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Whole genome sequencing (WGS) plays an increasing role in communicable disease

control through high-resolution outbreak tracing, laboratory surveillance and diagnostics.

However, WGS has traditionally relied on microbial culture in order to obtain pathogen

specific DNA for sequencing. This has severely limited the application of whole genome

sequencing on pathogens with fastidious culturing requirements. In addition, the

widespread adoption of culture-independent diagnostic tests has reduced availability of

cultured isolates for confirmatory testing and surveillance. These recent developments

have created demand for the implementation of techniques enabling direct sequencing

of microbial genomes in clinical samples without having to culture an isolate. However,

sequencing of specific organisms from clinical samples can be affected by high levels

of contaminating DNA from the host and other commensal microorganisms. Several

methods have been introduced for selective lysis of host cells and/or separate specific

organisms from a clinical sample. This review examines the different approaches for

sample preparation that have been used in diagnostic and public health laboratories

for metagenomic sequencing.

Keywords: metagenomic, culture-independent genome sequencing, bacterial pathogens, Mycobacterium

tuberculosis, public health

INTRODUCTION

The ability to perform high-throughput whole genome sequencing (WGS) on infectious agents has
revolutionized research into microbial genomics (1–3). WGS has become the method of choice
for subtyping of pathogens with epidemic potential and investigating nosocomial transmission,
foodborne disease outbreaks, and antibiotic resistance (4). Further, WGS has been extensively
applied to investigate etiology, evolution and transmission of respiratory illnesses (5) and sexually
transmitted diseases (6) as well as the acquisition and dissemination of antibiotic resistance in
hospitals (7, 8). The ultimate resolution provided by WGS has led to its widespread use by
public health facilities, such as Public Health England, the USA Centers for Disease Control and
Prevention and others to investigate outbreaks of foodborne-associated salmonellosis (9), listeriosis
(10) and Shiga-toxin producing Escherichia coli (11). The current status of culture-based WGS in
clinical settings and sequencing platforms are reviewed recently elsewhere (12–14). However, the
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utility of WGS for communicable disease control is hampered by
the reliance on the laboratory culture of the pathogen of interest.

Molecular-based culture independent diagnostics test (CIDT)
methods offer significant advantages for diagnostic microbiology
laboratories, the most important being a reduction in cost and
an decrease in turn-around-time (15–17). The adoption of CIDT
by diagnostic laboratories has led to significant increases in
testing and diagnosis of enteric pathogens, but has reduced the
number of isolates available for typing, resulting in notifications
to public health registries without corresponding culture. As
a direct result, our current laboratory surveillance systems are
losing the capacity to detect clusters and identify the source
of outbreaks and to recognize the emergence of high-risk or
multi-drug resistant variants. The steady increase in CIDT-only
notifications demands alternative methods for identification and
characterization of bacterial pathogens with epidemic potential.

Metagenomics offers unbiased sequencing of all DNA in a
clinical sample without culturing individual bacterial isolates
[reviewed in (18)]. The applications of metagenomics have been
largely discovery focused, probing the previously uncharacterized
make up of environmental and human ecosystems and
uncovering their unrecognized diversity (19). Furthermore,
metagenomics has also been successful in identifying and
characterizing emerging infectious agents (20). Metagenomic
sequencing directly from clinical specimens eliminates the
pathogen culturing step and could allow for comprehensive
surveillance of antibiotic resistance and transmission dynamics.
The application of metagenomics to diagnostics and outbreak
tracing introduces many unique challenges regarding sample
storage, DNA extraction, bioinformatics data analysis and
reporting [reviewed in (21, 22)]. However, one of the largest
barriers is to selectively target for microbial DNA in human
samples. While bioinformatics tools can remove human
reads, greater sequencing depth (which leads to an increase
in cost) is required to obtain enough pathogen reads for
identification of a causative agent and obtain information
regarding resistance or strain type. This minireview will examine
recent advances in techniques for overcoming this challenge,
in particular how to deal with host and other contaminating
DNA, with a specific focus on pathogens of public health
importance.

METAGENOMIC SEQUENCING FOR
PUBLIC HEALTH

The shotgun metagenomics has been applied for pathogen
discovery or to uncover the etiology of an unrecognized infection
(23, 24). Metagenomics has improved the diagnosis of central
nervous system infections (24). Metagenomic will also been vital
for understanding of other syndromes as unknown pathogens
are estimated to be responsible for 20–40% of respiratory tract
infections (25) and 40% of infections of the gastrointestinal
tract (26). Currently, researchers have demonstrated that shotgun
metagenomics has the equivalent sensitivity to diagnostic PCR-
based methods, particularly when looking for pathogens in the

gastrointestinal tract, respiratory system and urogenital tract
(Table 1) (33, 34).

