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The generalization of fear memories is an adaptive neurobiological process that promotes
survival in complex and dynamic environments. When confronted with a potential threat,
an animal must select an appropriate defensive response based on previous experiences
that are not identical, weighing cues and contextual information that may predict safety or
danger. Like other aspects of fear memory, generalization is mediated by the coordinated
actions of prefrontal, hippocampal, amygdalar, and thalamic brain areas. In this review
article, we describe the current understanding of the behavioral, neural, genetic, and
biochemical mechanisms involved in the generalization of fear. Fear generalization is a
hallmark of many anxiety and stress-related disorders, and its emergence, severity, and
manifestation are sex-dependent. Therefore, to improve the dialog between human and
animal studies as well as to accelerate the development of effective therapeutics, we
emphasize the need to examine both sex differences and remote timescales in rodent
models.
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INTRODUCTION

Fear is a primitive emotion that is conserved throughout the animal kingdom (Walters et al.,
1981; LeDoux, 2012; Adolphs, 2013). Survival in the wild is critically dependent on the flexible
assessment of threatening stimuli, which entails the processing, integration, and synthesis of
information acquired by multiple sensory modalities. Because aversive experiences are never
completely identical, animals must generalize their fear of a past experience to future encounters
that bear a sufficient degree of similarity to the original event. Like other memory-related processes,
generalization is modulated by a number of intrinsic factors, including internal states (estrous
and circadian cycles; Hull, 1943; Toufexis et al., 2007; Koch et al., 2017), previous experience
(Lashley and Wade, 1946), genetic background (Temme et al., 2014), and sex differences (Day
et al., 2016; Keiser et al., 2017). Generalization is also influenced by external factors including
the type and intensity of aversive stimulation (Baldi et al., 2004), early-life stress (Elliott and
Richardson, 2018), as well as the saliency of particular elements in the environment (Huckleberry
et al., 2016). Finally, generalization is sensitive to the passage of time, as memories naturally
lose both their precision and strength (McAllister and McAllister, 1963; Winocur et al., 2007;
Jasnow et al., 2012; Pollack et al., 2018). Given the large number of variables that impinge on the
generalization of fear, it has been challenging to develop an overarching neurobiological framework
with robust explanatory power. However, recent studies have begun to provide some compelling
new insights. Furthermore, whereas generalization has adaptive value, overgeneralization
is maladaptive, and is a major feature of anxiety- and stress-related disorders such as

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 329

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201496514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2018.00329
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2018.00329&domain=pdf&date_stamp=2019-01-15
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00329/full
https://loop.frontiersin.org/people/213236/overview
https://loop.frontiersin.org/people/180499/overview
https://loop.frontiersin.org/people/641867/overview
https://creativecommons.org/licenses/by/4.0/
mailto:erk5@columbia.edu
mailto:jbr2114@columbia.edu
https://doi.org/10.3389/fnbeh.2018.00329
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Asok et al. Neurobiology of Fear Generalization

post-traumatic stress disorder (PTSD; Elzinga and Bremner,
2002; Lissek et al., 2010; Dunsmoor and Paz, 2015). Therefore,
a better understanding of the neurobiology of generalization is
essential from a translational perspective.

In this review article, we explore the neurobiology of fear
generalization within a broader historical, theoretical, and
behavioral context. We then outline how the neural circuits
involved in fear generalization may shift with the passage
of time. Finally, we examine our current understanding of
the neurotransmitter systems and cellular signaling pathways
that contribute to fear generalization, and discuss how this
information may be used to develop new therapeutic approaches
for treating disorders of fear memory.

ADAPTIVE vs. MALADAPTIVE FEAR
GENERALIZATION

What defines the boundary between adaptive and maladaptive
fear generalization? From an ethological perspective, generalized
responses that promote survival of an organism are defined
as adaptive, whereas behaviors that contradict the mandate of
self-preservation are maladaptive (Johnson et al., 1992; McEwen,
1998; Cooper and Blumstein, 2015). However, this delineation
must be qualified by several caveats.

First, the environmental context in which a generalized fear
response occurs is a critical parameter, because a behavior that
is adaptive in one environment may be maladaptive in another.
For example, increased defensive behaviors and a reduction
of foraging in areas of high predatory threat are adaptive
for rodents. However, deployment of an enhanced defensive
response in environments lacking an elevated imminence of
threat is maladaptive because it unnecessarily compromises both
the acquisition of resources and allostasis, which refers to the
set of adaptive processes that maintain homeostasis (Fanselow,
1994; McEwen, 1998; Blanchard and Blanchard, 2008). The same
inference can be drawn for humans as well as for laboratory mice,
where test subjects that are conditioned in a particular context
or to a particular cue generalize fear in different contexts or to
different cues (Kaczkurkin et al., 2016), but see (Elzinga and
Bremner, 2002). Cues and environments exist on a perceptual
continuum, and maladaptive fear generalization occurs when
an abnormal stimulus-response gradient emerges to produce
defensive behaviors in environments or to cues which have never
been explicitly associated with threat or danger.

In addition, sexually dimorphic generalization may serve
an equally adaptive function within each sex for various
behaviors (Darwin, 1888; Kelley, 1988). With regard to fear
generalization, female mice that have been exposed to contextual
fear conditioning tend to freeze in the first retrieval context
in which they are tested, whether or not it is identical
to the training context (Keiser et al., 2017). One possible
interpretation of this behavior is that the consequence of making
a ‘‘mistake’’ (i.e., not exhibiting an optimal defensive strategy)
in a potentially life-threatening environment is evolutionarily
more costly for female mice in terms of future reproductive
success (Kelley, 1988). However, this example also illustrates
that the evolutionary benefit of a given behavioral pattern is not

definitively clear (for review see Bangasser and Wicks, 2017).
Finally, although a particular behavior may be maladaptive for
an individual it may actually benefit the population (for review
see Miller and Polack, 2018).

For these reasons, it is not possible to demarcate adaptive
and maladaptive behavior in absolute terms. Therefore, we
favor a normative definition in which performance of sex-
matched, wild-type animals in a given behavioral task serves as a
reference for what constitutes adaptive behavior, with phenotypic
outliers representing maladaptive states. Other research groups
have sought to formalize the identification of maladaptive
generalization states by stratifying animal behavior across a
variety of behavioral paradigms (Cohen et al., 2003, 2004; Cohen
and Zohar, 2004; Richter-Levin et al., 2018). As more studies
begin to implement this strategy, a major challenge will be to
establish agreed upon criteria for clearly defining the boundaries
that separate normal from pathological fear generalization.

