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Abstract. Overprediction of fine-particle ammonium-sulfate
molar ratios (R) by thermodynamic models is suggested as
evidence for interactions with organic constituents that in-
hibit the equilibration of gas-phase ammonia with aerosol
sulfate and questions the equilibrium assumption long
thought to apply for submicron aerosol. This hypothesis
is tested through thermodynamic analysis of ambient ob-
servations. We find that the deviation between R from a
molar ratio of 2 is strongly correlated with the concentra-
tion of sodium (Na'), a nonvolatile cation (NVC), but ex-
hibits no correlation to organic aerosol (OA) mass concen-
tration or mass fraction. Thermodynamic predictions of both
R and ammonia gas—particle partitioning can accurately re-
produce observations when small amounts of NVCs are in-
cluded in the calculations, whereas exclusion of NVCs re-
sults in a predicted R consistently near 2. The sensitivity of
R to small amounts of NVCs arises because, when the latter
are present but not included in the thermodynamic calcula-
tions, the missing cations are replaced with ammonium in
the model (NH3—NH1r equilibrium shifts to the particle), re-
sulting in an R that is biased high. Results and conclusions
based on bulk aerosol considerations that assume all species
are internally mixed are not changed even if NVCs and sul-
fate are largely externally mixed; fine-particle pH is found
to be much less sensitive to mixing state assumptions than
molar ratios. We also show that the data used to support the
“organic inhibition” of NH3 from equilibrium, when com-

pared against other network and field campaign datasets, dis-
play a systematically and significantly lower NHI (thought
to be from an evaporation bias), that is of the order of the
effect postulated to be caused by organics. Altogether, these
results question the postulated ability of organic compounds
to considerably perturb aerosol acidity and prevent ammonia
from achieving gas—particle equilibrium, at least for the lo-
cations considered. Furthermore, the results demonstrate the
limitations of using molar ratios to infer aerosol properties or
processes that depend on particle pH.

1 Introduction

The pH is a fundamental aerosol property that affects aerosol
formation and composition through reactions that involve the
hydronium ion (e.g., Jang et al., 2002; Eddingsaas et al.,
2010; Surratt et al., 2010) and gas—particle partitioning of
semivolatile acids and bases (e.g., Fridlind and Jacobson,
2000; Young et al., 2013; Guo et al., 2016, 2017). Acid-
ity also modulates aerosol toxicity and atmospheric nutrient
supply to the oceans by augmenting the solubility of tran-
sition metals and other nutrient species (Meskhidze et al.,
2003; Nenes et al., 2011; Longo et al., 2016; Stockdale et
al., 2016; Fang et al., 2017). Despite its importance, chal-
lenges in measuring fine-mode-particle pH have led to the
adoption of measurable aerosol properties as acidity prox-
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ies, such as aerosol ammonium-sulfate ratio or ion balances
with a priori assumed dissociation states (e.g., Paulot and Ja-
cob, 2014; Wang et al., 2016; Silvern et al., 2017). Recent
work has shown that such proxies are not uniquely related
to pH because they do not capture variability in particle wa-
ter content, ion activity coefficients, or dissociation state of
polyprotic acids and bases (Guo et al., 2015, 2016; Hennigan
et al., 2015; Song et al., 2018). An alternative approach that
better constrains aerosol pH is a thermodynamic analysis of
semivolatile acid (or base) measurements, whose partition-
ing is observably sensitive to shifts in aerosol acidity (pH
is optimally constrained when gas—particle concentration ra-
tios approach 1: 1), and with the aerosol water content or
phase state constrained as well (Guo et al., 2015; Hennigan
et al., 2015). NH3—NHI, HNO3-NOj3, and HCI-CI™ pairs
often meet this condition for a wide range of atmospheri-
cally relevant pH. The method has been utilized for a range
of meteorological conditions (RH, 7') and gas—aerosol con-
centrations demonstrating that model predictions are often in
agreement with observations (Bougiatioti et al., 2016; Guo et
al., 2016, 2017; Liu et al., 2017; Murphy et al., 2017; Song
et al., 2018).

Despite their skill and widespread use in regional and
global models, aerosol thermodynamic models can predict
ammonium-sulfate molar ratios (Kim et al., 2015; Weber et
al., 2016; Silvern et al., 2017) that departs from observa-
tions in seemingly counterintuitive ways. In the southeast-
ern US, where total ammonium (NH, = NHj3; + NHI) is

in large excess of particle sulfate, observed NH;‘|r / SOi_ mo-
lar ratios are in the range of 1-2 (Hidy et al., 2014; Guo et
al., 2015; Kim et al., 2015). Thermodynamic models predict
very low pH (0.5 to 2) (Guo et al., 2015) and molar ratios al-
ways close to 2 (Kim et al., 2015; Weber et al., 2016; Silvern
et al., 2017). This predicted—observed molar ratio discrep-
ancy has led to the hypothesis that thermodynamic predic-
tions are incorrect because they do not consider interactions
with organic species, either in the form of films that inhibit
gas-to-particle mass transfer of NH3 or other mechanisms
that are not accounted for (Silvern et al., 2017). Such limi-
tations, if prevalent, are suggested to oppose the validity of
aerosol thermodynamic equilibrium with significant impacts
on aerosol chemistry and acidity-mediated processes world-
wide (Silvern et al., 2017), especially given the expected in-
creasing organic mass fractions in the future due to reduced
anthropogenic emissions, as seen with SO, emission reduc-
tions in the eastern US (Hand et al., 2012; Attwood et al.,
2014; Hidy et al., 2014).

The effect of organic species on gas—particle equilibrium
of inorganic species has been the subject of many past stud-
ies. Organic films are often hypothesized to act as barriers
for gas—particle mass transfer, which given their ubiquity
means they require special attention in studies. For example,
Anttila et al. (2007) reports the formation of ~ 10 nm thick
organic films in regions with monoterpene emissions, which
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are the largest source of summertime organic aerosol (OA)
in the southeastern US (Zhang et al., 2018). Lab studies have
shown that organic films may significantly slow down mass
transfer of NH3 from gas to particle at low relative humid-
ity (less effect at higher RH, such as the southeastern US)
(Daumer et al., 1992; Liggio et al., 2011) but have little ef-
fect on water vapor uptake for a large RH range (Garland
et al., 2005). Such films, as noted by Silvern et al. (2017),
would have important implications for partitioning of NHj3
and other larger semivolatile molecules, such as H,O, HNO3,
and organic acids. However, in contrast, numerous studies
show that NHj3, water vapor, and HNO3 equilibrate with
organic-rich atmospheric aerosols (Ansari and Pandis, 2000;
Moya et al., 2001; Morino et al., 2006; Fountoukis et al.,
2009; Guo et al., 2015, 2016, 2017; Liu et al., 2017; Murphy
etal., 2017; Paulot et al., 2017), which suggest organic films,
if present, do not impose considerable delays in mass transfer
and gas—particle equilibration.