The vast majority of sequencing reads produced during
shotgun metagenomics are identified as human, which is on
average 1000 times larger than the average bacterial genome.
Direct shotgun metagenomics has limited utility in public
health outbreak investigations due to the high cost of deep
sequencing but it has been highly successful in diagnostics
(32). As an example, metagenomics enabled the recognition
of Brucella in cerebrospinal fluid (CSF) from a patient with
partially treated meningitis where the causative agent could not
be determined via traditional microbiological methods targeting
common neurotropic pathogens (35). Although the CSF was
positive for Epstein Barr virus and human herpesvirus 7, testing
for bacterial pathogens including Brucella by serology and
tuberculosis by culture were negative. When the patient’s health
failed to improve following antiviral treatment, the CSF was sent
for metagenomic sequencing for a comprehensive identification
of potential pathogens.Whole DNA extraction was performed on
the sample, with half of extracted DNA been treated with turbo
DNase followed by reverse transcription of the RNA to cDNA.
The second half of the sample was treated with the NEBNext R©

Microbiome DNA Enrichment kit to enrich the microbial DNA.
Both the enriched DNA and the cDNA were sequenced with
Illumina HiSeq. From the raw data of the enriched DNA 0.0012%
of reads corresponded to Brucella melitensis. It was noted
that no Brucella reads were detected in the sequenced cDNA
library. The patient was subsequently diagnosed with chronic
neurobrucellosis and treated with doxycycline and rifampin with
full resolution of symptoms in 2 weeks. This case demonstrates
the utility of metagenomics sequencing as a supplementary test
for notifiable conditions as Brucella spwas not originally cultured
from CSF or blood cultures and the importance of microbial
DNA enrichment as Brucella reads were also not found in the
reserved transcribed RNA library.

PROCESSING OF CLINICAL SAMPLES

The success of metagenomics is dependent on quality and
quantity of DNA extracted from a given specimen. Different
specimen types (e.g., feces, sputum, tissue, urine, etc.) present
unique and specific challenges reflecting their matrix and
concentrations of the target pathogen and resident microflora.
Samples like urine and swabs will have low target pathogen cell
counts making it difficult to extract a high concentration of
genomic DNA (gDNA). In contrast, human stool samples are
comprised of a complex matrix of fibers, enzymes, undigested
parts, and other inhibitors which have to be removed during
DNA extraction (36). Both stool and sputum samples will
need to be liquefied using a tissuelyser or decongestion
solution, respectively (37). Fortunately, in the age of PCR based
diagnostics, there are a wide array of methods and molecular
kits for extracting DNA from clinical samples (37). Commercial
kits for DNA extraction and purification, such as Qiagen’s
DNA Stool Mini Kit and QIAmp Microbiome DNA Kit can be
adapted to metagenomics sequencing (38). However, these kits
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are designed for PCR analysis and will need to be combined with
host DNA depletion and/or bacterial enrichment. Thus, while
metagenomics has the ability to provide universal detection of
pathogens, in reality specific nucleic acid extraction, strategies for
target enrichment or host nucleic acid depletion will be needed
for each pathogen or particular specimen type (34).

There are three key challenges of sequencing microbial
organisms directly from a sample: (i) contamination of host
DNA and other microorganisms, (ii) low cell abundance of the
target organism present in the sample, and (iii) presence of
DNA amplification inhibitors and other confounding variables
in the clinical sample matrix. Therefore, several complementary
methods have been developed to reduce the presence of host
DNA or separate out the microbial DNA. Afterwards usually an
enrichment method is then used to address the low microbial
DNA. Noteworthy, the DNA enrichment process can increase
the risk of selection bias. The key pre-treatment methods for
metagenomics are summarized in Figure 1.

MICROBIAL SEPARATION

Microbial cells can be separated from the sample matrix using
chemical, physical, physicochemical or biological mechanisms
(39). One of the established protocol is immunomagnetic
separation (IMS), which has been successfully used to
concentrate targeted bacteria and remove inhibitors to improve
the quality of the extracted DNA for amplification-based
methods (40, 41). IMS has since been applied to successful
sequencing of Chlamydia trachomatis directly from genital
swabs (42, 43). This approach uses magnetic beads coated
with antibodies specific to chlamydial LPS to bind and extract
chlamydial cells in clinical samples from the site of infection.
The DNA extraction is then performed on the isolated cells
followed by DNA purification. As clinical samples often do
not carry sufficient quantities of target bacteria to give enough
DNA for genome sequencing, IMS has been combined with
multiple displacement amplification (MDA) to amplify DNA
using the Φ29 polymerase and random hexamer primers (44).
The combined IMS-MDA protocol has provided high-quality
genomic DNA for C. trachomatis directly from clinical samples
(42, 43). However, it must be noted that the clinical specimens
used in these studies were urine and cervical swabs. Both sample
types contained minimal human and microbiome DNA reducing
non-specific binding of cells to the antibodies. The application
of IMS-MDA protocols to rectal swabs in order to support
direct sequencing of sexually transmitted pathogens in high-risk
populations, such as men who have sex with men (MSM) could
be less effective.