THEORETICAL FRAMEWORK

For well over a century, research has examined the behavioral
correlates of stimulus generalization and discrimination. In
the 1920s, the seminal studies of Pavlov demonstrated that
animals trained in an auditory conditioning paradigm exhibit
generalization of their conditioned response (CR) to a range of
auditory stimuli (Pavlov, 1927). Subsequent work suggested that
a failure to discriminate between the conditioned stimulus (CS)
and similar, but non-identical stimuli is a result of: (1) an active
process of inhibitory weakening (Spence, 1936); (2) the failure
to form a strong association between the CS and unconditioned
stimulus (US), indicating that the ‘‘dimensions’’ of a stimulus
are not well-learned (Lashley and Wade, 1946; Rescorla and
Wagner, 1972); and (3) forgetting, or the failure of retrieval
(Bouton et al., 1999). Although generalization likely arises from
a weighted sum of these processes, many of the studies covered
in this review article have explored generalization within the
boundaries of each independently. For example, changes in
several brain regions have been shown to actively promote
or inhibit discrimination (Duvarci et al., 2009; Cullen et al.,
2015; Ferrara et al., 2017). Moreover, generalization can be
partially alleviated by greater learning about the CS (Biedenkapp
and Rudy, 2007; but see Poulos et al., 2016). However, the
neurobiological contributions of ‘‘forgetting’’ to generalization
are more difficult to evaluate [(Rescorla, 1976; Pearce, 1987;
Riccio et al., 1992), but see (Ishikawa et al., 2016; Richards and
Frankland, 2017)].

Our understanding of the neurobiology of fear generalization
within the aforementioned theoretical constructs is further
complicated by the temporal evolution of associative memories,
whereby memories become less precise and rely more heavily
on cortical areas over time (Bergstrom, 2016; Jasnow et al.,
2017; Sekeres et al., 2017; Asok et al., 2018b). When considering
these temporal factors, we are left with a challenging question:
what are the neural and molecular mechanisms that control the
generalization of fear memories at remote timescales? A number
of conceptual frameworks originally developed to explain the
shift of associative memories from limbic to cortical structures
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have also been applied to generalization. In particular, three key
theories have prevailed: systems consolidation theory, multiple
trace theory, and trace transformation theory.

In systems consolidation theory, episodic memories are
transferred to the neocortex from the hippocampus, such that the
expression of remote memories may no longer be hippocampus-
dependent (Dudai, 2004; Dudai et al., 2015). However, a number
of studies have challenged this view by showing that the
hippocampus continues to play a role in the retrieval of remote
fear memories (Rekkas and Constable, 2005; Lehmann et al.,
2007; Clark and Sutherland, 2013). Moreover, neocortical areas
may also be recruited during initial consolidation, though in an
immature form (Zhao et al., 2005; Takehara-Nishiuchi et al.,
2006; Vetere et al., 2011; Kitamura et al., 2017), a concept
that other theoretical frameworks have attempted to incorporate
(Asok et al., 2018b).

According to multiple trace theory (Moscovitch and Nadel,
1999; Moscovitch et al., 2005), neocortical and hippocampal
areas are rapidly recruited to amemory trace, but these memories
become less detailed and accurate over time. However, the act of
retrieval produces a new memory trace and serves to strengthen
hippocampal and neocortical connections as well as strengthen
the overall memory (Moscovitch et al., 2005). Likewise, the
transformation hypothesis suggests that context-specific episodic
memory is always hippocampus-dependent, but details are lost
over time as a particular memory becomes more schematic
(see Broadbent and Clark, 2013). However, the transformed
schematic representation is less precise and relies less on the
hippocampus. Indeed, certain features of a memory persist
longer than others and are differentially consolidated across the
brain (Malin and McGaugh, 2006; Wiltgen et al., 2010). Thus,
while certain brain areas may be especially suited for encoding
specific aspects of a fear memory [e.g., foot-shock or context
(Malin and McGaugh, 2006)], the subsequent retrieval of the
memory may rely more heavily on another set of brain regions
at recent vs. remote time points (Frankland et al., 2004).

These theories of long-term memory outlined above are,
however, limited in their ability to provide a comprehensive
framework for understanding fear generalization. For example,
what we know about remote episodic memory is largely
predicated on hippocampal-based mechanisms, despite the fact
that generalization clearly involves the amygdala, frontal cortex,
and other brain regions. Along these lines, these theories
of long-term memory also do not embrace the fundamental
circuit-wide nature of memory and generalization at recent vs.
remote timescales, which may be completely independent of
the hippocampus. Finally, and perhaps most important, these
theories do not fully explain how memory becomes less precise
over time (Bouton et al., 1999; Wiltgen and Silva, 2007), an issue
that would need to be addressed by any robust theoretical model
of generalization.

METHODOLOGICAL APPROACHES IN THE
STUDY OF FEAR GENERALIZATION

Although there is considerable variation in methodology
across studies, behavioral studies in rodents have focused on

generalization to either contextual or discrete cues. In context
generalization experiments, a rodent is typically exposed to
contextual fear conditioning, which entails the presentation of
an aversive US such as a foot shock in a conditioning context—a
previously neutral environment. Subsequent re-exposure of the
animal to the conditioning context (CTX+) without delivery
of the US evokes a species-specific defensive reaction such
as freezing, which refers to the cessation of all movement
except for respiration, and is generally accepted as a proxy
for fear (Blanchard and Blanchard, 1969). In turn, freezing in
the CTX+ in the absence of a US can be measured at various
time points after the initial CS-US pairing. When assessed at
24 h, which is perhaps the most commonly used interval of
time in these experiments, freezing is an index of long-term
associative memory, with longer intervals (several weeks or
longer) corresponding to remote associative memory.

