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ABSTRACT
The classification of well-log responses into separate flow units for generating local permeability models 

is often used to predict the spatial distribution of permeability in heterogeneous reservoirs. The present 

research can be divided into two parts; first, the nuclear magnetic resonance (NMR) log parameters 

are employed for developing a relationship between relaxation time and reservoir porosity as well as 

introducing the concept of relaxation group. This concept is then used for the definition of electrofacies in 

the studied reservoir. A graph-based clustering method, known as multi resolution graph-based clustering 

(MRGC), was employed to classify and obtain the optimum number of electrofacies. The results show that 

the samples with similar NMR relaxation characteristics were classified as similar groups. In the second 

part of the study, the capabilities of nonlinear support vector machine as an intelligent model is employed 

to predict the electrofacies and permeability distribution in the entire interval of the reservoir, where 

the NMR log parameters are unavailable. SVM prediction results were compared with laboratory core 

measurements, and permeability was calculated from stoneley wave analysis to verify the performance 

of the model. The predicted results are in good agreement with the measured parameters, which proves 

that SVM is a reliable tool for the identification of electrofacies through the conventional well log data.

Keywords: Flow Zone Index, Electrofacies, Support Vector Machine, Nuclear Magnetic Resonance, 

Conventional Petrophysical Data

Mahdi Rastegarnia1, Mehdi Talebpour2, Ali Sanati3, and Seyed Hassan Hajiabadi3*
1 Department of Petrophysics, Pars Petro Zagros Engineering and Services Company, Tehran, Iran
2 Department of Petroleum Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
3 Faculty of Petrochemical and Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran

Prediction of Electrofacies Based on Flow Units Using NMR Data and 
SVM Method: a Case Study in Cheshmeh Khush Field, Southern Iran

*Corresponding author

   Seyed Hassan Hajiabadi
    Email: s.h.hajiabadi@hsu.ac.ir
    Tel: +98 51 4401 2858
    Fax: +98 51 4401 2851

Article history
    Received: August 31, 2015
    Received in revised form: November 25, 2015
    Accepted: December 07, 2015
    Available online:  July 22, 2017

Journal of Petroleum
 Science and Technology

INTRODUCTION
Geological and petrophysical properties play a 

significant role in fluid flow in the petroleum reservoirs. 

Hydraulic flow units are defined as correlatable and 

mappable zones within a reservoir which control fluid 

flow [1]. Flow units can be used to correlate important 

reservoir petrophysical parameters such as porosity 

and permeability and to facilitate field scale reservoir 

modeling tasks. Laboratory core measurement is 

the oldest techniques for obtaining porosity and 

permeability. Expensive costs and long times are 

the disadvantages of laboratory measurements. 

Meanwhile, it presents discontinuous information 

from subsurface formations. On the other hand, 

well logs can provide a continuous measurement of 

petrophysical  characteristics of the subsurface
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formations along the wellbore, and a wide range 

of geological characteristics of formations can be 

extracted from well log data. The present research 

aims to benefits from the advantage of well logs 

instead of expensive and time consuming core 

measurements. The identification of flow units 

through well log data is a  cost-effective and potent 

method. As opposed to petrophysical parameters, 

lithology characterizations accompany with various 

challenges where a high degree of heterogeneity 

in rock formations is observed. In other words, the 

higher the heterogeneity of the reservoir is, the harder 

the predictions would be. Several researchers have 

identified flow units based on modeling workflows 

using the capabilities of intelligent models such as 

neural network (NN) models, principal component 

analysis (PCA), clustering methods, fuzzy logic (FL), 

hierarchical techniques, classification methods, and 

optimization algorithms [2-9]. Among various intelligent 

techniques, the present research selects support vector 

machines (SVM) to design a predictor model.   

Studying previous literature shows that support vector 

machines (SVM) have demonstrated good generalization 

performance in many real-life applications [10-18]. This 

technique is a supervised machine learning algorithm 

based on the statistical learning theory developed by 

Vapnik [19]. SVM generates mapping functions from 

a set of labeled training data. On the other hand, 

SVM method is based on structural risk minimization 

principle, which in turn is based on the statistical learning 

theory. Statistical learning enhancement gives better 

generalization abilities by minimizing the testing error. 

