. Examples of single segment and multiple segment

LiDAR waveforms

The complex structure of the FWF data is modeled using the
column structure in HBase. This consists of one pulse column
(named “pls”) per measurement. The actual datum of the pulse is
encoded as a binary string closely following the format used in
the PulseWaves format (Isenburg 2014). For the waveform data,
each wave segment requires 2 columns. The first (named “dij”)
stores the temporal offset from the moment the laser pulse leaves
the emitter to the time corresponds to the first echo of the wave
segment. The terms i and j are the indices of the sampling and the
segment, which are encoded directly in the column names. The
second column type (named “wij”) is for the waveform’s echo
values. That encoding allows retrieval of the raw waveforms by
the sampling and segment indices. By combining waveforms
with the associating duration value and metadata of the laser
beam encoded in the pulse column, each waveform echo can be
registered into a 3D space similar to what is typically done with
the discrete return point. The separation of the duration value in
a separate column allows the pulse geometry to be rapidly geo-
referenced without registering all waveform echoes in the 3D
space. Notably, the rows in the main table need not conform to
the same column structure thanks to the schema-less feature of
HBase. Also, empty column values do not occupy storage space.

The column structure of the coarse indexing table is illustrated in
Fig. 7b. The table contains one column family (i.e. ‘f’). The flight
line identification numbers in the integer format are used as the
column name. If a rectilinear cell (i.e. a row) contains data of a
flight line, a 1-byte dummy value is written to the HBase cell
corresponding to the row and the column. Otherwise, the cell is
left empty, thereby not consuming any storage space.

Figure 7. Table schema

Row-key:

Column family: s

Col: pls

...

Col: d00 Col: w00 Col: d00 Col: w00 Col: d10 Col: w11 ...

...

(a) Main table

Row-key:

Column family: f

Col: 0

...

...

...

(b) Coarse indexing table

Col: 1 Col: 2

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

675

6. PERFORMANCE EVALUATION

6.1 Study data

To aid in evaluating the proposed FWF data storage models, a
2015 FWF ALS data set over a 2 km2 area of the city center of
Dublin, Ireland was employed (Laefer et al., 2017). The data
acquisition was conducted in March 2015, using a Riegl Q680i
system with full waveform digitization. The ALS flight followed
the approach proposed by Hinks et al., (2009) to maximize data
coverage on building façades. Specifically, the scan was
conducted at the lowest permissible altitude (approximately
300m) with scanning angles ranging from -30o to 30o. The flight
paths were oriented at 45o to the city's major street axes to
minimize self-shadowing effects. The flight paths within each
parallel set were spaced at 100m intervals so that each location in
the scanned area was measured up to 6 times and from multiple
angles. The original FWF data were available in 2 formats:
APSRS’ LAS with external waveform data packets and
Rapidlasso’s PulseWaves. The total file sizes are 217.5GB for the
LAS format and 172.5GB for PusleWaves format. In this paper,
the dataset in PulseWaves format was used as the input. In order
to evaluate the database’s scalability, the data ingestion and
querying speed were evaluated in two subsets of varying sizes
(i.e. Small and Medium in Fig. 8a) in addition to the original
PulseWaves dataset (i.e. Large).

Figure 8. 2015 Dublin dataset

6.2 Data ingestion

Table 1 shows the disk consumption and the data ingestion time
for the three datasets when loaded into the HBase structure
described in Section 5. The data in the HBase database were 20%
more compact than the input PulseWaves files, even though the
HBase disk consumption includes the indexing structures, while
the original PulseWaves data are not indexed. The compactness
of the HBase solution is attributable to the use of the Snappy
compression in the database (Google, 2018). Compared to the
authors’ previous FWF database (Laefer et al., 2018), ingesting
data into the HBase data model was 2.5 times faster. The disk
consumption and ingestion time for the 3 datasets are relatively
constant, thereby demonstrating the scalability of the design.

Dataset Number of
pulses

Disk
consumption

Data
ingestion time

 bytes/pulse pulses/s
small 78,618,244 138.2 105,349
medium 316,454,155 137.8 112,072
large 1,010,310,084 138.2 94,173

Table 1. Data ingestion costs

6.3 Data querying

As described in Section 5, the pulse intersection query presented
in this paper is processed in multiple steps: (1) obtain the flight
IDs from the coarse, 4D indexing table; (2) decompose the
querying windows to a set of 6D Hilbert segments; (3) retrieve
data from the main HBase table using the RowKey derived from
the previous steps. The following subsections analyze the
runtime of each individual step.