To measure contextual fear generalization, animals are fear
conditioned and then exposed to a different context that was
never paired with a shock (CTX−; Rohrbaugh and Riccio,
1968; Ruediger et al., 2011). Freezing in the CTX− is an index
of fear generalization and can also be evaluated at multiple
time intervals, although the degree to which the CTX+ and
CTX− environments share similarities (e.g., odor, lighting, and
chamber shape) can vary substantially between studies, and
can greatly impact experimental outcomes, as we discuss later.
Furthermore, recent work has found that similarity between
olfactory and tactile elements of the CTX+ and CTX− are more
important than visual cues for generalization in males relative
to females [(Huckleberry et al., 2016), but see (Bucci et al.,
2002; Murawski and Asok, 2017)]. Less is known about whether
particular stimulus elements are more critical in females (e.g.,
odors given maternal roles), but within a species the most salient
sensory elements are likely similar between males and females
(Dunsmoor et al., 2011; Lissek et al., 2013).

In contrast, fear generalization to discrete cues commonly
involves exposing animals to an aversive US paired with a
stimulus presented through one sensory modality such as
a neutral tone or odor, which then becomes a CS. When
subsequently presented with a cue that resembles the CS, animals
exhibit a defensive response whose magnitude with respect to
the original CR is dependent upon the perceptual similarity
of the two stimuli (Shaban et al., 2006; Zhang et al., 2017).
In psychometric terms, the strength of the defensive response
varies as a function of the degree to which the new CS
approximates the original CS (see Figure 1). Thus, a narrow
generalization gradient (high discrimination) is signified by a
maximal defensive response that only occurs within a narrow
range of stimuli that are very similar to the CS, whereas a broad
generalization gradient (low discrimination) is indicated by the
ability of progressively dissimilar stimuli to elicit a defensive
response. It is important to note that the type of conditioning
(e.g., auditory trace fear conditioning vs. unpaired controls) can
influence generalization. Given that discrete cues are always
presented in a particular context, the type of conditioning
can influence both the associative value of the CS and the
associative value of the context. Thus, discrete cue conditioning
paradigms that manipulate how the context is presented, either
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FIGURE 1 | Fear generalization occurs along a continuum. High discrimination is a product of a heightened defensive response to the conditioned stimulus (CS) and
a low defensive response to non-target CSs, reflecting a narrow generalization gradient (left panel). Low discrimination is a product of a heightened defensive
response to the CS as well as an elevated defensive response to stimuli that approximate the CS, reflecting a broad generalization gradient (middle panel). No
discrimination is a product of a heightened defensive response to the CS as well as stimuli that markedly differ from the CS, reflecting an elevated flat generalization
gradient (right panel).

in the foreground or in the background of the discrete cue,
can differentially influence fear discrimination (Rescorla, 1976;
Pearce, 1987; Desmedt et al., 2003).

It is more straightforward to parametrically examine
generalization using a discrete cue vs. a context. For example,
one can alter the frequency of a tone by defined gradations and
observe an animal’s response during different cue presentations
(Guttman and Kalish, 1956). In an analogous manner, a
structurally related series of odorants that differ by a single
carbon group can produce a generalization gradient (Pavesi
et al., 2013). This is not as easily accomplished in contextual
generalization experiments, because contextual representations
reflect a combination of stimulus elements (e.g., spatiotemporal
elements, as well as tactile, olfactory, visual, and auditory inputs)
that are bound into a unitary representation (Sutherland and
Rudy, 1989; O’Reilly and Rudy, 2001; Rudy, 2009). Furthermore,
given the number of potentially salient features in a contextual
fear conditioning chamber, the extent to which an animal
may attend to one element over another is poorly understood,
although computational models of serial element processing
have been proposed (Krasne et al., 2015).

Yet, in both types of generalization, behavior can be
modulated by a number of external factors, including strength
and duration of the US, strength of the CS-US association,
similarity between the CS and generalization stimuli, as well as
a number of internal factors such as genetic background, sex,
and circadian cycle. Moreover, these parameters can interact
with one another. For example, pre-exposing male mice to
a conditioning context (CTX+) can enhance the strength of
recent fear memories during single-trial conditioning (McHugh
and Tonegawa, 2007; Brown et al., 2011), but it also produces
generalization to the CTX− (Radulovic et al., 1998; Rudy and
O’Reilly, 1999). In addition, whereas pre-exposing females to
the CTX+ reduces generalization without altering the strength

of recent fear memories, pre-exposing males to the CTX−
enhances generalization to the pre-exposed context (CTX−;
Keiser et al., 2017). These observations are further complicated
by the fact that generalization is dependent on the test order of
the different contexts, whereby extinction produced by testing
in an non-reinforced context may influence the generalization of
fear in a subsequent test context (Wood and Anagnostaras, 2011;
Huckleberry et al., 2016; Keiser et al., 2017).

The diverse behavioral outputs observed in the latter
experiments are ostensibly a reflection of adaptive tuning
mechanisms that are modulated by a number of critical
parameters, including animal species and strain. Furthermore,
it is important to emphasize the potential contributions of sex
differences. For example, when considering external factors that
contribute to fear generalization in males relative to females
the recruitment of different brain regions (e.g., amygdala vs.
hippocampus) may be an important variable (Keiser et al., 2017).
In addition, new studies are beginning to identify how active
or passive defense strategy selection may differ between sexes
(Gruene et al., 2015; Shansky, 2018). It is possible that ovarian
hormonal state in females may alter the functional connectivity
of neural circuits during specific temporal windows, leading to
differential effects on stress reactivity and memory (Andreano
et al., 2018), which in turn could affect generalization. Regardless
of the range of parametric factors that mediate the generalization
of recently acquired fear memories, animals may generalize their
fear to the CTX− at remote time-points (Balogh et al., 2002;
Wiltgen and Silva, 2007; Poulos et al., 2016; Pollack et al., 2018;
but see Biedenkapp and Rudy, 2007; Vanvossen et al., 2017).
Despitemethodological differences across studies, sex differences
in generalization at recent and remote time-points, whether to
cues or contexts, are likely a product of alterations in information
processing within fear circuits. Cellular and molecular changes
within these neural circuits that control normal fear learning and
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memory likely serve as key conduits for promoting or inhibiting
fear generalization between sexes across time.

