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ABSTRACT: 
 
The rise in global population has increased food and water demand thereby causing excessive pressure on existing resources. In 
developing countries with fragmented land holdings there exists constant pressure on available water and land resources. Obtaining 
field scale crop specific information is challenging task. Advent of open freely available multi-temporal remote sensing observations 
with improved radiometric resolution the possibilities for near real / real time applications has increased. In this study and an attempt 
has been made to establish operational model for field level crop growth monitoring using integrated approach of crowd sourcing 
and time series of remote sensing observations. The time series of Sentinel 2 (A and B) satellite has been used to estimate crop 
growth related components such as vegetation indices and crop growth stage and crop phenology. In initial stage high valued cereal 
crop Wheat has been selected. The field level information (i.e. 108 Wheat fields) collected using mobile based agro-advisory 
platform mKRISHI® has been used to extract time series of Sentinel 2 observations (44 scenes for year 2016 and 2018). The moving 
average has been used for filling gaps in the time series of vegetation indices. The BFAST and GreenBrown package in R were used 
for detecting breaks in vegetation index time series and estimating crop growth stages. Analysis shows that the estimated crop 
phenology parameters were in better agreement with the field observations. In future more crops from different agro-climatic 
conditions will be considered for providing field level crop management advisory. 
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1. INTRODUCTION 

The rise in global population has increased food and water 
demand thereby causing excessive pressure on existing 
resources. In developing countries with fragmented land 
holdings there exists constant pressure on available water and 
land resources. Obtaining field scale crop specific information 
is challenging task. Wheat is an important cereal crop grown 
across all regions of the world. In India Wheat production is 
severely affected by various biotic (pests and diseases) and 
abiotic (temperature, rain, water stress, etc.) stresses. Changing 
weather conditions such as increase in temperature causes early 
senescence in the Wheat (Lobell et al., 2012). Also, irrigation 
schedule has effect on crop growth and production (Dhillon and 
Fisher, 1994). 
 
The field level operational crop water balance models require 
agro-meteorological, soil and crop parameters on near-real time 
spatio-temporal scale. To estimate irrigation schedule on spatial 
scale there is a need for point based crop growth stage, available 
soil moisture, crop evaporative fraction / crop coefficient (i.e. 
the ratio of actual crop ET to potential ET) and soil depth 
information. Studies have found that crop coefficient (Kc) 
varies with the crop growth rate, planting density and 
management practices. FAO-56 based generic Kc curves often 
don’t match with actual crop water use therefore there is need 
for site specific Kc estimates (Glenn et al., 2011). Studies have 
shown that satellite derived canopy cover and Vegetation 
Indices (VI's) have strong correlation with Kc (Tasumi et al., 
2014; Er-Raki et al., 2007; Mateosa et al., 2013). 

 
The VI's such as, Leaf Area Index (LAI), Normalized 
Difference Vegetation Index (NDVI), Soil Adjusted Vegetation 
Index (SAVI) and Transformed Soil Adjusted Vegetation Index 
(TSAVI) are widely used for ETa estimation (Glenn et al., 
2011; Choudhury et al., 1994). The eddy covariance based 
energy flux towers, lysimeters and actual soil moisture 
measurements are used for validating the relationship between 
observed and estimated Kc for selected crops (Dugo et al., 
2013; Galleguillos et al., 2011; Mateosa et al., 2013). Glenn et 
al., (2011) demonstrated the use of RS based crop VI's for 
estimation of crop water requirement on field-by-field basis. 
Also, attempts are being made to develop reflectance-based 
Kc’s for numerous individual crops such as Corn (Maize), 
Wheat, Alfalfa, Cotton, Potato, Sugar-beet, Vegetables, Grapes 
and other orchard crops (Glenn et al., 2011). As variable rate of 
irrigation is required for different regions in the field spatial 
resolution of available ET products (Mu et al., 2007) is large 
and not suitable for small to medium agriculture areas (i.e. sizes 
ranging between 1 and 5 ha.). Therefore, there is a need for 
continuous crop monitoring and growth based irrigation 
scheduling for yield improvement. 
 