In addition to microbial separation of a targeted organism
with antibodies, approaches have also been used to separate
host DNA from microbial DNA allowing for an unbiased study
of the microbiome within the specimen. For example, the
NEBNext R© Microbiome DNA Enrichment kit (New England
Biolabs) selectively targets methylation sites in eukaryotic DNA
and binds it to magnetic beads. This approach was used to
directly sequence 13 Neisseria gonorrheae genomes directly from

urine samples (32). Without enrichment, fewer than 1% of reads
aligned to the N. gonorrheae reference genome, however, after
using the NEBNext kit, the number ofN. gonorrheae reads ranged
from 2 to 43% of total number of sequenced reads. This provided
sufficient coverage to obtain robust typing information for 11 of
the 13 strains. While promising, this approach is still limited by
the sample type (sterile vs. non-sterile site) and bacterial load as
few reads were obtained for the pathogen of interest both in this
example and from the CSF case mentioned previously (35). The
success of this approach appear to be dependent on bacterial load
and sample type.

DEPLETION OF HOST NUCLEIC ACIDS

These methodologies focusing on depleting host cells from
the original specimen by exploiting difference in cell surface
structure between human cells and bacteria for selective lysis
of host cells. Using a combination of selective cell lysis and
DNase treatment, these techniques have had some success
although high microbial load and a large original sample volume
are often required (28, 45). One of the first applications of
clinical metagenomics study to directly sequenceMycobacterium
tuberculosis from respiratory specimens was based on osmotic
lysis, where a large volume of sterile water is added to a sputum
sample to increase the osmotic pressure and cause human cells
to burst while leaving the more robust M. tuberculosis cells
intact (45). A DNase enzyme was then used to degrade the
liberated human DNA prior to M. tuberculosis DNA extraction.
However, this approach will be severely limited for acquiring
bacterial DNA from low load samples without enrichment (45).
Another limitation is that some pathogens of interest, such as
Gram-negative bacteria, are also susceptible to osmotic pressure.

A number of commercial kits are available for selective lysis
of human or eukaryotic cells. Molzym’s MolYsis Basic kit was
used for direct sequencing ofM. tuberculosis with greater efficacy
than osmotic lysis only. The MolYsis kit uses a chaotropic buffer
that selectively lyse human cells while keeping the bacterial
cells intact (28). From this study sufficient DNA was obtained
for antibiotic susceptibility prediction in 62% of samples. A
critical advantage in this study was that genome sequencing was
performed on a MinION platform (Oxford Nanopore), which
has the ability to continue sequencing until sufficient coverage
is obtained. Therefore, success rate can be lower when other,
especially short-read sequencing, platforms are used because of
static read coverage per sample. A comparison study on synovial
fluid spiked with Staphylococcus aureus revealed that use of the
MolYsis Kit produced a higher fold of microbial reads compared
to the NEBNext R© Microbiome DNA Enrichment kit (46).

Another study demonstrated an improved method of human
cell depletion over the Molysis kit (47). The method sought to
rely on mild detergents that are typically used to permeabilize
mammalian cell lines for protein extraction or for the recovery of
intracellular pathogens. Saponin, commonly used in hematology
laboratories for hemolysis of human erythrocytes, was found
to be the most effective in its differential effect on human
vs. pathogen DNA in spiked cerebrospinal fluid (CSF) and
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FIGURE 1 | Methods of collecting bacterial gDNA and depleting host DNA. (1) Microbial separation involves pulling out bacterial cells using magnetic beads coated

with antibodies from mixed samples followed by DNA extraction. (2) Differential lysis methods use selective agents to lysis host cells and then degrading the exposed

host DNA before extracting bacterial DNA. (3) Targeted sequence capture approaches use magnetic beads that can hybridized to bacterial DNA to isolated specific

sequences from a mixed sample post-DNA extraction. DNA enrichment methods can be used to bulk up the remaining DNA.

nasopharyngeal aspirate specimens (40). In combination with
Nanopore sequencing, saponin depletion can rapidly and
accurately characterize the bacterial composition of the lower
respiratory tract and provide antibiotic resistance data (48). This
study showed that the saponin differential lysis method resulted
in a 103 fold decrease in host DNA in bronchoalveolar lavage
and endotracheal aspirates. This depletion efficiency depends on
using both a high concentration of saponin (2.2–2.5%) and salt
buffer (5.5MNaCl). Nanopore sequencing also has the significant
advantage of providing real time data acquisition and analysis
compared to the Illumina platform, allowing for fast turnaround
time of clinical results.