NEURAL CIRCUITS OF FEAR
GENERALIZATION

Fear memories rely on discrete neural circuits which shift as a
function of the type of CS-US pairing (e.g., discrete cues in trace
or delay conditioning vs. contextual conditioning; for review see
Maren, 2001; Tovote et al., 2015). US foot-shock information
from peripheral sensory inputs enter the ventroposterior nucleus
of the thalamus (VPN) as well as the posterior intralaminar
nucleus of the thalamus (PIN). Accordingly, studies have found
that electrolytic lesions of the PIN disrupt fear conditioning
(Lanuza et al., 2004, 2008). US information from the PIN and
the posterior insular cortex (PIC) is then relayed to the lateral
nucleus of the amygdala (LA), which is a critical site of plasticity
in fear learning and memory regardless of the type of CS-US
pairing (Goosens and Maren, 2001). However, US pathways also
show selectivity for the type of CS-US pairing in that lesions of
the PIC only disrupt auditory, but not contextual, fear memories
(Brunzell and Kim, 2001; Davis, 2006), which likely reflects
multimodal information processing.

Auditory Fear Circuits
During auditory fear conditioning, auditory information is
relayed from lemniscal and extralemniscal pathways to the
auditory thalamus. This information from the auditory thalamus
is then relayed to the LA by either a direct pathway arising
from extralemniscal projections originating in the medial part
of the medial geniculate nucleus (mMGN) and PIN, or by an
indirect pathway, which arises out of the lemniscal pathway
and projects from the ventral MGN to the primary auditory
cortex, and subsequently to the auditory association cortex
and then LA (Weinberger, 2011). Inputs to the LA from
the mMGN are critical for fear memories and, as discussed
later, molecular perturbations in the mMGN produce fear
generalization (Nabavi et al., 2014; Ferrara et al., 2017). Auditory
CS and US foot-shock information is thought to converge in
the LA and in parts of the central nucleus of the amygdala
(CeA; Paré et al., 2004). The Excitatory and inhibitory balance
of discrete populations of neurons in the LA for tones, and
basal amygdala complex for contexts given inputs from the
ventral hippocampus (Canteras and Swanson, 1992; Maren and
Fanselow, 1995), has been implicated in fear generalization as
similarity of the CS− approaches the CS+ (Tovote et al., 2015;
Rajbhandari et al., 2016; Grosso et al., 2018). The LA provides
inputs to the CeA, of which the medial division (CeAm) contains
the primary outputs to structures which mediate behavioral
and neuroendocrine aspects of fear (e.g., the periaqueductal
gray; PAG; Gross and Canteras, 2012). Interestingly the lateral
division of the CeA (CeAl) also receives direct inputs from
the thalamus (Linke et al., 2000), provides tonic inhibition
of the CeAm, and is associated with fear generalization to
auditory CSs (Ciocchi et al., 2010). Moreover, recent studies have
suggested that corticotropin releasing factor in the CeAl may be
important for modulating fear generalization under conditions

of low-associative strength (Sanford et al., 2017). However,
the CeAl and basolateral amygdala (BLA) complex also send
projections to the bed nucleus of the stria terminalis (BNST),
a region implicated in anxiety-like behaviors and contextual
fear (Dong et al., 2001; Davis et al., 2010; Asok et al., 2018a).
Lesions of the BNST enhance the precision of recent auditory
memories while reducing fear generalization (Duvarci et al.,
2009).

Contextual and Olfactory Fear Circuits
The dorsal hippocampus is critical for the formation of a unitary
contextual representation during contextual fear conditioning
(Maren et al., 1997; Holland and Bouton, 1999; Rudy et al.,
2004). Information from sensory and association cortices is
relayed to post-rhinal (POR) and peri-rhinal (PER) cortices,
followed by the medial and lateral entorhinal cortices [MEC and
LEC, respectively (Lee and Lee, 2013)]. This information from
different MEC and LEC layers then flows into the hippocampal
formation, with segregated inputs to the dorsal dentate gyrus,
dorsal hippocampal CA3 subfield, dorsal CA1 subfield, and
dorsal subiculum (dSub). Indeed, distinct outputs from CA1 and
dSub to MEC are important for the acquisition and retrieval
of recent fear memories, respectively (Roy et al., 2017). The
DG and CA3 have received considerable attention for their
role in fear generalization because of their contributions to
pattern separation and pattern completion (see McHugh et al.,
2007; Rolls, 2013). Mice with deletion of the N-methyl-D-
aspartate receptor (NMDAR) in CA3 exhibit generalization
during short-term, but not recent, fear memory tests, suggesting
that CA3 has an important role in the rapid formation of
contextual representations (Cravens et al., 2006). Recent studies
have suggested that while neuronal ensembles in the DG show
context selectivity during the retrieval of recent fear memories,
there is a substantial loss of DG selectively at remote time-points
which parallels fear generalization (Matsuo, 2015; Yokoyama
and Matsuo, 2016). It is worth noting that the DG is one
of the few sites in the brain that exhibits neurogenesis, and
manipulations that promote neurogenesis improve contextual
discrimination—a finding which suggests that enhancing DG
function may increase remote memory precision (Sahay et al.,
2011; Nakashiba et al., 2012; Besnard and Sahay, 2016). Given
the importance of olfactory cues to rodents and their relevance
to disorders such as PTSD (Rolls et al., 2013; Cortese et al., 2015),
as well as the influence of neurogenesis in the olfactory bulb,
it will also be interesting to determine whether manipulating
neurogenesis in the olfactory bulb modulates fear generalization
to odors (see Tong et al., 2014).

Hippocampal-Thalamic-Prefrontal Circuits
The functional distinction between the dorsal hippocampus
and ventral hippocampus has long-been debated, but there is
agreement that both divisions are essential in the consolidation of
contextual fear memories (Fanselow and Dong, 2010; Zhu et al.,
2014). Moreover, the ventral hippocampus and its connections
may be important for the maintenance of memory precision
(Ciocchi et al., 2015; Cullen et al., 2015; Jimenez et al., 2018). The
ventral hippocampus has reciprocal connections with the medial
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prefrontal cortex (mPFC; anterior cingulate, prelimbic, and
infralimbic regions), the BLA, the retrosplenial cortex, and the
insular cortices (Pitkänen et al., 2000; Cenquizca and Swanson,
2007). Interestingly, neuronal activity in the mPFC increases
in parallel with the emergence of fear generalization at remote
time-points (Cullen et al., 2015), suggesting the possibility of an
active role in promoting generalization. Moreover, the mPFC
is reciprocally linked with vCA1 by the nucleus reuniens (NR),
and enhancing activity of mPFC inputs to the NR decreases
contextual fear generalization (Xu and Südhof, 2013). Thus, the
mPFC ↔ NR ↔ vCA1 circuit is likely to play an important
role in the modulation of memory precision as well as the
generalization of fear during the natural course of systems-
consolidation (Rozeske et al., 2015; Ramanathan et al., 2018). In
humans, other brain regions such as the striatum, insula, and
PAG have also been implicated in the generalization of recent
fear memories (Dunsmoor et al., 2011).