6.3.1 Data retrieval from HBase

Retrieving FWF data from the main HBase table is arguably the
most important and time-consuming step of the data querying
process. During this step, the physical locations of the candidate
data records are identified based on their RowKeys, the relevant
data segments are read off the disks, and further filtering is
applied to decide the data records to be returned. Fig.s 9&10
present the data querying speed for two different cases: small and
large querying window. The querying windows are constructed
from a set of 200 data points randomly selected from the Small
dataset (Fig. 8). Since the Small dataset is subset of the Medium
and the Large sets, the 200 samples extracted from the Small
dataset are contained in all of the 3 testing datasets. The points
are the center of the querying boxes which have the dimensions
of [1m×1m×1m] for the small queries and [50m×50m×50m] in
the large querying cases.

Figure 9. Data retrieval from HBase for small queries

(1m×1m×1m)

Figure 10. Data retrieval from HBase for large queries

(50m×50m×50m)

Each black dot in Fig.s 9&10 represents the time required to
retrieve the data for each querying window being tested and the
number of pulses intersecting the window. The contour lines and
the two histograms are resulted from the Kernel Density
Estimation, which summarizes and smoothens the distribution of
the testing results. The median data retrieval times are
approximately 0.5s and 2.5s for the small and large querying
cases, respectively. Even though the speed (2.5s per 0.85 million
pulses) does not surpass the authors’ previous relational database
(Laefer et al., 2018), the speed is sufficiently high to make the
database useful for many applications such as data dissemination.
In terms of data scalability, there is no performance degradation
observed when the data volume increases up to 1 billion pulses.

(a) 79 million pulse dataset (b) 316 million pulse dataset (c) 1.01 billion pulse dataset

(a) 79 million pulse dataset (b) 316 million pulse dataset (c) 1.01 billion pulse dataset

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

676

To further understand the efficiency of the RowKey design
presented in Section 4, the numbers of false positives (FP) and
the false positive rates of the RowKey filtering step are reported
in Table 2. The number of FPs are the number of data records that
pass the rowkey filtering layer but ultimately do not satisfy the
querying conditions. From the results presented in Table 2, the
numbers of FPs (i.e. the number of data records have to be
forwarded for further spatial filtering) are approximately 160,000
in the small querying case and 2.5 million in the large querying
case. The number of FPs is equivalent to the FP rates of 0.02%
for the small queries and 0.26% for the large queries. FP rates are
computed as the ratio of the number of FP to the total number of
negatives. In other words, the FP rates represents the amount of
unqualified data records that the system failed to filter out, with
respect to the number of unqualified records successfully filtered
by the RowKeys. The relatively small FP rates prove that the
RowKey design is reasonably efficient in helping to bypass
irrelevant data records.

Query Number of FPs FP rate
 Median Std. Dev. Median Std. Dev.

[1×1×1] 160,212 88,845 0.02% 0.01%
[50×50×50] 2,560,149 1,396,375 0.26% 0.14%

Table 2. False positive rates of the RowKey filtering step

6.3.2 Hilbert decomposition
The Hilbert decomposition transforms a querying window in a
high dimensional space to a set of 1D, Hilbert segments. The
Hilbert encoding technique is well proven and widely used for
managing spatial data, including spatial data handling in
distributed, key-value data stores (Dimiduck and Khurama, 2012;
Nishimura, 2011; Whitby et al., 2017). The computational cost
of the Hilbert decomposition is often inconsiderable compared to
the costs of retrieving data from the database. For example, the
range decomposition time rarely exceeds 100ms in the authors’
previous adoption of 3D Hilbert encoding for point cloud
management (Vo et al., 2018). However, this supposedly
insignificant step is actually a major bottle neck in the query
processing pipeline in the 6D Hilbert solution presented in this
paper (Fig. 11).

Compared to the data retrieval time of less than 3s, the Hilbert
decomposition time as high as 30s as shown in Fig. 11 are
forbiddingly high. In addition, both the size and the location of
the querying windows influence the Hilbert decomposition time
in an untenable manner. As observed in Fig. 11a, the
decomposition cost increases with the size of querying window
up to a certain level before the cost drastically drops. These rises
and drops occur in a periodic manner when the size of the
querying window incrementally increases. There is not a
comparable clear pattern in the relationship between the Hilbert
decomposition time and the location of the querying window
(Fig. 11b). Nevertheless, the decomposition costs appear to vary
broadly when the querying window moves. Even though the
adverse effects may be specific to the particular Hilbert
implementation adopted in the paper (Aioanei, 2008; Whitby et
al., 2017), the issue does demonstrate an unfavourable
characteristic observed in a high-dimensional application but are
unobvious in the lower-dimensional cases.