At low temperature and low relative humidity, particles
may be in a semi-liquid or glassy state characterized by a
very low molecular diffusivity throughout its volume (e.g.,
Zobrist et al., 2008; Bertram et al., 2011; Tong et al.,
2011; Zobrist et al., 2011; Bones et al., 2012; Reid et al.,
2018). When in this state, gas—particle mass transfer of all
semivolatile components may be severely limited and require
much longer timescales to equilibrate than the ~ 20 min typ-
ically thought to apply for PM; (Dassios and Pandis, 1999;
Cruz et al., 2000; Fountoukis et al., 2009). However, such an
effect has not been observed for the conditions in the east-
ern US, as there is good agreement between observed and
predicted particle water, and partitioning of NH3—NHI and
HNO3-NOj, especially in cases where RH is sufficiently
high (greater than 40 %) to maintain the aerosol in a deli-
quesced (completely liquid) state (Guo et al., 2015, 2016).

Other reasons, unrelated to the presence of organic
aerosol, may drive the observed molar ratio discrepancy.
Analyses of aerosol acidity, molar ratios, and partitioning of
semivolatile species often neglect the variations of composi-
tion with size, especially in the PM; to PM; 5 range (Keene
et al., 1998; Fridlind and Jacobson, 2000; Nenes et al., 2011;
Young et al., 2013; Bougiatioti et al., 2016; Fang et al., 2017).
If acidity across size changes sufficiently, average equilib-
rium composition (including molar ratios) may deviate con-
siderably against observations owing to the nonlinear depen-
dence of partitioning with acidity (e.g., Guo et al., 2016).
Soluble nonvolatile cations (NVCs, such as Nat, KT, Ca™,
Mg?*), potentially present in large quantities in PM, 5 and
to a lesser extent in PM|, can strongly modulate acidity and
molar ratios. NVCs are often omitted from thermodynamic
calculations because of their relatively minor contribution
to aerosol mass and ion charge balance; for similar reasons,
NVCs are not routinely included in aerosol composition mea-
surements; when they are, proximity to level of detection
(LOD) often increases their concentration uncertainty. Here
we show, based on analysis of observational aerosol and gas
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datasets, that excluding even small amounts of NVC in ther-
modynamic analyses results in predicted NHZr /SO?[ mo-
lar ratios close to 2, whereas including them brings model-
predicted molar ratios into agreement with observed levels.
We also assess the implications of using specific datasets
on molar ratios and the impact of adopting a size-averaged
(bulk) thermodynamic analysis against one that considers an
incomplete mixing (size-dependent composition) of ambient
aerosols.

2 Methods
2.1 Molar ratios definition

Two ammonium-sulfate aerosol molar ratios (mol mol—!) are
used in the following analysis:

_ NH7 ()
S04
Rso, = 4 —NOy @
4 SOZ,

Both are based on mole concentrations in units of mol m~3.
Rso, is a more narrowly defined molar ratio that excludes
NH;L'r associated with NO3_ , because some fractions of am-
monium sulfate and ammonium nitrate can be associated
with different sized particles (Zhuang et al., 1999) and molar
ratios are calculated based on bulk composition data (PM; 5
or PM;). This issue is discussed in more detail below. The
upper limit for R and Rsg, is 2 for a particle composition of
pure (NH4)>SO4 and a lower limit of O for R when SOﬁ_ is
associated with other cations instead of NH} (e.g., NaySOy)
or if there is free HySOy4 in the aerosol. A negative Rso, can
occur for conditions of high NO3_ and low NH, SOi_ con-
centrations (e.g., NaNO3) but is rare for ambient fine par-
ticles (at least not seen in the three datasets studied in this
paper). R or Rso, is typically observed in the range of 1 and
2 in the southeastern US (Hidy et al., 2014; Guo et al., 2015;
Weber et al., 2016). In cases where NO;' levels are low rel-
ative to SOﬁ_, the two ratios, Rso, and R, are equivalent,
as is observed in the summertime southeastern US, where
NOj is typically ~ 0.2 pug m~3, NHZ‘ ~ 1lugm™3, and SOi_
~ 3ugm™3 (Blanchard et al., 2013).

2.2 Data

Two datasets are mainly used for analysis: the Southern Ox-
idant and Aerosol Study (SOAS) and the Wintertime Inves-
tigation of Transport, Emissions, and Reactivity (WINTER).
The SOAS study was conducted from 1 June to 15 July in the
summer of 2013 at a rural ground site in Centreville (CTR),
AL, representative of the southeastern US background at-
mosphere in summer. PM; s ions were determined with a
particle-into-liquid sampler coupled with an ion chromato-
graph (PILS-IC). The PILS-IC detects aerosol water-soluble
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anions and cations collected and diluted by deionized wa-
ter to the extent of complete deprotonation of H»SOy4 in the
aqueous sample (Orsini et al., 2003). NH3 was obtained from
chemical ionization mass spectrometer measurements (You
et al., 2014). In the following, we only use PM> 5 ion data
from a 12-day period (11-23 June) of the SOAS campaign.
(PILS PM; data were collected in the second half of the
study and are not used here). Periods of rainfall are not in-
cluded in the analysis, as equilibrium does not apply. The
same dataset was used to study pH sensitivity to sulfate and
ammonia (Weber et al., 2016). PM, s anion and cation data
along with NH3 and HNO3 were also collected with a Mon-
itor for AeRosols and Gases in ambient Air (MARGA) dur-
ing SOAS (Allen et al., 2015). The WINTER data were col-
lected during 13 research aircraft flights from 1 February to
15 March 2015 mainly sampling over the northeastern US.
We use PM; aerosol data collected with a high-resolution
time-of-flight aerosol mass spectrometer (hereafter referred
to as AMS) (Schroder et al., 2018), which have been exten-
sively compared to the PILS anion measurements also made
in that study (Guo et al., 2016). Details of the these two cam-
paigns and instruments, and calculations and verification of
pH based on the observation datasets, have been described in
Guo et al. (2015, 2016), respectively.

In the following analysis, we focus on R for summertime
datasets since NO; was generally low, and Rgo, for win-
tertime datasets where higher NO3™ concentrations were ob-
served. Thermodynamic analyses of both datasets indicate
highly acidic aerosols with an average pH ~ 1 (Guo et al.,
2015, 2016). At these pH levels, aerosol sulfate can be in the
partially deprotonated form of HSO, instead of SOi_. For
example, 10 % of the total sulfate is predicted to be HSO,
for the SOAS condition (see Fig. S1 in the Supplement).
Free-form H,SO4, which requires even lower pH, is rare. To
avoid any confusion, we note that in this study SO?[ refers to
the sum of total aqueous aerosol sulfate (SO?[, HSO,, and
H»S04), i.e., S(VI). Similarly, NHZr refers to the sum of total
aqueous ammonium (N H, NH3) and NOj refers to the sum
of total nitrate (NO3_ , HNO3) in aqueous aerosols. SO2_,
NHI, and NOj are reported by PILS-IC. However, PILS-IC
cannot distinguish the in situ aerosol ion forms for collecting
aerosols in diluted deionized water (i.e., the ionic strength is
altered) (Orsini et al., 2003). The AMS vaporizes aerosols
and ionizes non-refractory species with a 70 eV electron im-
pact ionization and also cannot distinguish the dissociation
states of inorganic ions (DeCarlo et al., 2006).