SVM method can be used for nonlinear classification 

where kernel functions are used to map the input 

space into a higher-dimensional feature space. This 

effectively maps the non-linearity of the relationship 

to a linear one. SVM learning algorithm allows the 

sparse representation of models by considering only 

a portion of available training points which generate 

the support vectors [20]. Quadratic programming 

optimization is used to solve SVM formulation in dual 

space and nonlinear decision, and indicator hyper 

surfaces are then constructed in a functional form to 

classify new data and predict corresponding values 

[21]. SVM has been successfully used in a number 

of applications such as radar target detection [10], 

face detection [22], hand writing [11], text detection 

[13], speech recognition [14], financial time series 

prediction [15], porosity prediction [23], and lithology 

classification [16]; permeability reconstruction based 

on well log data [18], [23, 24] used SVM to estimate 

porosity using several well-log measurements, and it 

was demonstrated that SVM could be used instead 

of back-propagation neural network to predict 

permeability. For further details, the basic concepts 

of SVM are explained in the next section.

Nuclear magnetic resonance (NMR) log is one 

of the potent tools made a revolution in the 

measurement of reservoir properties which had 

been impossible to measure previously by logging 

instruments. Permeability and free and bulk fluid of 

rock, which was previously measured through time 

consuming laboratory measurements, can now 

be identified by NMR log without the necessity of 

expensive operation of coring.

In this research, the NMR responses are used to 

obtain an optimum number of electrofacies based 

on flow units. Data used in this study are related to 

Asmari reservoir in the Cheshmeh Khush oil field, 

Southern Iran (Figure 1). There are 3 wells, namely 

well A, B, and C. Well A has NMR and petrophysical 

evaluation results, and wells B and C have conventional 

data and petrophysical evaluation results. In wells 

B and C, permeability was calculated from stoneley 

wave analysis and core data.

The electrofacies modeling was first applied to well 
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A. Then, the defined electrofacies in well A were 

propagated in wells B and C by SVM method. For 

verifying these electrofacies, the results of SVM 

were compared with the results of petrophysical 

evaluation and core data as well as stoneley 

permeability in wells B and C; good agreement was 

achieved.

Figure 1: Location of the Cheshmeh Khush oilfield 
presented on the map.

EXPERIMENTAL PROCEUDRES
Support Vector Machine 
SVM is a good procedure, which is able to deal with 

linear situations, always with the assumption that 

the data are separable without misclassifications 

by a linear hyper plane. The optimality criterion 

is to put the hyper plane as far as possible from 

the nearest samples, and keeping all the samples 

in their correct side. This means that maximum 

margin should be between the separating hyper 

plane and its nearest samples, and the margin 

hyper planes 1Tw x b+ = ±  must be placed into the 

separation margin; w is the optimum weight of the 

vector, and x and b are the bios of the model; T is the 

transpose notation. Consequently, SVM criterion is 

to maximize the distance between the separating 

hyper plane and the nearest samples subject to 

the constraints. The following equation describes 

the performance of SVM in a linear system (in the 

classification, it can be so called SVC)

1 1 1

1
 

2

N N N

D i j i j i j i
i j i

L y y x xαα αΤ

= = =

= − +∑∑ ∑                        (1)

where, LD is the notation of the basic equation of 

SVM in the linear system; iα  and jα  are the Lagrange 

multipliers; iy and jy are the binary scalar values; ix

and jx are the input vector samples, and N is the 

number of samples.

Figure 2 shows the performance of SVM as a classifier 

in a linear system. The basic idea is that vectors x in 

a finite dimension space (called input space) can be 

mapped to a higher (possibly infinite) dimensional 

Hilbert space. A linear machine can be constructed 

in a higher dimensional space (often called the 

feature space), but it stays non-linear in the input 

space. Most of the transformations are unknown, 

but the dot product of the corresponding spaces 

can be expressed as a function of the input vectors 

as ),(),( jiji xxkxx =φ . These spaces are called 

reproducing kernel Hilbert spaces (RKHS), and their 

dot products ),( ji xxk  are called Mercer kernels. The 

most common kernels, which are popular and used in 

many problems, are shown in the Table 1 [25].

Figure 2: Performance of SVM in a linear system.