Considerations in the Neural Circuits of
Fear Generalization
Generalization gradients exist in core sensory cortices which
process discrete CSs such as odors and tones. The generalization
of contextual fear appears to follow a similar organizational
structure, but involves a more elaborate network to account
for multimodal sensory and representational processing.
How fear generalization gradients emerge and shift across
time at the neural circuit level is an important area of
future research. For example, understanding how contextual
information differentially engages the dorsal hippocampal,
ventral hippocampal, and medial prefrontal circuits at recent
and remote time-points may provide important insights into
a global framework for how fear generalization to complex
representations occurs. Similarly, identifying whether these
shifts are paralleled in sensory cortices which represent the
elemental components of a contextual representation, such
as auditory information in direct and indirect thalamic relay
pathways to the LA, will help to build a global framework of
the brain-wide circuits which modulate fear generalization
(Weinberger, 2011; Shang et al., 2015). However, an important
consideration in this work is the interaction between remote
fear generalization and systems consolidation. Beyond neural
circuits, this interaction raises a fundamental biological question:
are the molecular and genetic mechanisms that regulate fear
generalization at early time-points similar to those at remote
time-points?

While most of the neural circuits and molecular mechanisms
enumerated above promote generalization, it is also clear that
generalization is an active process in which a consolidated
memory is prevented from undergoing accurate retrieval.
For example, inactivation of the ACC or vCA1 has no
effect on contextual fear memory at remote time-points
when mice are tested in the training context, but enhanced
freezing to a novel context is suppressed (Frankland et al.,
2004; Cullen et al., 2015). Thus, the ability to discriminate
between an aversive context and neutral context at remote
time-points is actively inhibited by the ACC and vCA1.
Similarly, blocking protein synthesis in the MGN enables tone

discrimination that is otherwise not observed in an auditory fear
conditioning paradigm (Ferrara et al., 2017). Also, as mentioned
previously, lesions of the BNST reduce fear generalization
(Duvarci et al., 2009), implying an unidentified role for this
brain region and its outputs in the active suppression of
discrimination.

Finally, the substrates of generalization are nested within
the neural circuits that support fear memory. For example, the
acquisition, extinction, and generalization of fear are all regulated
by NMDARs functioning in excitatory neurons of the PFC
(Vieira et al., 2015). It is therefore possible that experimental
manipulations which target associative fear memories may
exert uncharacterized effects on generalization, and would
merit further exploration. However, the molecular and cellular
mechanisms that support various components of associative fear
memory including generalization are not entirely identical. For
example, pharmaco-genetic deletion of a subset of excitatory
and inhibitory neuronal ensembles in the amygdala impairs
generalization, but not fear memory (Grosso et al., 2018),
demonstrating that these processes are separable.

MOLECULAR AND CELLULAR
MECHANISMS OF FEAR
GENERALIZATION

Adding to the complexity of circuit-level processes are the many
distinct molecular and cellular pathways that also contribute to
generalization. These cellular and molecular pathways represent
conduits for information that do not operate in isolation from
one another. For example, the cannabinoid CB1 receptor is
found in GABAergic and glutamatergic neurons in the CNS,
thus allowing the endocannabinoid system to influence the
activity of both inhibitory and excitatory synapses (Kano et al.,
2009). Moreover, certain neurons may release both gamma-
aminobutyric acid (GABA) and glutamate (Shabel et al., 2014),
and changes in the excitatory and inhibitory balance within
neurons may be important for certain behaviors (Froemke, 2015;
Mongillo et al., 2018). Furthermore, signaling pathways intersect
not only at the cellular level, but also at the circuit level. For
instance, glucocorticoid and beta-adrenergic signaling across the
limbic system cooperate in the regulation of long-term memory
(Rodrigues et al., 2009; Roozendaal et al., 2009; McIntyre et al.,
2012). Nevertheless, for organizational purposes and the sake
of simplicity, we focus on particular contributions of discrete
pathways.

Excitatory and Inhibitory
Neurotransmission
Activity within neural circuits involved in the storage and
processing of memory is governed by a balance of excitatory
and inhibitory neurotransmission (Froemke, 2015; Mongillo
et al., 2018). Altering this balance impinges on circuit-level
functions, leading to distinct alterations in behavioral outputs.
Not surprisingly, in addition to their central roles in associative
fear memory, both excitatory and inhibitory neurotransmission
are also important in fear generalization.
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Glutamate is the major excitatory neurotransmitter in the
brain, and direct evidence for the role of glutamatergic
signaling in fear generalization is provided by studies that target
ionotropic glutamate receptors. The NMDAR, in particular,
plays a key role in synaptic plasticity and memory (Tsien
et al., 1996). Conditional deletion of an obligatory subunit
(NR1) of the NMDAR in excitatory CaMKIIα-positive principle
neurons within the PFC causes a time-dependent increase in
generalization to auditory cues, which is driven by ineffective
CS− learning (Vieira et al., 2015). Thus, NMDAR activation
in excitatory neurons is critical for stimulus discrimination
because it promotes a reduction in defensive behavior when an
animal is presented with a non-reinforced CS−. In addition to
mPFC-dependent mechanisms for generalization, glutamatergic
signaling at excitatory NR1 subunit-containing NMDARs in the
hippocampus is important for pattern separation and contextual
fear memory (McHugh et al., 2007). Specifically, while contextual
fear conditioning and discrimination between very different
contexts is intact following NR1 deletion in dentate granule cells,
KOmice cannot easily discriminate between perceptually similar
contexts. Also, selective inactivation of NMDARs in the LA
reveals a role for NMDA signaling in auditory fear generalization
(Jones et al., 2015).

Complementing the latter studies, more recent work has
found that injection of NMDA into the rodent prelimbic
cortex to activate NMDARs during the consolidation or
retrieval phases of contextual fear conditioning induces fear
generalization (Vanvossen et al., 2017). However, the effect is
only observed for strong fear conditioning, whereas NMDA
injection during a weaker training protocol actually enhances
contextual discrimination, a finding that is consistent with the
idea that the mPFC is involved in promoting retrieval of weaker
memories (Rudy et al., 2005). Thus, there exists a complex
relationship between the magnitude of aversive stimuli and
prelimbic mPFC activation with respect to different components
of associative fear memory.