In addition to the SOAS and WINTER datasets, the South-
eastern Aerosol Research and Characterization (SEARCH)
CTR sampling site (the same as SOAS) historical data from
year 1998 to 2013 are reanalyzed to show that the thermody-
namic model can reproduce the observed decreasing trend of
Rso, when NVCs are considered. Molar ratios determined
from the Chemical Speciation Network (CSN), which were
utilized and discussed by Silvern et al. (2017) and Pye et
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al. (2018), are not used in this work because of a signifi-
cant low bias when compared to the SEARCH and SOAS
data (see Table S1 and S2 in the Supplement). The discrep-
ancy is likely due to the loss of semivolatile NHI collected
on the CSN nylon filters (Yu et al., 2006; Silvern et al., 2017)
and can result in an underestimation or under-measurement
in R, compared to online measurements, by as much as 1
unit (Table S1). Other than the tentative explanation that sul-
fate aerosols are coated by organic material, Silvern et al.
(2017) found that NVCs would modify R on average by 0.11
for the ensemble of CSN sites and NVC concentrations were
too low to significantly affect the charge balance, as previ-
ously shown by Kim et al. (2015). Therefore, NVCs could
not explain the overprediction of R by the thermodynamic
model due to the large low bias of CSN R shown above.
In contrast, this study investigates the effects of NVCs by
three datasets, including SOAS, WINTER, and SEARCH,
and concludes the importance of NVCs in accurately predict-
ing ammonium-sulfate molar ratios.

2.2.1 Thermodynamic analysis of observations

We have used the thermodynamic model ISORROPIA 11
(Fountoukis and Nenes, 2007) to determine the liquid water
content and composition (including HT) of an NHI—SOZ‘—
NO; —ClI~-Nat-Ca*"-K*-Mg>*-water inorganic aerosol
(or a subset therein) and its partitioning with corresponding
gases. A molality-based definition of pH is used:

1000+ H.
H= —1 HI = —log,)——————2L
p 0810YH+ Hag 0g10 Wit W,
1000yy+ H:
= _log)—— o it 3)
Wi

where yy+ is the hydronium ion activity coefficient (as-
sumed = 1; note that the binary activity coefficients of ionic
pairs, including H™, are calculated in the model), and H:q
(molkg~!) and H;’;r (ug m~3) are the hydronium ion concen-
tration in particle liquid water and volume of air, respectively.
W; and W, (ug m~3) are particle water concentrations asso-
ciated with inorganic and organic species, respectively. The
pH predicted solely with W; is systematically lower by 0.15—
0.23 units but highly correlated (r> = 0.97) to pH predicted
with measured total particle water (W;+ W,,) for the southeast
US (which includes the SOAS study), where W, accounted
for 35 % of total particle water (Guo et al., 2015). For sim-
plicity, we therefore use only W; for the following pH calcu-
lations. ISORROPIA II was run in forward mode to calculate
gas—particle equilibrium concentrations based on the input
of total concentration of various inorganic species (e.g., NH3
+ NH;{). In all cases we also chose a metastable (not sta-
ble) solution, which assumes inorganic ions are associated
with the aerosol components that are completely aqueous and
contain no solid precipitate forms, other than CaSOq4 (H;:] is
meaningless in a completely effloresced aerosol). Given this
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phase state requirement, we restrict the analysis to conditions
where RH > 40 %.

2.2.2 Mixing state

Because the aerosol composition data are bulk PM or PM s,
and used as input to ISORROPIA 1I, the thermodynamic
analysis implicitly assumes that all particle species were
internally mixed, so that one value of pH represents the
aerosols and governs the gas—particle partitioning. The ex-
istence of externally mixed particles may quantitatively and
qualitatively affect the bulk thermodynamic analysis. To ad-
dress this, we begin from the bulk analysis, then repeat the
same calculation, augmenting each time the degree of exter-
nal mixture of NVCs and sulfate. Direct measurements of
aerosol mixing state during SOAS suggest that ambient par-
ticles indeed exhibit a range of mixing states (Bondy et al.,
2018). In the external mixing analysis, the bulk aerosol is
split into two subgroups: (1) species largely found in PM;
(e.g., NH;L and SOi_) and (2) species found in PM_3 5,
which contains mostly the NVCs, NO; , and some SOZi and
NHI. These two external mixtures are in equilibrium with
gaseous NH3z and HNOs; and so interact through these species
(.e., NHI and NO3 can move between the two). Nonvolatile

species, such as SOif and NVCs (Na'), remain in the orig-
inal size class assumed at the start of the analysis. To deter-
mine the composition of the two subgroups, we iteratively
solve for the equilibrium conditions, by sequentially calling
ISORROPIA for each subgroup. The solution is found when
the composition of each group no longer changes with iter-
ation and both are in equilibrium with the gas-phase species
(in this case, NH3, HNO3, and H,O (water vapor)). The mass
of each species (gas plus particle) is conserved at all times
and constrained by the observations. Given that pH is size
dependent and generally higher at larger sizes (Fridlind and
Jacobson, 2000; Young et al., 2013; Bougiatioti et al., 2016;
Fang et al., 2017), bulk pH is compared against an aerosol
liquid water-weighted pH:

+ +
1000 (Hair,subgroupl + Hair, subgroup2)

pH = —log . “)
10 Wi,subgroup 1+ Wi,subgroup 2

3 Results

3.1 NVCs cause discrepancy in molar ratio (R)
predictions

3.1.1 SOAS dataset

We first investigate the issue of R discrepancy using PILS-IC
PMj; 5 data from a 12-day period of the SOAS campaign. To
test the sensitivity of ISORROPIA predictions to the level of
NVCs, we ran the model with three different Na™ concentra-
tion inputs, with all other inputs remaining the same, includ-
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ing total ammonium (NH, = NHI + NH3), SO2_, NO3_ ,
and C1~. Ca>*, Mg?*, and K inputs were set to zero as they
were mostly below detection limits. Three sets of Na* input
concentrations were tested: (1) measured PM, s Na™ from
PILS-IC, including data below the LOD (data below LOD
are clearly identified in the plots); (2) Nat determined from
an ion charge balance, Na™ = 280421_ +NO; +CI™ — NH}'
(unit: nmolm_3), hereafter referred to as “inferred NVCs™;
and (3) Nat = 0, which corresponds to ignoring NVCs all
together.

The LOD of PILS-IC Nat was 0.07 ugm™3, which is
close to the average Na™ concentration for the whole ob-
servation time-series. In the following, Nat data below the
LOD are used in the analysis. Although in most studies data
below LOD are excluded, here we include them to allow a
continuum in the analysis down to zero NVCs. There is no
obvious discontinuity in the results for data above and be-
low the Na™ LOD (e.g., see Figs. 1 and 4) and Na™ below
the PILS LOD still roughly agrees with MARGA measure-
ments of Na™, which has a lower LOD (see Fig. S2a in the
Supplement).