Prediction of Electrofacies Based on Flow Units Using NMR Data...
    Journal of Petroleum 
Science and Technology

http://jpst.ripi.ir

87 

Journal of Petroleum Science and Technology 2017, 7(3), 84-99
© 2017 Research Institute of Petroleum Industry (RIPI)

Table 1: Kernel and the type of classifier.

Type of classifierKernel Function

Linear( , ) ( )i j i jK x x x x ρΤ=

Complete 
polynomial of 

degree ρ
( , ) ( 1)i j i jK x x x x ρΤ= +

Gaussian, radial 
basis function (RBF)

2

22( , )
i jx x

i jK x x e σ

−

=

Multilayer 
Perceptron( , ) tanh( )i j i jK x x x xγ µΤ= +

Dirichlet

Figure 3: Original feature space can always be mapped 
to some higher-dimensional feature space by SVM.

Significance of NMR Logging in Reservoir 
Characterization
The importance and application of nuclear magnetic 

resonance (NMR) is not only limited to reservoir 

evaluation, but it is widely used in physics, chemistry, 

biology, and medicine. Combining the permanent 

magnets and pulsed radio frequencies with the concept 

of logging led to an important logging tool today 

known as NMR log in the world of petrophysicists. 

An applicable instrument of NMR logging was 

introduced by taking the benefits of a medicine 

magnetic resonance imaging (MRI) (6). This tool was 

the first NMR log that could be run into the formation 

rather that placing the rock sample in the instrument. 

Afterwards, several revisions were considered on his 

tool, and it was improved day by day; however, the 

Construction of a Nonlinear SVM
The solution for a linear SVM is indicated by a linear 

combination of the training data of ∑
=

=
N

i
iii xyw

1
α  to 

map the data into a Hilbert space, and then the 

solution is given by: 

                                                                                      (2)
1

( )α ϕ
N

i i i
i

w y x
=

= ∑

where, )( ixφ is the mapping function. The parameter 

vector Cj α  is a combination of vectors into the 

Hilbert space, but many transformations )( ixφ  are 

unknown; however, the problem can still be solved 

because the machine just needs the dot products of 

the vector. We cannot use

( )i iy w x bϕΤ= +                                                    (3)

since w parameters are in an infinite dimensional 

space; therefore, no expression exists for them. 

However, by substituting Equation 2 into Equation 1, 

the below equation is obtained.

∑ ∑
= =

+=+=
N

i

N

i
jiiij

T
iiii bxxkybxxyy

1 1
),()()( αφφα

      
(4)

The resulting machine can now be expressed 

directly in terms of the Lagrange multipliers and 

the kernel dot products. The kernel is used to 

<

compute this matrix ),( jiij xxkk = . When this 

matrix is computed, solving a non-linear SVM will 

be so easy. In order to compute the bias b, we can 

use 01)( =−+ bxwy i
T

i , but for the nonlinear SVM, 

it changes to Equations 5 and 6.             

∑
=

=−+
N

i
j

T
iiii bxxyy

1
01))()(( φφα

                         
(5)

∑
=

=−+
N

i
jiiii bxxkyy

1
01)),(( α

                                
(6)

for all jx  for which Cj α .

We just need to calculate b from the above 

expressions and calculate the mean value for all the 

samples with Cj α . The idea of a non-linear SVM 

can be seen in Figure 3.

<

<sin ( 1/ 2)( )
(x , x )

2sin[(x ) / 2]

 + − =
−
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i j

n x x
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fundamental of all NMR logs is the same, where 

a magnetic field magnetized formation material 

using timed bursts of radio-frequency energy. 

The transmitted energy polarizes the spin axes of 

unaligned formation protons in a specific direction. 

By removing the transmitted magnetic field the 

protons start to align in their original direction. The 

time in which protons come back to their previous 

alignment is known as echo time. The amplitude 

of spin-echo trains are measured as a function of 

time, which is directly related to the number of 

hydrogen atoms of the fluid formation. Two time-

based parameters of longitudinal relaxation time 

(T1) and apparent relaxation time (T2) are obtained 

from this step, and they include the most crucial 

outputs of NMR log leading to further properties 

of the formation. T1 and T2 indicate the time in 

which protons relax longitudinally and transversely 

respectively related to the transmitted magnetic 

field. In fact, T2 is the most important parameter 

that can be directly converted to porosity. The T2 

plot includes movable and immovable fluids of 

the rock, which are separated based on a cut-off 

value of T2. Only fluids are visible for transmitted 

magnetic field on NMR tool, and this fact redounds 

to one of the advantages of NMR log compared to 

conventional logs such as sonic, neutron, and bulk-

density logs. In fact, the porosity measured by NMR 

log is not influenced from the matrix materials. 