Although most studies that implicate glutamatergic signaling
in fear generalization focus on NMDAR-dependent mechanisms,
AMPA-dependent signaling is also important. For example,
peptide-mediated blocking of the removal of AMPA receptors
in the dorsal hippocampus maintains long-term contextual fear
memory and inhibits generalization, which in turn correlates
with inhibition of synaptic depotentiation (Migues et al., 2016).
Another study found that upregulation of synaptic expression of
GluR1-containing AMPA receptors in the amygdala may drive
the generalization of auditory fear (Ferrara et al., 2017). Together,
these studies point to an elementary role for glutamatergic
signaling in both contextual and cued generalization, but
also underscore the complex relationship between excitatory
neurotransmission and behavior.

Counterbalancing the actions of glutamate is GABA, the
major inhibitory neurotransmitter in the brain. GABAergic
neurons in the amygdala and hippocampus play a critical
role in the formation of fear memories (Fendt and Fanselow,
1999). Whereas ionotropic GABAA receptors mediate fast
inhibitory signaling, metabotropic GABAB receptors exert a
slow inhibitory tone over synaptic circuits (Chua and Chebib,

2017; Frangaj and Fan, 2018). Several lines of genetic evidence
demonstrate that GABAergic transmission is involved in the
generalization of both contextual and cued fear memory. For
example, deletion of GABAB(1a) receptors in mice is associated
with increased contextual generalization, but has no impact
on acquisition or maintenance of fear memory (Cullen et al.,
2014). Likewise, deletion of the GABAB receptor subtype leads
to generalization of cued fear without affecting retrieval by
CS+ presentation, an effect that is evident for high- but
not low-intensity foot shocks (Shaban et al., 2006). Similarly,
deletion of GABAA receptor δ subunit causes an increase in
generalization to auditory cues (Zhang et al., 2017). It will be
interesting to see if perturbation of GABAA receptors within
discrete circuits also has an impact on the generalization of
contextual fear. Finally, deletion of glutamic acid decarboxylase
(GAD65), an enzyme responsible for synthesizing GABA, causes
generalization to auditory cues, although GAD65 KO mice
show normal contextual fear learning (Bergado-Acosta et al.,
2008; Sangha et al., 2009). Together, these studies indicate
that GABAergic transmission contributes to both cued and
contextual fear generalization, but like glutamatergic signaling,
the relationship between inhibitory neurotransmission and
behavior is both subtle and complex.

Monoaminergic Signaling
Among the classical monoamine neurotransmitters, dopamine
appears to be the most significant modulator of fear
generalization, although serotonin and noradrenaline (NA)
can also regulate the processing of fear memory. Dopamine is
critically involved in motivation, salience, reward learning, and
prediction error (Schultz et al., 1997; Bromberg-Martin et al.,
2010). In addition, a number of genetic and pharmacological
studies have demonstrated a contribution for dopamine
signaling in fear memory, which is mediated by dopamine
receptors expressed in the hippocampus, amygdala, PFC, and
striatum (Civelli et al., 1993; Pezze and Feldon, 2004). For
example, mice lacking the dopamine D1 receptor (D1R) in
granule cells of the dentate gyrus and the striatum exhibit poor
retention of contextual fear (Ikegami et al., 2014; Sarinana
et al., 2014). However, studies examining the impact of global
D1R deletion on contextual fear memory have yielded mixed
results (Ortiz et al., 2010; Abraham et al., 2016), which may be
explained by methodological differences as well as the possibility
of recruitment of compensatory pathways. Importantly, with
respect to generalization, mice lacking D1R in the dentate gyrus
are unable to discriminate between the training context and a
novel context after exposure to contextual fear conditioning
(Sarinana et al., 2014), while a modest increase in contextual
fear generalization is observed when D1R is globally deleted
(Abraham et al., 2016). Finally, cued fear memory may or may
not be affected by D1R deletion (Ortiz et al., 2010; Sarinana
et al., 2014; Abraham et al., 2016), which may be attributed to
methodological differences in the studies. It remains to be seen
whether these manipulations have an impact on generalization
to discrete cues.

In contrast to D1R deletion, pharmacological studies reveal
a role for dopamine D2 receptors (D2Rs) in cued fear
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generalization. For example, cannulated delivery of the D2R
antagonist, raclopride, into the CeA or BNST is sufficient to
increase generalization to auditory cues (De Bundel et al.,
2016). Specifically, in the latter study, raclopride increases
generalization to the CS− tone, while the dopamine receptor
agonist, quinpirole, had the opposite effect. On the other hand,
in a human fMRI study, pharmacological blockade of dopamine
D2Rs produces a reduction in stimulus generalization (Kahnt
and Tobler, 2016). Differences in drug specificity or route of
delivery may explain these discordant effects. Nevertheless, the
authors suggest that the hippocampus flexibly modulates the
width of the stimulus generalization gradient, and that the
hippocampus can provide active inhibition of generalization, by
recruiting a dopamine-dependent process during retrieval. Given
that the visual discrimination task employed in the latter study is
based on positive reward, it would be interesting to evaluate the
effects of D2R blockade in an aversive task in humans.

NA is a neurotransmitter involved in the consolidation
of emotional memories during attentional processes, which
in turn are essential for maintaining precision of memory
(McGaugh, 2013). In rats exposed to contextual fear
conditioning, pharmacological enhancement of noradrenergic
transmission enhances the consolidation of memory, but also
increases generalization of the freezing response to a neutral
context (Gazarini et al., 2013). However, the latter effect on
generalization was not observed when NA activity was induced
after retrieval of fear memory, indicating an important role for
NA presumably by interacting with stress hormones at the time
of fear learning (McReynolds et al., 2010).

Finally, serotonin signaling is mediated by a large family
of serotonin receptors and transporters that exerts complex,
often paradoxical effects on both cued and contextual fear
memory (Homberg, 2012; Burghardt and Bauer, 2013). However,
far less is known about the impact of serotonergic signaling
on generalization, which may reflect the complex relationship
between serotonin and fear memory. One of the rare examples of
research focusing on serotonin-dependent generalization found
that male mice lacking the serotonin 1A receptor (5-HT1AR)
exhibited heightened generalization of contextual fear, which is
proposed to be a hippocampus-dependent effect (Klemenhagen
et al., 2006).