The inferred NVCs, determined from the charge balance,
provide an upper limit of the NVC equivalents that can af-
fect aerosol pH and satisfy solution electroneutrality. Over-
all, Na™ is chosen as a proxy NVC in our dataset because
in this case it constitutes most of the NVC mass and does
not precipitate out of solution. The choice of Na™ as a NVC
proxy, although appropriate here, may not be generally ap-
plicable, such as in regions with considerable dust contri-
butions, as treating NVC as “equivalent Na™” in the ther-
modynamic calculations can result in large prediction errors
(e.g., Fountoukis et al., 2009). Inferred NVCs have an ex-
pected high uncertainty due to error propagation of NH],
SOi_, NOj3, and CI™ measurements (see Fig. S2b), and un-
certainties in the dissociation state of sulfate (see Fig. S1 for
the pH dependence). The concentration of H is ignored in
the ion charge balance calculation for inferred NVCs, since
H™ is at least an order of magnitude lower than the NVC ion
equivalents, even for these very low pH data points (between
0 and 2). To demonstrate this, the average ion molar con-
centrations in PM, 5 were NH = 35.4, SOZ_ =21.1,NOy
=3.7, Nat =2.9, and CI~ =0.82nmolm~—3 by PILS-IC,
compared to ISORROPIA-predicted HY = 0.31 nmolm—3.
For the three datasets used in this study, the difference in
Na™ predicted from an ion balance without considering H
compared to including HT is less than 1% for SOAS and
SEARCH CTR and 6 % for the WINTER study (see Fig. S3
in the Supplement). In the following, we have not included
H* in the ion balance. In SOAS, inferred NVCs are gen-
erally above zero, indicating a cation deficiency, but 8 out
of 229 points (3 % of the data) were slightly below zero. In
these cases, a small positive value of 0.005 ugm™> was as-
signed to inferred NVCs. Including these data has no effect
on the results because the observed R was ~ 2. Figure la
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Figure 1. Time series of various measured and ISORROPIA-
predicted parameters and PM» 5 component concentrations for the
SOAS study. Specific plots are as follows: (a) Nat and NOs';
(b) SO;™; (¢) NH;'; (d) NH3; (e) total ammonium (NHy = NH;
+ NH3) to sulfate molar ratio (NH, / SOi_); (f) ammonium-sulfate
ratio (R = NHZ / SOi_); (g) particle-phase fractions of total ammo-
nium, e(NHI); and (h) particle pH. ISORROPIA-predicted results
for the base case and three different Na® inputs are shown: mea-
sured Na™ in blue, inferred nonvolatile cations (NVCs) from an ion
charge balance (where the overall NVCs are represented here by
NaT;Nat = ZSOZ_ +NO; +CI™ — NHZ, pmol m~3)in green,
and zero Na™ in purple. The periods with measured Nat below
LOD are marked with grey backgrounds.

shows that the inferred NVCs were always higher than the
measured Na™. The inferred NVCs from PILS and MARGA
generally agree with each other and also agree with the to-
tal NVCs from MARGA measurements before 18 June, sug-
gesting that the magnitude of inferred NVCs is reasonable
(see Fig. S2). The larger differences after 18 June are likely
from difficulties in detecting NVCs in low concentrations.
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(a) Measured Na* (0.07 ug m-3) (b) Inferred NVCs (0.28 pg m3) (C) Zero Na*
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Figure 2. Comparisons of predicted and measured particle-phase fractions of total ammonium, s(NHZ) = NHI /NHy. (a) The model

prediction is based on an ISORROPIA input of measured Na™, NH,, SOZ_, NO3_ , and C17. (b) Same model input, but NVCs (represented
by Na™) are inferred from an ion charge balance and (c) Na™ is set to zero. Orthogonal distance regression (ODR) fits are shown and
uncertainties in the fits are 1 standard deviation (SD) (the ODR fit in a is based on all the data points). The uncertainty of measured e(NHI)

is derived from error propagation of NHI (20 %) and NH3 (6.8 %) measurements. The best agreement is achieved by using measured Na™

as input.

The SOAS study period investigated here includes an
episode of high Na™ associated with a sea-salt (NaCl) aerosol
event (Fig. 1a). This provided an opportunity to assess the
role of NVCs on pH when concentrations were substantially
above LOD. The observed Na™ is mainly associated with
NOj (Fig. 1a) and to a lesser degree with C1™. These ions
are highly correlated (Nat-NOj r? =0.82 and Na*t-Cl~
r? =0.64) and indicate some level of chloride depletion as
the observed C1~/Na™ ratio was 0.24 +0.16 (molmol~")
(mean = SD), whereas fresh sea salts would have a molar ra-
tio close to 1 (Tang et al., 1997). Chloride depletion occurs
when an acid, such as HNO3, is mixed with NaCl, produc-
ing HCI that evaporates owing to its higher volatility rela-
tive to HNOj3 (e.g., Katoshevski et al., 1999; Fountoukis and
Nenes, 2007), resulting in a loss of aerosol C1~. The chlo-
ride depletion in sea-salt aerosols during the SOAS study
was discussed in detail by Bondy et al. (2017). CI™ concen-
trations were sufficiently small (0.03 4 0.04 uygm =3, LOD =
0.01 pgm~—>) compared to the dominant and nonvolatile an-
ion SOi_, and HCI was not included in the model input, so
CI™ had negligible effect on ISORROPIA predictions of pH
and molar ratios. Periods where Na™ was closer to typical
background levels and near or below the LOD lead to similar
conclusions in the following analysis.

Figure 1 shows the effect of Na™ on ISORROPIA-
predicted SOZ_, NHI, NH3, R, and pH. Figure 1b and e
show that measured and predicted SOi_ and NH, are always
identical. SOZ_ completely resides in the aerosol phase in all
calculations. The model predicts the gas—particle partitioning
by conserving NH,, so the discrepancy between modeled and
measured R must result from variation in the model predic-
tion of NH, partitioning. It is noteworthy that NH, / SO%[
is practically always above 2, indicating excess NH, com-
pared to SOi_. Under such conditions, conventional thought

Atmos. Chem. Phys., 18, 17307-17323, 2018

Measured ISORROPIA predicted
25 ‘
2.0 —I—
1.5+ %

x

1.0 BT

1.70 1.61 s 1.66
0.5

1.43

0.0

T T T T T T
P P Ry P e, PlLg.;
ts (aly s ’Vaf&measu S‘,heasufo Nes ™ ferre,,
Lop) e p,, e p,, M
(an) cLo 0)

Figure 3. Comparisons of PM, 5 ammonium-sulfate molar ratios
(R) between measurements and ISORROPIA predictions for the
base case but with differing Na™ inputs. Data are from the SOAS
study. Red numbers are the means and red error bars are 1 SD. Stan-
dard box—whisker plots are shown, with 100 % and 0 % data indi-
cated by black error bars. The top and bottom of the box are the
interquartile ranges (75 % and 25 %) centered around the median
value (50 %). Comparisons include all data and periods when mea-
sured Nat > LOD of 0.07 pg m™3.