Satellite based earth observation (EO) platforms have proved 
capability to spatio-temporally monitor changes on the earth 
surface. United States Geological Survey (USGS) Landsat 
program is one of the oldest sources of optical EO datasets 
(EarthExplorer, 2018). Also, European Space Agency (ESA) 
has opened optical high resolution satellite observations of 
Sentinel 2A and 2B from Copernicus mission (ESA, 2018). 
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These historical and near-real time EO archives are rich source 
of information to understand the seasonal changes in the 
horticultural crops (Sawant et al., 2016). With increase in the 
availability of satellite observations in regular interval it's 
possible to monitor the crop growth conditions across the 
cropping cycle (Sentinel 2 and Landsat 8 with return period of 
12 and 15 days respectively). The field specific crop growth 
stages and vegetation index based Kc values are necessary for 
determining the precision irrigation schedules. Also, there is 
need for ground level information from stakeholders (farmers, 
agriculture extension officers, etc.).  The main objective of this 
study is to establish operational model for field level Wheat 
crop growth monitoring using integrated approach of crowd 
sourcing and time series of RS observations.  
 

Further, information on study area, detailed methodology, 
datasets used and overall framework for crop phenology 
mapping is described in Section 2. Details about the data 
analysis approach and results are covered in Section 3. The last 
section covers summary and future prospects of the study.  

 

2. MATERIALS AND METHODS 

The proposed framework combines all necessary processes to 
calibrate and validate field scale Wheat crop growth stages. The 
study area comprises of field observations collected from three 
districts (i.e. Amravati, Wardha and Nagpur) of Maharashtra, 
India (Figure 1 a). The region falls under semi-arid tropics and 
faces acute shortage of water during summer months (March to 
June). In the study area horticultural crop Mandarin / Citrus is 
cultivated on larger scale. The groundwater is a main source of 
irrigation during post-monsoon season and there exists 
competition for extracting the groundwater source for both 
Citrus and Wheat. Hence, there is a need for understanding the 
crop growth stages for conservation and judicious use of 
available water resource. 
 

 
Figure 1. a) Study Area and b) Example of selected Wheat 

fields and pixel locations. The field boundary (i.e. vector layer) 
is overlaid on high resolution satellite image.  

 
In the study area Wheat is cultivated during post-monsoon 
season (i.e. Nov. to Feb. locally called Rabi / winter season). 
The availability of cloud free satellite images and short duration 
subsistence irrigated crop are the main reasons to select Rabi / 
winter Wheat crop. The field level information such as field 
GPS boundary, farmer / cultivator name, crop name, date of 
sowing and date of harvest are collected using mobile based 
agro-advisory platform mKRISHI® (Pande et al., 2009). For 
each Wheat field three pixels are randomly selected and time 
series of Sentinel 2(A and B) was extracted for year 2016 to 
2018 (i.e. total 44 satellite passes and 108 fields) using Google 
Earth Engine (GEE) interface (Gorelick et al., 2017). The 

sample Wheat fields and selected pixels are shown in the Figure 
1 (b). The extracted time series has been used to estimate the 
crop growth related components such as vegetation indices, 
crop growth stage and crop phenology (Figure 2). 
  

 
Figure 2. Overall framework 

 
The time series for selected pixels was filtered for cloud cover 
and Enhanced Vegetation Index (EVI), Normal Difference 
Vegetation Index (NDVI) and Soil Adjusted Vegetation Index 
(SAVI) are calculated (Bausch and Neale, 1987; Huete et al., 
1999). The Vegetation Index (VI) time series data was 
smoothened using logistic regression based smoothing 
algorithm used in BFAST (Verbesselt et al., 2012; Verbesselt et 
al., 2010). The field wise average NDVI time series was 
analyzed for understanding the seasonality in the Wheat crop. 
Methodology for analysis of land surface phenology provided 
by Forkel et al. (2013) has been used to identify the Wheat crop 
growth stages. The estimated crop growth stages were compared 
with the actual Wheat crop growth stages collected using 
mKRISHI® platform. 
 