Hormones
Contextual generalization occurs more rapidly in female rats
compared to males, and is partly mediated by estrogen (Lynch
et al., 2013). In ovariectomized female rats, treatment with
either an estrogen receptor (ER) agonist or estrogen itself
enhances generalization to a neutral context in a passive
avoidance task, an effect that is mediated by cytosolic or nuclear
(but not membrane-bound) ERs in the dorsal hippocampus
(Lynch et al., 2016b). These results provide yet another
example of how retrieval of an aversive memory can be
dissociated from generalization to a neutral context, because
the latter manipulations that enhance generalization did not
affect memory retrieval in the training context. Importantly,
because the generalization of fear is associated with anxiety-
related disorders, which have a disproportionately greater impact

on women than men (Kessler et al., 2005, 2012; Tolin and Foa,
2006), estrogen-dependent mechanisms identified in rodents are
likely to be clinically relevant. As with estrogen in females,
testosterone in males is likewise capable of modulating the
processing of fear memory. Gonadectomized male rats exhibit
generalized fear to a neutral context in a passive avoidance task,
which is ameliorated by injection with testosterone (Lynch et al.,
2016a).

Corticosterone, the major glucocorticoid in rodents, is a
steroid hormone that is released by the hypothalamic-pituitary-
adrenal (HPA) axis during stress (de Kloet et al., 2005),
and its effects on learning and memory are well documented
(Schwabe et al., 2012; Meir Drexler and Wolf, 2017). In terms
of fear generalization, a number of studies have implicated
glucocorticoid-dependent signaling. For example, glucocorticoid
receptors in the ventral hippocampus or BLA are important
for contextual fear, and infusion of corticosterone into the
hippocampus after fear conditioning prevents mice from
discriminating between correct and incorrect predictors of
threat (Donley et al., 2005; Kaouane et al., 2012). Although
not all studies demonstrate an effect of corticosterone (Bueno
et al., 2017), there is significant variation with regard to many
key variables, including conditioning parameters, corticosterone
regimen, species and strain differences, etc.

Finally, noradrenergic neurons in the locus coeruleus
(LC) respond to orexin, a neuropeptide hormone produced
by hypothalamic neurons and involved in the regulation of
wakefulness, arousal, feeding behavior, and energy homeostasis
(Sakurai, 2007). In conjunction with fear conditioning,
optogenetic stimulation of orexinergic projections from the
lateral hypothalamus to LC potentiates freezing to a novel
context or cue (Soya et al., 2017). Furthermore, orexin neurons
modulate a number of signaling pathways described above,
including dopaminergic and cholinergic signaling (Sakurai,
2007).

Transcriptional Regulatory Mechanisms
In addition to intercellular signaling, there are a number of
intracellular, transcription-based mechanisms that contribute
to fear generalization. For example, the cyclic-AMP response
element binding (CREB) protein, an inducible transcription
factor necessary for the consolidation of fear memories, has been
shown to have regionally specific effects on fear generalization.
Viral-based overexpression of CREB in the auditory thalamus
not only enhances cued fear conditioning, but also increases
generalization to the tone (Han et al., 2008). In the mPFC,
depletion of the CREB binding protein (CBP), a transcriptional
coactivator of CREB and histone acetyltransferase, reduces
memory precision and enhances generalization of recent
auditory fear memories (Vieira et al., 2014). Interestingly, this
generalization emerges after discrimination training, which is
consistent with the view that prefrontal circuits may have
multiple roles across time (Frankland et al., 2004; Malin
and McGaugh, 2006). More recently, the transcription factor
Klf9 has been implicated as a stress- and sex-dependent
regulator of fear generalization in male mice (Besnard et al.,
2018).
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Other Signaling Pathways
Finally, limited evidence has supported a role for an assortment
of other cellular signaling pathways in the generalization of fear,
including nitric oxide, endocannabinoid, as well as cholinergic
and neuropeptide Y (NPY) systems. For example, nitric oxide
deficiency caused by deletion of the neuronal isoform of nitric
oxide synthase (nNOS) increases generalization to odor in both
male and female mice, and also inhibits olfactory fear memory
(Pavesi et al., 2013). Activation of the cannabinoid system by
cannabidiol (CBD) treatment in rodents has no impact on
explicit contextual fear memory at 24 h, but generalization to
a distinct context is significantly reduced (Stern et al., 2017).
Pharmacological targeting of muscarinic acetylcholine receptors
modulates generalization of fear with respect to an odor that was
previously paired with a foot shock, although the particular brain
regions involved in this olfactory paradigm remain to be defined.
In another study, lesions of cholinergic inputs from the basal
forebrain to the vmPFC results in contextual fear generalization
(Knox and Keller, 2016), which the authors suggest is caused
by impaired synchronization between the hippocampus and
mPFC during fear learning. Finally, NPY is a component of a
neuropeptide system that is highly expressed in limbic areas of
the brain, where it regulates fear- and anxiety-related behavior
(Tasan et al., 2016), while mice lacking NPY or one of its
receptors (Y2) exhibit heightened generalization to auditory cues
(Verma et al., 2012).

Considerations in the Molecular and
Cellular Mechanisms of Fear
Generalization
The signaling pathways implicated in the generalization of fear
are both diverse and complex, yet they ultimately converge on
the excitatory/inhibitory activity of specific cell types within
specific brain regions. While much of our current understanding
of molecular and cellular mechanisms of fear generalization is
derived from the study of proximal time-points, future studies
will need to explore how these signaling pathways operate at
the level of distinct neural circuits at remote time-points, and
as a function of sex. Furthermore, it will be important to
investigate how these signaling events impinge on translational,
transcriptional, and post-transcriptional processes to modulate
the balance between excitatory and inhibitory signaling to
produce adaptive or maladaptive behavioral outputs.

AN INTEGRATED PERSPECTIVE

The generalization of fear is governed by a variety of
molecular, cellular, and circuit-level mechanisms that promote
the deployment of an optimal defensive response in the face of
perceived threat or danger (Maren et al., 2013). Ultimately, the
tuning of generalization gradients is a reflection of a complex
interplay of multiple internal and external factors, and is shaped
by evolutionary imperatives. Althoughmany questions remain as
to how this tuning is normally accomplished at a molecular and
neural circuit level, and how aberrant tuning might contribute
to psychopathology, the evolutionary benefit of generalization

itself is clear (e.g., cautious foraging for resources in high-risk
environments). Furthermore, the molecular pathways and neural
circuits that enable the generalization of experience are governed
by positive and negative feedback loops which themselves are
dynamic. Indeed, the evolution of complex systems relies on
biological networks whose structures are inherently dynamic
(Kitano, 2004), and the generalization of fearmemories is a prime
example of how such networks produce adaptability.