suggests that NH3 must completely neutralize sulfate so that
it can be in the form of SOZ_ (Kim et al., 2015; Silvern et
al., 2017); this view, however, neglects the large difference
in volatility between SO?[ and NH,, which thermodynamic
models consider. Because of this, PM» 5 can remain highly
acidic, with a pH between 0 and 2 (Fig. 1h), even if there is
a large amount of excess NH, (Weber et al., 2016).
Comparing measured to ISORROPIA-predicted NH3z—
NHI partitioning (particle-phase fraction of total ammo-
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Figure 4. Effect of nonvolatile cations (NVC) on the PM; 5 ammonium-sulfate molar ratios (R) and pH as a function of measured Na™t
concentration and organic aerosol (OA) mass fractions for the SOAS dataset studied. Plot (a) is AR versus measured Na™, (b) is AR versus
measured OA mass fraction (OA mass divided by total particle mass reported from AMS), and (c) is ApH versus measured NaT. Grey
diamonds in plots (a) and (b) are for AR equal to the measured R minus 2. Orange circular points are for AR equal to ISORROPIA-
predicted R with measured Na™ included in the model input minus ISORROPIA-predicted R without Na™ in the model input. ApH in plot
(c) is determined in a similar way. AR is negative since including Na™ in the thermodynamic model results in an R lower than 2, whereas
not including Na™T results in an R close to 2 (see Fig. 3). ODR fits are shown and uncertainties in the fits are 1 standard deviation. A plot
similar to (b), but versus OA mass concentration can be found as Fig. S6. The vertical dotted line is the Na™ LOD of 0.07 ug m~3. Regions

where Na™ is below LOD are marked with grey backgrounds.

nium, s(NHI) = NH;L /NH,) can be used to test the sensi-
tivity to NVC input concentrations. Figures 1g and 2a show
very good agreement between measured and observed NH3z—
NH;L'r partitioning when measured Na* is used in the model.
Using inferred NVCs generally results in an underestimation
of e(NHI). This is consistent with using overestimated NVC
levels — as the resulting pH is overestimated (Fig. 1h), which
in turn shifts a fraction of the NH;‘|r to gas-phase NH3 and
biases s(NHI) low. Zero Na* shows the opposite behavior
(Figs. 1g and 2c); e(NHI) is overpredicted because neglect-
ing NVCs biases pH low, driving more NH3 to the particle
phase and biasing s(NHI) high.

From the above it is clear that R strongly depends on how
NVCs are considered in the thermodynamic analysis. Fig-
ure 1f shows the time series comparison between R for var-
ious Na™ levels included in the ISORROPIA input. Figure 3
shows the summary statistics for various comparisons of R.
For the SOAS analyzed time period, the predicted R using
measured Na™ was on average 1.8540.17. As expected, pre-
dicted R was significantly lower when inferred NVCs were
used (mean R = 1.43 4= 0.32) and highest for zero NVC (av-
erage R = 1.9740.02) in the thermodynamic analysis (see
Figs. 1f and 3). The average measured R was 1.70+0.23 for
all PILS data and 1.61 £0.19 excluding the points with Na™
below LOD. The MARGA-derived R is very similar, with
measured R =1.78 £0.18 for all data and 1.65+0.15 for
periods when PILS Na™ was above LOD (see Figs. S4 and
S5 in the Supplement). Note that CSN data used by other in-
vestigators (Silvern et al., 2017; Pye et al., 2018) have a much
lower R (Table S1 and S2 in the Supplement) due to a known
ammonium sampling artifact (Yu et al., 2006) that cannot be
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accounted for, and so the dataset cannot be used in this anal-
ysis. Together, the analysis shows that (1) when NVCs are
well constrained by measurements, predicted R is in close
agreement with measured R (¢ test at « = 0.05 confirms no
statistical difference); (2) using inferred NVCs overestimates
NVC and biases R low; however, the trend in predicted R
generally follows measured R (see Fig. 1), which argues that
inferred NVCs can be a useful upper limit in NVC concen-
trations, when not constrained by measurements; (3) when
NVC levels are zero, ISORROPIA predicts R ~ 2, which is a
consequence of having the maximum possible condensation
of NH3 to the aerosol. Even if R ~ 2, however, the aerosol
continues to remain strongly acidic.

3.1.2 Sensitivity of R and pH to NVCs and organic
species

The results until now have clearly shown that the difference
between predicted and observed R for this dataset is affected
by the levels of NVC. However, it is important to assess
whether organic species are associated with changes in the
partitioning of semivolatile inorganics and aerosol acidity
(Pye et al., 2018) or other unaccounted-for effects that drive
the discrepancy between observed and predicted R. To avoid
any cross correlations between organics and NVC variations,
we examine how the discrepancy between observed R and its
theoretical limit of 2 (corresponding to when NVC = 0) cor-
relates with organic aerosol. The results in Fig. 4 clearly sug-
gest that AR = Rpeasured — 2 increases with measured Nat
but does not depend on OA mass fraction (gray points) or OA
concentration (see Fig. S6 in the Supplement). This suggests
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that AR is not driven by organic aerosol effects, but instead
a poor representation of NVCs in the thermodynamic model.
Figure 4 also shows that ISORROPIA-predicted R also de-
pends on Na™. Predicted R with Na* in the model input mi-
nus predicted R without Na™ decreases with increasing mea-
sured Na™ and is remarkably correlated with Na* concen-
tration (orthogonal linear regression, AR = (—1.74 +0.03)
Nat + (0.001 £0.003), r2 = 0.93). The decreasing trend in
R with increasing Na™ can be explained simply by the pH in-
creasing with Na™, as shown in Fig. 4c. With increasing pH,
some NHZ‘ shifts to the gas-phase NH3, resulting in lower
NH;L'r and lower R.

From the regression slope, for the SOAS measure-
ment period analyzed, an average measured Na™t level of
0.07 uygm~3 (very small NVC concentrations) decreases R
by 0.12 units. For a Na™ level of 0.3ugm™3, R decreases
by 0.5 units, from R =2 (i.e., no NVC) to R=1.5 (i.e.,,
with NVC). Thus, AR is highly correlated and sensitive to
Na™, both of which are not seen for the organic aerosol mass
fraction. Mass fraction can be used as a proxy for organic
film thickness too, given that the maximum possible thick-
ness (and delay) associated with an organic film scales with
(organic volume)!/3 or (organic mass)!/3.

In comparison to R, pH is less sensitive to inclusion of
Na™, or other NVCs in general. ApH is only 0.09 for the
average Na* level of 0.07 uygm™> and increases to 0.38 at
0.3ugm™3 Nat (Fig. 4b). The magnitude of ApH is rela-
tively small and consistent with our previous studies where
we investigated the effects of sea salt on pH (Guo et al., 2016;
Weber et al., 2016). ApH would be higher in regions with
more abundant NVC. For instance, a ApH unit of 0.8 was
found in Pasadena, CA, where the average PM; 5 Nat mass
was 0.77 ugm~3 (Guo et al., 2017). Differences in sensitivity
of R and pH to Na™ from the slope of the linear regressions
(Fig. 4c) are 1.74 (AR —Na™ slope) and 1.2 (ApH — Na™),
respectively. NVC effects on R and pH are studied next for a
very different aerosol dataset.

3.1.3 WINTER dataset

The R discrepancy is investigated for a different season and
a larger and different region by repeating the analysis using
the WINTER study dataset collected from the NSF C-130
research aircraft during wintertime. The aerosol inorganic
composition data used in the analysis are from an AMS and
are PMj. In this study, NVCs were generally higher than
those measured during SOAS, especially when the aircraft
sampled near coastlines (e.g., PM; Nat =0.23ugm™).
Also, PM| nitrate was comparable to sulfate, largely ow-
ing to lower temperatures (NOj3 13nmolm™ vs. SOZi
11 nmol m~3) (Guo et al., 2016). Therefore, Rso, was cal-
culated instead of R.