6.3.3 Other overheads
The majority of the querying time is consumed by the Hilbert
decomposition and the HBase data retrieval steps discussed in
Section 6.3.2 and 6.3.1. Other overhead including the time
required to obtain flight IDs from the coarse indexing table is
marginal. More particularly, the overhead is approximately 90ms

in the large querying window cases and 20ms in the small
querying window cases. The insignificant overhead justifies the
usage of the coarse indexing table.

Figure 11. Hilbert decomposition time

7. CONCLUDING REMARKS

This paper presents the first distributed computing based spatio-
temporal indexing solution for FWF LiDAR data. The index
maps the laser pulses to a 6D Hilbert space that encodes the x, y,
and z coordinates of the two ends of the laser pulses. The primary
type of query supported by the 6D Hilbert index is the
intersection query against a rectilinear bounding box. The Hilbert
codes are prefixed by a flight line ID to form a compound
RowKey for structuring the data in HBase - a distributed, non-
relational, key-value data store. Having the flight ID as the first
component of the compound RowKey allows the data to be
temporally filtered at the flight line level prior to the spatial
evaluation. When data from all flight lines are needed, a light-
weight, coarse indexing table is used to identify the flight lines
needing to be scanned. The identified flight lines are then
processed concurrently by HBase. The solution is successfully
implemented. The column structure is designed to exploit the
schema-less feature of HBase for accommodating the irregular
and complex structure of the FWF data. The developed database
is capable of providing a wide range of spatial, temporal, and
spatio-temporal queries useful for FWF data exploration. The
temporal constraints can be enforced at the flight line level or at
the LiDAR timestamp level (i.e. micro-seconds). The fine
temporal filtering is provided by a custom filter which processes
the data in parallel on the server side. The spatial evaluation can
be set at different levels of accuracy depending on users’
expectations. At the lowest level, the data are only spatially
evaluated by the Hilbert codes. This querying mode is likely to
be optimal for querying time. However, some false positive
records may remain in the resulting data. Additional filtering
layers by bounding boxes and by the line geometries can be
added to eliminate the false positive records, but at the cost of
increased querying time.

The database implementation was rigorously evaluated using a
FWF dataset of 1.1 billion pulses, covering more than 2km2 of
Dublin city. The experiments prove that the design can
comfortably scale to accommodate large geo-spatial data sets.
Specifically, no performance degradation was observed when the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

677

dataset grew from 79 million to 1.1 billion pulses. Due to the use
of a compression mechanism native in HBase and the light-
weight design of the index, the total disk consumption of the data
and the index in HBase was 20% less than the original FWF data
in PulseWaves format. This was done while providing extensive
additional functionality. The data ingestion speed of
approximately 100,000 pulses/sec is 2.5 times faster than the
speed of the previous relational database implementation by
Laefer et al. (2018). The rowkey design is justified by the
relatively small false positive rate (i.e. 0.02% and 0.26% for the
small and large querying cases, respectively) and the reasonable
HBase data retrieval (i.e. 0.5s and 2.5s the 2 cases). The HBase
data retrieval time is the time required for fetching the data from
HBase given that the rowkey ranges are already known.
However, the experimental evaluation revealed a significant
bottleneck in the query processing pipeline – the Hilbert
decomposition – which takes place outside HBase and is
independent of the table design. The Hilbert decomposition time
was affected by the size and location of the querying window.
While the observed issue may be specific to the implementations
by Aioanei (2008) and Whitby et al. (2017), which is adopted in
the paper, the observation does demonstrate an adverse effect
caused by the increase in dimensionality. Notably, the same
library has been successfully utilized in lower dimensional
spaces, including the use for LiDAR point cloud data
management in 3D (Vo et al., 2018; Whitby et al., 2017) without
exhibiting this problem.

ACKNOWLEDGEMENTS

The authors would like to thank Professor Peter van Oosterom
for the suggestion of using a 6D Hilbert encoding for FWF data
management. This work was supported in part through the NYU
IT High Performance Computing resources, services, and staff
expertise and through the Center for Urban Science + Progress.
Additional computing resources used for the presented work was
provided by allocation TG-CIE170036 - Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-
1548562 (Towns et al., 2014). The dataset was made available
via European Research Council grant ERC-2012-
StG 20111012 “RETURN - Rethinking Tunnelling in Urban
Neighbourhoods” Project.