One notable characteristic of the molecular and neural
mechanisms described in this review article, whether they
promote or inhibit generalization, is that they reflect active
processes. As is the case with all aspects of associative memory,
including acquisition, consolidation, retrieval, extinction, and
forgetting, the generalization of fear is governed by active
mechanisms that require significant amounts of energy to
regulate highly evolvedmolecular interactions (Davis and Zhong,
2017). However, it is important to acknowledge the potential
contributions of passive mechanisms, despite the fact that
these are poorly understood. Given that biological networks
are subject to the laws of entropy, it is possible that certain
neural circuits are inherently more insulated from the effects
of signal degradation than others. Therefore, components of
a memory trace may rely on neural circuits that are subject
to different rates of decay, leading to imprecise memory
(Mensink and Raaijmakers, 1988). Moreover, the entropic decay
of elements contained within a memory trace would offer a
parsimonious mechanism by which the capacity to generalize
may have been shaped by evolution. Furthermore, if synaptic
consolidation represents a subroutine of systems consolidation
(Dudai et al., 2015), it is likely that even subtle losses in
fidelity of the signaling events that govern synaptic plasticity
are manifested in higher-order neural functions. Thus, a major
focus in the immediate future should be with the identification
of whole-brain activity patterns associated with different types
of fear generalization (e.g., to contexts and discrete cues) across
time.

What can we learn from this discussion of the neurobiology of
fear generalization? First, under a certain set of conditions, fear
generalization at recent and remote time-points is modulated by
the strength of learning (Biedenkapp and Rudy, 2007; Poulos
et al., 2016). However, the loss of memory precision driven by
forgetting or the inhibitory weakening of the initial memory
trace seems to be a continual process. This weakening and loss
of precision occurs both in micro-circuits within a brain region
(e.g., the central amygdala, dentate gyrus, etc.) as well as in
macro-circuits between brain regions (e.g., ventral hippocampus
to mPFC; Ciocchi et al., 2010; Cullen et al., 2015). In particular,
amygdalar, prefrontal, hippocampal, and thalamic areas appear
to be especially important for fear generalization, and a delicate
balance between excitatory and inhibitory transmitters, receptors
and synapses is critical. Moreover, the neural circuits initially
involved in hippocampal-related processes such as pattern
separation and pattern completion (Rolls, 2013) may have a
different contribution to fear memories and generalization at
recent vs. remote time points (Kitamura et al., 2017; Khalaf
et al., 2018). Thus, the generalization of fear which occurs at
remote timescales likely results from an interaction between the
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initial associative strength, systems consolidation, and the natural
weakening or forgetting of the original memory.

FUTURE DIRECTIONS

Understanding the neurobiology of fear generalization is a
critical step in the development of novel therapeutic approaches
for treating psychiatric disorders such as PTSD. Because
fear generalization is conserved across species, animal models
are indispensable in the search for causative and potentially
exploitable relationships betweenmolecular, cellular, and circuit-
level events that influence behavior. With this idea in mind,
we emphasize several ideas, both old and new, that should be
considered in the design of future studies.

First, given the sexual dimorphisms observed in many
psychiatric illnesses, the use of both male and female animals is
of paramount importance. Fortunately, at least for several types
of fear-related behaviors observed in female C57BL/6 mice, strict
monitoring of estrous phase may not be necessary (Meziane
et al., 2007; Keiser et al., 2017), and therefore naturally cycling
females can be used. In addition, the persistent nature of
PTSD and anxiety disorders emphasizes the need to examine
remote time-points and other processes such as fear relapse
in behavioral experiments (Goode and Maren, 2014; Goode
et al., 2018). Also, because psychiatric disorders such as PTSD
are highly heritable (Duncan et al., 2018), it will be critical to
develop and characterize animal models with genetic alterations
at defined loci, whether borne out by GWAS studies or candidate
approaches. In this regard, it would be helpful to revisit mouse
genetic models that exhibit alterations in fear memory, yet
have not been evaluated in remote generalization experiments,
given the overlapping circuitry that regulates these processes.
Furthermore, because memory traces evolve over time with
regard to both their precision and how they are stored in neural
circuits, we emphasize the need to evaluate remote changes
at the electrophysiological and structural level. For example,
optogenetic interrogation of cortical ensembles that are activated
during remote fear generalization should help to elucidate the
nature of systems consolidation. Finally, cued fear conditioning
may be more relevant to short-lasting fear, while contextual
conditioning may be more relevant to longer-lasting anxiety
states (Davis et al., 2010; Shackman and Fox, 2016; Asok et al.,

2018a). Although studies of both types of fear memory have
generated a trove of basic neurobiological knowledge, it is
likely that contextual models will prove to be especially useful.
The breadth and depth of sensory and cognitive experiences
associated with a traumatic event in humans suffering from
PTSDmay be approximated more effectively by a multimodal CS
rather than a discrete sensory cue.

In terms of developing new and effective treatments
for fear-related disorders, circuit-level approaches such as
transcranial magnetic stimulation (Kozel, 2018) and deep
brain stimulation (Bina and Langevin, 2018) are promising,
although they lack the specificity afforded by pharmacological
approaches. The molecular and cellular pathways involved in
the processing and storage of fear memories can already be
targeted at multiple levels by a vast and extant pharmacopeia
with undiscovered capacity to modulate the generalization
of fear. However, a given drug target that is expressed
throughout the brain can serve distinct functions depending
on its subcellular localization in particular brain areas (Engin
et al., 2018), making it difficult to modulate specific neural
circuits with strictly pharmacological approaches. Therefore, to
achieve both molecular and circuit-level specificity, it will be
important to capitalize on new technologies that allow cell-type
specific targeting of compounds (Nassi et al., 2015; Shields
et al., 2017). Well-designed pre-clinical animal studies using
targeted delivery of potential therapeutic drugs to examine
their effects on fear memory and generalization, across long
timescales and as a function of sex, will provide a critical
stepping-stone in translating novel compounds from bench to
bedside.
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