The base case input to ISORROPIA 1I in this analysis in-
cluded NHI, SOZ_, and total nitrate (NO3" + HNO3). (NH3
should be included to determine NH, for input, but was not
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measured. It was found to have a small effect on predicted
pH; e.g., ~ 0.2 higher pH when including an NH3 concentra-
tion of 0.10 ug m—3, typical of the eastern US levels, and es-
timated from an order-of-magnitude iteration method, Guo et
al., 2016). Figure 5a shows that ISORROPIA overpredicted
Rso, for the base case (i.e., when cations are not included)
and that this deviation increases as molar ratios approach 2
when inferred NVCs are smaller. Again, NVC concentra-
tions were determined as NVCs = Na* = 2803~ + NO;
— NHI (unit: nmol m_3), where all NVCs are assumed to
be Na™. (Note that the predicted Rso, should be biased low
since NHI was underpredicted due to lack of NH3 data, re-
sulting in some fraction of input particle-phase NHI repar-
titioned in the model to the gas phase; thus the deviation is
even worse than shown). Figure 5a shows that Rso, is highly
sensitive to a lack of inclusion of NVCs when their concen-
trations are very low. However, when concentrations of NVC
reach zero, predicted and measured Rso, converge to the ex-
pected value of 2 (dark blue symbols in Fig. 5a). Interest-
ingly, as predicted NVCs increase, predicted and measured
Rso, converge to zero, because NVCs progressively domi-
nate the cations, and force NHI to evaporate. On average,
predicted Rso, was 1.68£0.51 versus the measured value of
1.47+£0.43.

In contrast to ISORROPIA-predicted Rsp, without NVCs,
including NVCs (inferred NVCs) brings predicted and
measured ammonium-sulfate molar ratios into agreement
(Fig. 5b). Including or excluding H* in the Na™ calcula-
tion produces similar results (Fig. S7). Findings based on
other NVCs are shown in Fig. S8 in the Supplement. K™
and Mg>" work similarly to Nat, while Ca’* can pre-
cipitate sulfate in the form of CaSO4 and so cannot be
used. For Na™, the linear regression result is RS04, predicted =
(1.08940.001) Rso,. measured — (0.166£0.002), r> = 0.996.
As found for the SOAS dataset, again, the molar ratio bias
from the thermodynamic model appears to result from not
including small amounts of NVC (e.g., in this case on av-
erage 0.15ugm™3 Nat or 0.26ugm=3 KT). The average
amount of inferred PM; Na*t from the ion charge balance
was 0.15ugm™3 — in this case smaller than what was mea-
sured offline, 0.23 uygm™ (Guo et al., 2016) (in compari-
son, inferred NVCs are higher than the measured Na™ in the
SOAS case). The analysis using measured PM; Na* results
in highly scattered data due to the high sensitivities of Rso,
to NVC and the significant Na™ measurement uncertainty at
these low levels given the analytical sampling method used
in this study (i.e., offline analysis).
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Figure 5. Comparison between PM| ISORROPIA-predicted Rso, and AMS-measured Rgo, (Rso, = (NHI — NOS_ / SOZ_) (mol mol_l),
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ratios due to subtraction of higher concentrations of nitrate and so subject to greater measurement error. Data points with low SOEF levels

(<0.2pg m~3; 9 % of the total points) were excluded due to high uncertainties.

3.2 Implications of not including NVC on predicting
gas—particle partitioning and historical trends in
molar ratios

3.2.1 Sensitivity of semivolatile species partitioning to
NVCs

In our datasets, inferred NVCs group all NVCs, including
K* and Mg?™, into one species and are the upper limits of
the NVCs based on the assumption of complete dissociation
of all dissolved ionic species. For example, 10 % of the total
sulfate is predicted to be HSO, and the rest as SOﬁ_ for the
SOAS average pH ~ 1 (see Fig. S1). Additional errors can
occur if other ions are also missing, but this approach sat-
isfies electroneutrality. Comparing ISORROPIA predictions
that include the other major species, an inferred NVC input
versus Na™ = 0 input results in an average increase in pH
by 0.32 for SOAS and 0.49 for WINTER. Even though the
effect of NVC on pH may appear relatively small, the impact
on predicted partitioning of a semivolatile species can be sig-
nificant due to the highly nonlinear response of N H3—NHI or
HNO3-NOj partitioning to pH (i.e., S curve). For example,
as shown in Fig. S9 in the Supplement, a 0.3 unit pH bias
in SOAS campaign could cause (i) ~ 20 % bias in e(NHI)
or ¢(NOj’) prediction when S(NHI) or ¢(NO3) =50% or
(i1) no bias at all when the species are completely in one
phase — 8(NHI) or ¢(NO; ) = 0% or 100 %. For the WIN-
TER study, a 0.5 pH bias causes up to 30 % bias in 8(NH2_)
or ¢(NOj'). These partitioning biases may constitute a sig-
nificant source of bias for aerosol nitrate formation, espe-
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cially if the total nitrate present in the gas—aerosol system
is significant. In fact, the bias from the NVC may completely
change the predicted response of nitrate to aerosol emissions
and lead to errors in the predicted vs. observed trends in pH,
such as was seen in the southeastern US (Vasilakos et al.,
2018).

3.2.2 Effect of NVCs in trends in pH and Rgo, in the
southeastern US

The organic aerosol impact on NHj3 equilibration (Silvern
et al., 2017) was postulated to address the decreasing trend
in R in the southeastern US despite the substantial drop in
sulfate. Weber et al. (2016) also noted this and proposed
that it could be explained by NHI volatility. However, the
thermodynamic model predictions of Rso, in that study did
not find a comparable decreasing Rso, rate with time (see
Fig. 6a), since the SOAS study mean PILS-IC Na* con-
centration of 0.03 ugm™> was applied to all historical data.
With this constant input of 0.03 ug m=3, predicted Rso, was
nearly constant at ~ 2 for the input SOZ_ range (Fig. 6a)
and would only rapidly decrease below 1 ugm~3 SOi_ (See
Fig. 2b in Weber et al., 2016). Repeating the calculations
using Na™ inferred from the ion charge balance of Nat—
NHI—SO?[—NO; , determined for each daily data point in
the historical dataset, results in good agreement between ob-
served and ISORROPIA-predicted Rso, (Figs. 6 and S10). It
also predicts a decreasing Rso, rate of —0.017 yr~!, which
is fairly close to the measured rate at the SOAS site (Cen-
treville, AL) of —0.021 yr~! (see Fig. 6a) and in the range
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of the Rgo, trend of —0.01 to —0.03 yr~! reported by Hidy
et al. (2014) for the SEARCH sites throughout the southeast.
In contrast, using these different Na' input concentrations
did not change the trends in ISORROPIA-predicted pH; in
both cases, it remained relatively constant (Fig. 6b), but as
expected the pH was slightly higher with higher input Na™
concentrations. Thus, including daily estimates of NVC in
ISORROPIA, the conclusion that PM> s pH has remained
largely constant over the last 15 years remains, but the un-
expected decreasing Rso, trend can be accounted for only
with including NVC effects and NHZ volatility. These ob-
servations can all be explained by volatility of NHI (Weber
et al., 2016), without the need to invoke organic effects on
the ammonia partitioning.