3. RESULTS AND DISCUSSIONS 

The estimated VI’s are aggregated on monthly scale for Wheat 
crop cultivated in year 2017-18 (Figure 3). The rise in VI shows 
the crop growth season starting from Nov. 2017 to Apr. 2018. 
The mean values of EVI, NDVI and SAVI are 0.5, 0.45 and 
0.36 respectively. Further, NDVI time series has been selected 
for all calculations.  
 

 
Figure 3. Monthly Variation in EVI, NDVI and SAVI 

 
Figure 4 shows the raw NDVI (non smoothed) time series for 
selected representative Wheat fields. It is observed that NDVI 
time series has uneven spikes and gaps due to cloud cover. 
  

 
Figure 4. Raw NDVI time series observed over sample Wheat 

fields 
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The results of Wheat crop growth stage detection algorithm 
estimates day of year (DOY) for Start of Season (SOS), End of 
Season (EOS), Length of Season (LOS), Position of Trough 
(POT), Mean Spring value (MSP) and Rate of Spring Greenup 
(RSP). The complete cycle of phenological changes in citrus 
crop canopy are captured in Figure 5. The cropping season 
starts from month of Nov. to Dec. and ends during next year 
Feb. to Mar.  

 
Figure 5. Crop growth stages for sample Wheat fields 

 
The field wise estimated and actual mean of SOS, EOS and 
LOS are shown in Table 1. 
 

SN Growth Stage Actual DOY Estimated DOY 

1 Start of Season 307 240 

2 End of Season 83 123 

3 Length of Season 141 157 

Table 1. Actual and estimated crop growth stages 

 
The estimated mean SOS is less than actual SOS and estimated 
mean EOS is greater than actual EOS, this is due to the poor 
identification of minimum NDVI smoothed over daily scale. 
There is a need for further investigations for identification of 
minimum NDVI and identify the potential application of EVI 
and SAVI for crop growth stage estimation. The actual and 
estimated mean LOS has better match as different cultivars / 
varieties of Wheat are aggregated. 
 

4. SUMMARY AND CONCLUSIONS 

In dynamic semi-arid cropping systems, every season crops 
change and it’s challenging to estimates crop growth stages for 
short duration crops due to cloud cover in monsoon season. In 
this study and an attempt has been made to establish operational 
model for field level crop growth monitoring using integrated 
approach of crowd sourcing and time series of remote sensing 
observations. The time series of Sentinel 2 (A and B) satellite 
has been used to estimate crop growth related components such 
as vegetation indices and crop growth stage. Analysis shows 
that the estimated crop growth stages were in better agreement 
with the field observations. However, there is a need for further 
investigations using VI’s such as EVI and SAVI to achieve 
precise estimates of crop growth stages. The proposed VI based 
crop growth stage estimation methodology can be further 
evaluated for field level crop water requirement estimation. The 
integrated approach of mobile based human participatory 
sensing (crowd sourcing) and RS based time series analysis of 
VI’s has potential to continuously monitor crop growth stages 
for optimal crop resources (i.e. water, soil, fertilizer, etc.) 
management. 
 

5. FUTURE SCOPE 

The local variation in Wheat crop growth stages is caused 
mainly due to the crop management practices. The feasibility of 
EVI and SAVI will be evaluated for short duration crop growth 
stage estimation. Crop growth stage adjusted VI based Kc 
values are needed for field level irrigation scheduling. In future 
RS based crop growth stage estimation method will be 
evaluated for more crops from different agro-climatic 
conditions. An attempt is being made to integrate the proposed 
approach for personalized field level crop management advisory 
using mobile based agro-advisory platform mKRISHI®. 
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