TARGETED ENRICHMENT OF PATHOGEN
DNA AFTER EXTRACTION

The targeted enrichment of pathogen DNA commonly
involves hybridization of complement probes to the target
bacterial genome. Agilent Technologies developed one such kit
(SureSelectXT) originally for the enrichment of specific regions
of large eukaryotic genomes for deep sequencing of a selected
subset of genes (49, 50). However, it has since been adapted for
deep sequencing of viral genomes directly from clinical samples
(51, 52). This sequence capture method involves designing
customized biotin-labeled RNA probes that can hybridized to
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a complete target genome sequence so that magnetic beads
coated with the biotin-binding protein, streptavidin, can be
used to extract the DNA (53). This approach can be suitable for
culture-independent genome sequencing of Chlamydia species
because strains within a species have highly conserved genome
sequences with >90% nucleotide similarity. Therefore, probes
can be designed using publicly available reference genomes
to reliably capture target DNA for strains within the species.
This has been successfully achieved for the identification of C.
trachomatis in clinical swabs from patients with urethritis (31).
Since then this approach has been applied to other Chlamydia
species, including zoonotic pathogens C. pecorum and C. psittaci
(54, 55). However, since the probe design depends on a reference
sequence, this approach can be problematic when extended
to pathogens with highly mosaic genomes, like Salmonella or
Escherichia coli. Significant features in these pathogens, such
as antibiotic resistance or virulence are often associated with
mobile elements and genomic islands. Secondly, this approach
may not be applicable for pathogen discovery as the emergent
pathogen may not be captured and enriched by the probes.

Target enrichment has also been applied to the clinical
situation for Tuberculosis diagnostics. In one case a clinical
isolate from a patient with pulmonary tuberculosis was reported
as resistant to rifampicin and low-level resistant to isoniazid
based on initial results from Xpert MTB/RIF and Hain line probe
assays (GenoType MDRTBplus v1.0), which target only rpoB
and inhA genes in the M. tuberculosis genome (56). Therefore,
the patient was placed on a combined drug regime including
high-dose isoniazid. Metagenomic sequencing directly from the
sputum sample identified a further inhA gene mutation that was
consistent with high-level resistance to isoniazid and confirmed
the absence of fluoroquinolone resistance. These findings
informed treatment decisions with a shorten turnaround time by
12–14 days compared to conventional culture-based techniques.
This study used the enrichment technology, SureSelectXT

(Agilent Technologies) to capture and amplify mycobacterial
DNA (57), which remains prohibitively expensive for use as part
of routine diagnosis. In addition, this method requires equipment
not commonly found in most diagnostic laboratories, such as
focused ultrasonicators for DNA shearing. However, the cost of
the enrichment can be reduced by only targeting regions that
encode drug resistance (29).

CHALLENGES OF IMPLEMENTING
METAGENOMICS TO PUBLIC HEALTH

Risk of laboratory contamination and enrichment biases are
of particular concern as the use of highly sensitive clinical

metagenomics becomes more widespread. Possible sources of
DNA contamination include extraction reagents and columns,
PCR reagents and library preparation reagents (58, 59).
Another concern is background DNA contained within a WGS
library preparation laboratory, particularly a laboratory routinely
performing high-throughput sequencing on cultured isolates.
Identification of pathogens that are routinely sequenced after
cultivation in a clinical sample should be scrutinized as it may
indicate sample contamination. However, this can addressed by
adequate quality control measures, such as inclusion of negative
“no-template” controls for each preparation step, as part of every
sequencing run, to monitor for contamination by commensal
DNA (34).

Two significant objectives must be achieved to facilitate the
implementation of metagenomics into public health laboratory
surveillance and outbreak investigations. Firstly, the analytical
sensitivity of metagenomic methods should be improved and
validated (34). This evaluation should include testing of
reproducibility and repeatability of testing which might require
involvement of multiple laboratories. A key added value of
metagenomics is likely to be its effectiveness on samples collected
in earlier, most transmissible, stages of infectious disease.
Secondly, the cost of consumables per sample should decrease
significantly to support the uptake of this technology. Currently,
DNA enrichment methods remain the most expensive aspect of
metagenomic testing, with estimated cost up to $350 USD per
sample (57).

CONCLUSION

Metagenomics has yet to be implemented into routine diagnosis
and few long term studies have been conducted. However,
future advancements in sequencing technology will most likely
be the deciding factor as to when metagenomics will be
integrated into public health surveillance. Sensitivity of shotgun
metagenomics will improve as new sequencing platforms are
released that can efficiently generate longer sequencing reads
with higher depths. In addition due to the various sample
types and data analysis methods available, laboratories will
need to clearly define the intended clinical usage and range
of pathogens that will be detected as this will greatly impact
the choice of methodology for sample preparation and DNA
extraction.
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