In other words, NMR porosity is lithology-

independent and does not need to be calibrated 

with lithology in different zones and intervals of a 

well. Three groups of invaluable information about 

reservoir condition can be obtained from NMR raw 

data, including pore size distribution of a formation, 

fluids properties of pore spaces, and finally 

quantities of these fluids. Porosity and pore size 

distribution are theoretically related to permeability 

in a direct relationship. Therefore, permeability and 

movable fluids (free fluid index) of the formation can 

be estimated using the aforementioned raw data. In 

the next section, the relation of T2 and FZI is discussed. 

Relation between NMR Log Responses 
and FZI
The fundamental equation which can relate the 

apparent relaxation rate of a single pore in the 

porous media is given by:

V
S

TT b

ρ+=
22

11

                                                               
(7)

where, T2 is the observed transverse relaxation time, 

and T2bis the relaxation time of bulk fluid;ρ is relaxation 

surface, and S represents the surface area of the pore; 

V stands for the volume of the pore body. Since T2b is 

significantly greater than the relaxation time (T2) in the 

porous medium, the above equation can be reduced to:              

V
S

T
ρ=

1
                                                                            (8)

Georgi and Menger [26] proposed a relation between 

the surface area to volume ratio of the pore space, 

porosity, and the specific surface per grain volume 

ratio (Sgv ). This relation was also used by Ohen et al. 

[27] and is given below:
1 ϕ
ϕ
−

= gv
S S
V                                                             

(9)

Thus, Equation 7 can be written as:                          

2 [ (1 )]
ϕρ

ϕ
=

−gv

T
S                                                   (10)

or:

2 1
ϕ ρ

=
z gv

T
S                                                                (11)

Hence, Equations 10 and 11 can be related to RQI 

by:       

(12)2

1
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This suggests that RQI is related to relaxation time 

and porosity group ( zφ ). A logarithmic equation 

can be written using the above equations:                         

2
1log log( ) log[ ]ϕ

ρ
= +z

gv

T
S

                                   (13)

This equation relates relaxation time to porosity and 

forms the basis of relaxation group concept, which can 

be compared to the hydraulic unit concept. Equation 

12 classifies samples which exhibit similar NMR 

relaxation (rock-fluid interaction) characteristics into 

a group. The average parameters for the group serve 

as calibration points for interpreting NMR logs. The 

factor 
1

ρ gvS  is often recognized as relaxation product, 

and represents the relaxation power and textural 

attributes of the formation. As implied from Equation 

13, the logarithmic plot of T2 versus zφ would result in 

a slope line, and 1
ρ gvS

 would be constant for all data 

points on this slope line.

Formation rock samples or intervals with similar NMR 

relaxation characteristics lend themselves to the same 

group, with their logT2 versus log zφ  clustering around 

the intercepting slope line. In this study, the samples 

or intervals of a formation or reservoir with similar 

NMR characteristics were considered in a similar 

relaxation group.

CASE STUDY
Methodology
Carbonate formations generally have wide pore size 

distributions, which ranges from microcrystalline 

pores to large vugs. Understanding the pore 

distribution and their geometries is vital for reservoir 

characterization. T2 distributions are usually correlated 

with pore size and pore size distribution, so this fact 

is used for relating NMR responses to permeability. 

Micro, macro, and vuggy porosity are related to the 

NMR responses, which can be used to determine the 

effect of these types of porosities on permeability. 

NMR responses are calibrated for predicting the 

irreducible bound fluid volume (BVI) using a variable 

T2 cutoff, which can be derived from experimental 

measurements. By comparing the T2 distributions of 

the fully saturated cores and the cores with irreducible 

saturation, a T2 cutoff separating is obtained for the 

pore space, which participates in fluid migration 

from the non-participating pore space. The original 

method for computing permeability from NMR 

well logs using a fixed T2 cutoff of 90 milli-seconds 

(ms) produces unreliable results in the carbonate 

formation. However, this method and the presence 

of isolated secondary porosities such as moldic and 

vuggy pores in carbonate could vary from 90 ms to 

700 ms due to lithology heterogeneity and complex 

pore reservoirs. Therefore, several measurements 

are used to estimate the T2 cut-off values for well 

log calibration in carbonates. Studying thin section, 

using scanning electron microscope (SEM) and 

computerized tomography (CT) image analysis along 

with the core data provides necessary information to 

evaluate T2 cut-off method. Finally, this information 

can be employed to characterize vuggy carbonate 

lithology [28].