4 Discussion
4.1 Internal vs. external mixtures

Our thermodynamic analysis up to this point has been based
on the assumption that all ions were internally mixed (e.g.,
bulk PMj 5 or PM;). Although over time gas—particle and
particle—particle interactions will lead to complete internally
mixed systems (Seinfeld and Pandis, 2016), aerosol near
their source regions tend to be externally mixed. Typical
ambient conditions can be expected to exist somewhere be-
tween these two extreme cases (Bondy et al., 2018) owing to
chemistry, coagulation, cloud processing, dilution, and gas-
to-particle mass transfer (Zaveri et al., 2010). We address this
here by studying how the conclusions described above are af-
fected by the degree of mixing of NVCs with sulfate — as the
other species, being semivolatile, quickly equilibrate.

PM, s Nat, Kt, Ca?*, and Mg?* from sea salt (or dust)
are often not well mixed with ammonium and sulfate because
of their different sources and sizes. NVC from sea salt and
dust are largely produced by mechanical means and so are
mainly in the coarse mode, with a tail extending into the fine
mode (Whitby, 1978). Biomass burning and biogenic K* is
emitted into the fine mode (Bougiatioti et al., 2018); how-
ever, ammonium and sulfate are formed through gas-phase
processes and mostly reside in the accumulation mode (e.g.,
Whitby, 1978; Seinfeld and Pandis, 2016). For the SOAS
PILS-IC dataset, NHI and SOi_ were highly correlated
(r>=0.88), but NH; and Na® (> =0.07) or SO} and
Na™ (r? = 0.17) were not. In contrast, PM, 5 Na™ and NO3
(r2=0.82) or Nat and CI~ (r2 = 0.64) were highly corre-
lated, which is consistent with internal mixing of most Nat,
NOy3', and CI™ ions, leading to the depletion of some CI™
through evaporation of HCI (e.g., Katoshevski et al., 1997;
Seinfeld and Pandis, 2016). Rapid scavenging of HNO3 by
sea-salt aerosols is well established (Hanisch and Crowley,
2001; Meskhidze et al., 2005), with equilibrating timescales
of 3-10h for HNOj3 uptake by 1-3 um sea spray aerosols
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(Meng and Seinfeld, 1996; Fridlind and Jacobson, 2000) and
subsequent evaporation of HCI.

NVCs can also be associated with small amounts of sul-
fate. For example, sea-salt aerosols are largely composed of
NaCl but also include sulfate, approximately 8 % (gg~!) of
all ions (~ 25 % SOi_ /Na™ mass ratio) (DOE, 1994). In ad-
dition, sulfur enrichment and chloride depletion in aged sea-
salt aerosols are possible by uptake of H»SO4 or oxidation
of dissolved SO, by O3 (Mclnnes et al., 1994; O’Dowd et
al., 1997). These secondary sulfates are normally referred as
non-sea-salt sulfates, to be distinguished from sea-salt sul-
fate that is naturally in sea waters (Tang et al., 1997). Many
studies have reported sulfate-containing sea-salt aerosols
with some degree of internal mixing (Andreae et al., 1986;
Mclnnes et al., 1994; Murphy et al., 1998; Laskin et al.,
2002; Bondy et al., 2018). In summary, a realistic external
mixing state of the SOAS fine particles is that most of NH;L|r

and SOi_ are in PM, whereas Nat with associated anions

(NOj; and C17) and at least small amounts of N HI and SO,
are associated in PM|_; 5 (particles with sizes 1-2.5 um).
This is consistent with the single particle mixing state obser-
vations by Bondy et al. (2018) from the SOAS study. The
interactions between aerosols with gases are illustrated in
Fig. 7a. Particle size distributions measured in the southeast
US also support these types of particle mixing state (Fang et
al., 2017).

4.1.1 Explanation for role of NVCs in R based on bulk
(internal mixture) analysis

Recapping the bulk analysis above where ions are all as-
sumed to be internally mixed, we have shown that the ob-
servations relating R to NVCs, and deviations in R between
models and observations, can be readily explained. First,
when NVCs such as Na™ are present in the ambient aerosol
and not included in the thermodynamic model, but some frac-
tion of the associated anion pair is, the thermodynamic model
will predict higher NHI than observed because the model
will partition greater levels of available semivolatile cations
(i.e., NH3) to the particle phase (NHZ{) to conserve NH, and
make up for the missing NVCs. This leads to a predicted R
near 2. The trends in measured R with measured Na™t are
also expected. As noted before, measured R becomes in-
creasingly less than 2 as measured Na™ increases because
at higher Na™ bulk aerosol pH increases (Fig. 3c), result-
ing in lower e(NH]) (see NHJ S curve in Fig. S9 in the
Supplement), shifting NHZ to gas-phase NH3. Other NVCs
have similar effects as Na™, as long as soluble forms of the
salts are observed (e.g., NaNOs, Na;SOy4, KNO3, K5SOy4,
Ca(NO3)2, Mg(NO3)2). We have shown with this bulk anal-
ysis that accurately including NVCs in the thermodynamic
analysis appears to largely resolve the disparity in predicted
and measured R for the datasets we analyzed. But the bulk
analysis is only an approximation of the actual aerosol mix-
ing state. We next test if assuming an internal mixture will
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the SOAS study (CTR site, summer 2013), due to limited NH3 data before 2008. Historical NH3 mean summer concentrations at CTR were
0.2 g m™3 (2004-2007) (Blanchard et al., 2013) and 0.23 £0.14 ug m~3 (2008-2013) (Weber et al., 2016). Error bars represent daily data
ranges (SD). Linear regression fits are shown and uncertainties in the fits are 1 SD. A total of 41 data points out of 609 (7 %) with observed
daily mean Rgp, above 3 were considered outliers and not shown (if included the fit slope is —0.023 £ 0.008 unit yr_l).

roughly represent the behavior of externally mixed aerosols
in terms of the effect of NVCs on R, pH, and partitioning of
semivolatile species. To assess this, we consider the behavior
of external mixing cases.

4.1.2 Explanation for the role of NVCs in R based on
external mixture analysis

An extreme (and unrealistic at the timescale of aerosol life-
time Zaveri et al., 2010) external mixture is where PM; is
composed of all the measured NH, SOif and PM|_55 is
composed of all the measured Na™t (all NVCs), NO;, and
CI™. NH3, HNO3, HCI, and H,O (water vapor) can still equi-
librate between these externally mixed particle types (see
Fig. 7a), given the relatively short equilibrating timescales
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for these sizes of particles (Dassios and Pandis, 1999; Cruz et
al., 2000; Fountoukis et al., 2009). As Fig. 7b shows, for the
extreme external mixing case (i.e., 0 % sulfate in PM|_; 5),
predicted R, combined from PM; and PM;_, s, is close to 2,
deviating from the lower predicted R of 1.66 +0.13 from the
internal mixture. This is due to the vastly different pH of PM;
(0.6) and PM1_» 5 (4.1) (Fig. 7c), where all NH;t|r is predicted
to be in PM; and all NOj is predicted to be in PM;_5 5.

For more realistic mixing cases, where some fraction of
the sulfate is mixed with NVCs (Bondy et al., 2018), the
combined R of the external mixture decreases rapidly as
more SO~ is mixed with Na* in PM_5 5. At ~ 20 % SO3 ™
fraction in PM;_» s, the average levels of predicted R start
to converge between external and internal mixtures (Fig. 7b).