REFERENCES

Aioanei, D., 2008. Uzaygezen: Multi-dimensional indexing with
Hilbert curves. Retrieved from
https://opensource.googleblog.com/2008/08/uzaygezen-multi-
dimensional-indexing.html

ASPRS., 2011. LAS specification version 1.4 - R13.
Bertino, E., Catania, B., & Shidlovsky, B. (1998). Towards
optimal indexing for segment databases. In Extending Database
Technology, pp. 39–53.

Bunting, P., Armston, J., Lucas, R. M., & Clewley, D., 2013.
Sorted pulse data (SPD) library. Part I: A generic file format for
LiDAR data from pulsed laser systems in terrestrial
environments. Computers & Geosciences, 56, pp. 197–206.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,
Burrows, M., … Gruber, R. E., 2006. Bigtable: A distributed
storage system for structured data. 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), November 6-8,
Seattle, WA, USA, pp. 205–218.

Codd, E. F., 1985. Is your DBMS really relational? Computer

World.

Dimiduck, N., & Khurama, A., 2012. Scaling GIS on HBase. In
HBase in Action. Manning.

Fieber, K. D., Davenport, I. J., Ferryman, J. M., Gurney, R. J.,
Walker, J. P., & Hacker, J. M., 2013. Analysis of full-waveform
LiDAR data for classification of an orange orchard scene. ISPRS
Journal of Photogrammetry and Remote Sensing, 82, pp. 63–82.

George, L., 2011. HBase - The definitive guide (1st ed.). O’Reilly.

Google., 2018. Snappy, a fast compressor/decompressor.
Retrieved from http://google.github.io/snappy/

Hinks, T., Carr, H., & Laefer, D. F., 2009. Flight optimization
algorithms for aerial LiDAR capture for urban infrastructure
model generation. Journal of Computing in Civil Engineering,
23(6), pp. 330–339.

Hoelt, G., & Samet, H., 1992. A qualitative comparison study of
data structures for large line segment databases. In SIGMOD ’92
Proceedings of the 1992 ACM SIGMOD international
conference on Management of data.

Isenburg, M., 2014. PulseWaves: an open, vendor-neutral, stand-
alone, LAS-compatible full waveform LiDAR standard.
Retrieved from http://rapidlasso.com/pulsewaves/

Jagadish, H., 1990. On indexing line segments. In Proceedings
of the sixteenth international conference on Very large
databases, pp. 614–625. Brisbane, Australia: Morgan Kaufmann.

Kolovson, C. P., & Stonebraker, M., 1991. Segment indexes:
dynamic indexing techniques for multi-dimensional interval data.
In Proceedings of the 1991 ACM SIGMOD International
Conference on Management of Data - SIGMOD ’91, 20(2).

Laefer, D., Abuwarda, S., Vo, A.-V., Linh, T.-H., & Hamid, G.,
2017. 2015 aerial laser and photogrammetry survey of Dublin
city collection record. New York University. DOI:
10.17609/N8MQ0N

Laefer, D. F., Vo, A.-V., & Bertolotto, M., 2018. A spatio-
temporal index for aerial full waveform laser scanning data.
ISPRS Journal of Photogrammetry & Remote Sensing, 138, pp.
232–251.

Mallet, C., Bretar, F., Roux, M., Soergel, U., & Heipke, C., 2011.
Relevance assessment of full-waveform lidar data for urban area
classification. ISPRS Journal of Photogrammetry and Remote
Sensing, 66(6), pp. S71-S84.

Nishimura, S., 2011. MD-HBase : A scalable multi-dimensional
data infrastructure for location aware services. In Proceeding of
the 12th IEEE Intl Conf on Mobile Data Management (MDM),
vol. 1, pp. 7-16.

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K.,
Grimshaw, A., … Wilkins-Diehr, N., 2014. XSEDE: accelerating
scientific discovery. Computing in Science and Engineering,
16(October), pp. 62–74.

Vo, A. V., Konda, N., Chauhan, N., Aljumaily, H., & Laefer, D.
F., 2018. Lessons learned with laser scanning point cloud
management in Hadoop HBase. In Lecture Notes in Computer
Sciencen, pp. 1–24. Lausanne: Springer.

Whitby, M., Fecher, R., & Bennight, C., 2017. GeoWave:
Utilizing distributed key-value stores for multidimensional data.
In Advances in Spatial and Temporal Databases, pp. 105–122.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-671-2018 | © Authors 2018. CC BY 4.0 License.

678