In this research, the spectral BVI (SBVI) method has 

been applied to determining permeability by using 

NMR data in well A. In this method, each pore size 

observed in the 100% brine-saturated spectra is 

assumed to contain some bound water. In this study, 

a two-step approach is proposed for electrofacies 

prediction from conventional logs data as explained 

below:

a) Determining optimum number of flow units using 

NMR data and MRGC method in well A.

b) Predicting electrofacies based on flow units from 

conventional logs using a support vector machine 

neural network (in wells B and C). 



M. Rastegarnia, M. Talebpour, A. Sanati, and H. Hajiabadi
Journal of Petroleum
Science and Technology

Journal of Petroleum Science and Technology 2017, 7(3), 84-99
© 2017 Research Institute of Petroleum Industry (RIPI)
90 

http://jpst.ripi.ir

Multi Resolution Graph-based Clustering 
(MRGC)
Multi resolution graph-based clustering (MRGC) is a 

multi-dimensional dot-pattern recognition method 

based on non-parametric K-nearest-neighbor and 

graph data representation [29]. MRGC automatically 

determines the optimal number of clusters; also 

MRGC allows the geologist to control the level of 

detail actually needed to define the flow units. The 

underlying structure of the data is analyzed, and natural 

data groups are formed that may have very different 

densities, sizes, shapes, and relative separations. In 

this paper, the optimum number of flow units was 

found by MRGC method. The flow unit analysis was 

performed by clustering similar permeability, porosity, 

and volume T2 distributions according to 1
ρ gvS

.

Figure 4 shows the results obtained from MRGC 

clustering technique for limestone. Figure 4 presents 

the variations of relaxation time for each extracted 

flow unit. 

Figure 5 shows the facies obtained after MRGC clustering 

method applied to the NMR data of well A. As shown, 

there is acceptable agreement among permeability log 

estimated by full wave sonic (PERM-ST), oil content, 

water saturation, and T2, indicating the reliability of 

the technique used for clustering. Since the studied 

reservoir is a complex formation, clustering was 

separately used for both carbonate and sandstone 

lithological units. The variation of each parameter is 

shown in Figures 6 and 7.

 Figure 8 displays the variation of grain size (T2LM) in 

carbonate and sandstone intervals. Facies No. 5 and No. 

4 of carbonate intervals can be merged together as they 

have a suitable overlapping. This can also be considered 

for facies No. 5 and No. 6 of sandstone interval. Figure 9 

shows the variation of grain size (T2LM) versus effective 

porosity in carbonate and sandstone intervals, where 

relaxation groups are distinguished. 

Figure 4: Result of MRGC clustering in well A.
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Figure 5: Facies obtained after applying MRGC clustering to well A.
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Figure 6A: Variation of effective Porosity for sandstone interval showing that facies No. 5 (Orange) and No. 6 (Red) 
can be merged together as they have a suitable overlapping. 

Figure 7B: Variation of permeability for the carbonate interval showing that facies No. 5 (Orange) and No. 4 (Olive_
Darb) have high permeability in value.

Figure 6B: Variation of permeability for sandstone interval showing that that facies No. 5 (Orange) and No. 6 (Red) 
have high permeability in value.

Figure 7A: Variation of effective Porosity for the carbonate interval showing that facies No. 5 (Orange) and No. 4 
(Olive_Darb) can be merged together as they have a suitable overlapping.
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Figure 8B: Variation of grain size for the sandstone showing that facies No. 5 (Orange) and No. 6 (Red) have a suitable overlapping.

Figure 9B: Cross plot of MRGC clustering results of NMR log measurements to identify facies for carbonate interval.

Figure 8A: Variation of grain size (T2LM) for the carbonate interval showing that facies No. 5 (Orange) and No. 4 
(Olive_Darb) have a suitable overlapping.