Atmos. Chem. Phys., 18, 17307-17323, 2018
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Figure 7. (a) Schematic of assumed internally and externally mixed aerosols. NVCs (here represented by Na™) are all assumed in PM;_» 5
for the external mixing case. The two externally mixed aerosol groups (PM; and PM|_5 5) are in equilibrium with the same gases. The
internal mixed case has bulk PM, 5 compositions (PM+ PM;_, 5) together with gases as model input. The predicted molar ratio (R), pH,
and liquid water (W;) of the internally and externally mixed aerosols are summarized in (b), (c), and (d), respectively. The x axis is the sulfate
(mass) fraction assumed in PMj_ 5, with the remaining sulfate in PM;. For the analysis shown here only data for which measured Na™

was above the LOD are utilized. Lower Na® concentrations require smaller fractions of SOi_ in the PM | _; 5 range for agreement with the
bulk analysis (e.g., 5 % for the PILS-IC Nat LOD of 0.07 pg m~3 ). Standard deviations of the data are shown as error bars or shaded zones.

The difference in pH between PM; and PM_; 5 is also re-
duced to within one pH unit (Fig. 7c). With these small dif-
ferences in pH, NHI can condense on both externally mixed
aerosol groups. For example, PM; and PM;_; 5 NH‘}F are
predicted to be 0.67 and 0.04 ug m~3, respectively (equal to
the sum of the measured PM» s NH; of 0.71 ugm ™). From
this analysis, based only on data when Na™ was above the
LOD, predicted R for the bulk and external mixture are the
same when on average 1847 % (by mass) of the PM> 5 SOﬁ_
is in the PM_; 5 size range (i.e., mixed with Na™). This is
comparable to inferences of mixing based on size-resolved
aerosol measurements in the southeast (e.g., Fang et al., 2017
shows ~ 30 % PM; 5 SOZ_ mass in PM_; 5). Less internal
mixing of SO;~ with Na™ is needed when Na* concentra-
tions are lower. For the SOAS 12-day Na™ average level of
0.07 ugm™3, only 5% of the SOi_ (by mass) when mixed
with Nat produces the same results as the bulk totally in-
ternal mixture case (see Fig. S11 in the Supplement). Note
that higher Na™ concentrations generally require more SOi_
to obtain agreement in R between external and internal mix-
tures (scatter plots are shown in Fig. S12 in the Supplement).

The difference between the internally and externally
mixed system is not as great as may be expected, especially
for particle pH and liquid water (W;) (Fig. 7c and d). Since
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liquid water levels are determined as the sum of the water
associated with the various salts, the bulk liquid water gener-
ally equals the sum of the two externally mixed liquid water
concentrations, based on the Zdanovskii—Stokes—Robinson
(ZSR) relationship (Zdanovskii, 1936; Stokes and Robinson,
1966). Because the most hygroscopic salts (i.e., NH;L and
SOif; NOj3' concentrations are low) are in PM;, PM; lig-
uid water dominates over PM|_» 5, making the combined pH
of the external mixture nearly identical to the PM; pH (see
Eq. 4 for combined pH calculation). The combined pH of the
external mixture is also similar to that of internal mixture,
regardless of the SOﬁf fractions (see Fig. 7c).

S Summary

We have shown that including NVCs in the thermodynamic
model largely resolves the ammonium-sulfate molar ratio
(R = NH‘}F /SOi_) discrepancy, based on our datasets. (We
have not utilized the CSN dataset as other researchers have
due to a large low bias in R.) Since only small amounts of
NVC can significantly affect R, measurement limitations,
such as high NVC LODs or NVCs not measured at all (e.g.,
AMS measurements), can lead to substantial differences in
observed and thermodynamic-model-predicted R. We show
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that this bias in R (ISORROPIA-predicted R with Na™ minus
ISORROPIA-predicted R without Nat) is correlated with
and highly sensitive to measured Na™, but not correlated with
organic aerosol mass or mass fraction. Similarly, the differ-
ence in measured R from a ratio of 2 (2 minus observed R) is
correlated to measured Nat (NVCs) and not correlated with
organic aerosol mass or mass fraction. If organic films were
limiting mass transfer, the discrepancy in R should worsen
as the films become thicker. We find the opposite. Further-
more, ISORROPIA-predicted NH3—NH;¥|r partitioning (with
measured Na™ as input) agrees well with the observation,
showing an equilibrium state of the partitioning and no sig-
nificant NH3 mass transfer limit caused by organic films.
These results provide evidence for the role of NVCs, but not
bulk organic aerosol species or organic films in the molar ra-
tio discrepancy observed in the southeastern US.

Excluding minor amounts of fine-mode NVC in thermody-
namic calculations results in a predicted R near 2, which is
generally higher than observed values. This results from the
model criteria for aerosol electrical neutrality and because
semivolatile NHA|r has to be increased to compensate for the
missing NVCs. Less absolute discrepancy is associated with
predicted particle pH with or without NVC because pH is on
a logarithmic scale of Héz and the range of pH is larger than
that of R (or Rsp,) in the eastern US. However, neglecting
NVC can induce pH biases that could result in significant
partitioning errors for semivolatile species like ammonium,
nitrate, chloride, and even organic acids, under certain con-
ditions. Because NVCs are often minor constituents of fine
particles, especially for submicron particles, implying low
ambient concentrations and high measurement uncertainties,
assessing thermodynamic model predictions through molar
ratios is problematic. If NVCs were not measured or signif-
icantly below the measurement LOD, an ion charge balance
could be used to infer an upper limit on NVC concentrations,
but addition of measurement uncertainties can lead to un-
certain results. Note that the ion charge balance on its own
generally cannot be used to infer H since the HT concen-
trations are generally very low, even at the low pH of the
southeastern US aerosols, and the dissociation states of acids
must be known (e.g., proportions of HSO, and SOi_), which
requires a full thermodynamic analysis.

A motivation for the organic effects on ammonia partition-
ing (Silvern et al., 2017) was the observed Rso, decreasing
trend over the past 15 years in the southeastern US. Fully
considering NVCs does not change the finding of nearly con-
stant fine-particle pH in the southeast (summertime) despite
the large sulfate reductions in the past 15 years, but it does
now lead to agreement with the observed Rso, decreasing
trend. Although the analysis was performed assuming inter-
nal mixtures of aerosol constituents, since only bulk PM> 5
composition data were available, we show that external mix-
tures of NVCs and sulfate produce similar molar ratios, with
the requirement that only small amounts of sulfate are needed
to be mixed with the NVC-rich particle, which is qualita-
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tively consistent with the particle mixing state measured for
the SOAS study reported by Bondy et al. (2018). In contrast
to molar ratio, the average pH for externally mixed aerosol is
not sensitive to the mixing fraction of SOi_ and Na™. Fur-
ther assessments on possible effects of organic species on
semivolatile partitioning of inorganic species should be car-
ried out, especially for regions that are chemically different
from the eastern US conditions evaluated in this study.

Data availability. The model input data files can be accessed by re-
quest (rweber @eas.gatech.edu). Alternatively, the SOAS and WIN-
TER datasets are open access: https://esrl.noaa.gov/csd/groups/
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?project=WINTER (last access: 19 October 2015), respectively.
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