Figure 9A: Cross plot of MRGC clustering results of NMR log measurements to identify facies for sandstone interval.
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Prediction of Electrofacies Using Support 
Vector Machine
In this step, those facies obtained during clustering by 

MRGC were taken into consideration to be predicted by 

support vector machine (SVM). Since the background 

of SVM has been extensively presented in the literature, 

we brought the background in the Appendix section. 

To run the SVM for this prediction, two separate 

models were built for the sandstone and carbonate 

intervals. For this purpose, porosity log (PHIE), total 

porosity (PHIT), and DT logs were considered as the 

inputs to carbonate intervals whereas porosity log 

Table 2: Parameters of SVM determined using a trial and error method.

AccuracyCKernelType reservoir

83.62%50GaussianSand stone

78.81%3200GaussianCarbonate

(PHIE), total Porosity log (PHIT), DT log, and RHOB 

log were taken as the inputs for the estimation of 

electrofacies in sandstone intervals. Available data 

were normalized to be in the range of 0 and 1. A 

trial and error method was used to determine the 

parameters of the SVM, including parameters C and 

kernel type. Table 2 tabulates the optimum value 

of the SVM parameters determined during the trial 

and error methods. Tables 3 and 4 respectively 

list the confusion matrix showing the results of 

prediction using the SVM method. 

Table 3: Confusing matrix of carbonate interval showing the prediction results obtained by SVM.
Carbonate

Predicted

Electrofacies 5Electrofacies 4Electrofacies 3Electrofacies 2Electrofacies 1

Actual

00068Electrofacies 1

023512Electrofacies 2

162130Electrofacies 3

124400Electrofacies 4

154000Electrofacies 5



Prediction of Electrofacies Based on Flow Units Using NMR Data...
    Journal of Petroleum 
Science and Technology

http://jpst.ripi.ir

95 

Journal of Petroleum Science and Technology 2017, 7(3), 84-99
© 2017 Research Institute of Petroleum Industry (RIPI)

In addition, the accuracy and recall values of each 

electrofacies predicted by SVM were calculated and 

are presented in Tables 5 and 6.  

After achieving the suitable results during the 

training and testing of SVM in the prediction of 

electrofacies, the SVM was used to predict the 

electrofacies of wells B and C. Figures 10 and 11 

show the results of SVM prediction in wells B and C. 

The results of prediction in wells B and C were 

calibrated using the results obtained using core 

and full wave sonic data as well as petrophysical 

evaluation. The results show acceptable agreements 

between the results of SVM prediction and those of 

the petrophysical evaluations. 

Table 5: Accuracy and recall values of each electrofacies in the carbonate interval predicted by SVM.

Carbonate Electrofacies 1 Electrofacies 2 Electrofacies 3 Electrofacies 4 Electrofacies 5

Precision 0.8 0.85 0.75 0.667 0.882

Recall 0.57 0.864 0.677 0.827 0.789

Table 6: Accuracy and recall values of each electrofacies in the sandstone interval predicted by SVM.

Sand stone Electrofacies 1 Electrofacies 2 Electrofacies 3 Electrofacies 4 Electrofacies 5

Precision 1 0.846 0.615 0.667 0.8938

Recall 0.5 0.786 0.667 0.727 0.924

Table 4: Confusing matrix of sandstone interval showing the prediction results obtained by SVM.

Sand stone

Predicted

Electrofacies 5Electrofacies 4Electrofacies 3Electrofacies 2Electrofacies 1

Actual

00011Electrofacies 1

003110Electrofacies 2

03810Electrofacies 3

416200Electrofacies 4

615000Electrofacies 5
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Figure 10: Electrofacies predicted by SVM in well B.
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Figure 11: Electrofacies predicted by SVM in well C.
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CONCLUSIONS
In this paper, the application of two robust methods, 

namely multi-resolution graph-based clustering 

(MRGC) and support vector machine (SVM), was 

proven through utilizing the well data of a reservoir 

located in the south of Iran. MRGC technique was 

used for clustering the electrofacies carbonate 

and sandstone intervals. SVM was then utilized 

to predict the electrofacies determined by the 

MRGC technique. Porosity, sonic, and density logs 

were considered as the input to the prediction of 

electrofacies, and the results have proved to be 

valid since there was a good match between the 

prediction results of SVM and those of petrophysical 

evaluation.
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