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ABSTRACT
Despite advancements in specifying 3D internal microstructure of reservoir rocks, identifying some 

sensitive phenomenons are still problematic particularly due to image resolution limitation. Discretization 

study on such CT-scan data always has encountered with such conflicts that the original data do not 

fully describe the real porous media. As an alternative attractive approach, one can reconstruct porous 

media to generate pore space representations. The reconstructed structures are then used for simulations 

using some sort of discretization. In this paper, It is examined the effect of discretization on porosity 

and saturation calculations in porous media models. Some 3D Boolean models of random overlapping 

spheres of fixed and variable diameters in three dimensions are used. The generated models are then 

discretized over 3D grids with different number of voxels. The porosity can be calculated and saturation 

of the discretized models are then compared with the analytical solutions. The results show that when 

meshgrid sizes are 8% of smallest grains, porosity is calculated with 95% precision. In addition to that, 

meshgrid sizes of 5% and

3% of average grain diameter are adequate to calculate non-wetting and wetting phase saturations with at 

least 95% precision. This helps in choosing the optimum voxel size required in imaging for efficiently use 

of available computational facility.
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INTRODUCTION
The characterization of the microstructure of 

natural and synthetic porous materials has been 

of great importance for scientists and engineers 

over a wide range of disciplines and hence, it has 

been the subject of numerous studies in various 

fields. In petroleum engineering, for example,  

an  understanding of the interactions among rock 

microstructure, mineralogy, and fluids in pore 

space is crucial to us for better interpretation 

and  prediction of reservoir rock properties 

and flow processes in underground formations. 

Development in structural study of porous 

materials has a long history. Over the past two 

decades, direct measurements of 3D structures at 

resolutions down to a few microns using X-ray micro-
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computed tomography (micro- CT) is being used 

increasingly. CT is considered as a non-destructive 

imaging technique that uses X–ray technology 

(XRT) and mathematical reconstruction algorithm 

to view cross sectional slices of internal structure 

of rock samples. CT- scan generates slices through 

the object for different positions during stepwise 

rotation whereby either the source and detector or 

the object is moved. From sets of these projections, 

cross sectional images and then 3D images are 

reconstructed by applying Fourier transform 

algorithm. Although the micro-CT technique has 

evolutionised, the amount of information that 

we can obtain from a rock sample and several 

challenges behind the implementation of the 

method for characterizing the rock microstructure 

which still exist, limit  the  usability of the acquired  

data. In particular, a major limitation of the imaging 

techniques is finite resolution of the images. First, 

the finite image resolution makes ambiguity in 

identifying different materials/phases within the 

sample. Second, the high-resolution imaging gives 

rise to very large datasets and hence requires 

intensive computations, large computer memory, 

and considerable processing, time, as stated in 

2006 [1]. Third, the higher the resolution the 

smaller the sample and the smaller the sample the 

fewer the structural  properties can be captured in 

a representative way as declared by, Vogel, Weller, 

and Schluter in 2010 [2]. This leads to the challenge 

of detecting the microstructure of the material at 

finer resolution and then to connect it to the macro-

scale where continuum mechanics  applies,  Liu  

and  Regenauer in 2011 [3]. Due to such difficulties, 

flow simulations in complex sedimentary rocks 

based on images are  problematic and it is of 

great interest to use alternative methods to the 

direct  imaging or to propose the appropriate 

use of the imaging techniques that can optimize 

computational resources usage.

As an alternative to direct visualization and 

characterization, numerical simulations based 

on simplified representations (models) of rock 

microstructure have long been employed to obtain 

an understanding of static and dynamic behavior of 

rocks at the pore scale, as studied by Adler in 1992 

[4], and Sahimi in 2011 [5].

In this regard, a large number of models have been 

developed to simulate the structure of porous 

materials. Among them, the Boolean model of 

randomly distributed grains has successfully 

employed to represent irregular spatial structures, 

by Bilodeau, Meyer, and Schmitt in 2007 [6], 

Torquato in 2005 [7] including reservoir rocks in 

particular, Arns, Knackstedt, and Mecke in 2009 [8].

Either in the  case of micro-CT images or artificial 

image models of porous media, spatial discretization 

is required to compute physical properties or to 

solve differential equations that govern fluid flow. 

The rock microstructure obtained by digital images 

has been already naturally discretized as voxels. 

The artificial image models have also be discretized 

into a mesh-grid domain. In general, using smaller 

voxel size in image-based calculations as well 

as smaller grid- block size in simulation permits 

more detailed description of porous media. In 

spite of this, using small voxels/mesh-grids leads 

to large numbers of voxels/mesh-grids in a fixed 

size domain and hence large requirements of 

computational resources. In this regard,  it is of 

great interest to determine the optimum voxel 

size to which structural details can be sufficiently 

resolved. In practice, a certain resolution is enough 

to calculate different reservoir rock properties like 
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porosity, contact area, and wetting and non-wetting 

phase saturation. On the other hand, an optimum 

mesh-grid size in simulation leads to properly use 

the computational resources. A number of studies 

have  addressed the discretization effects and the  

associated errors for estimation of the properties 

of materials. Latief, Irayani, and Fauzi in 2012 [9] 

used a Skyscan 1173 μ-CT scanner at the Basic 

Science Advanced Laboratory of the Bandung 

Institute of Technology to produce images of a 

sandstone sample at three voxel sizes of 30, 15, 

and 7.5 μm. They calculated a number of macro- 

and micro-scale properties including porosity, 

permeability, and specific surface area to examine 

the effect of scanning resolution on the physical 

properties. They showed that the voxel size has a 

direct influence on the calculated properties. In 

particular,  porosity and  tortuosity  increase with an 

increase in voxel size whereas specific surface area 

and permeability decreases. Ferréol and Rothman 

in 1995 [10] studied the effect of grid resolution 

on image-based calculation of permeability using 

the lattice-Boltzmann method and qualitatively 

concluded that finer space discretization leads 

to more accurate estimation of porous media  

properties. In another work, Pan, Hilpert, and 

Miller in 2001 [11] studied the discretization effects 

of permeability calculation during  simulation of 

single phase flow in simulated sphere packing with 

varying porosity and pore-size distribution. They 

applied several different sphere pack models that 

vary in sphere-size distribution to study primitive 

media properties. They used pore-network 

calibration onto the size distribution of pore bodies 

and throats. They also varied voxel sizes to reach 

discretization independent properties, but their 

study on discretization effects was only limited to 

permeability. Arns et al in 2001 [12] considered 

major sources of errors, namely finite size effects, 

discretization errors, and statistical fluctuations in 

calculation of transport properties of rocks from 

digitized images. They showed that using different 

voxel sizes led to different conductivity values. 

They  argued  that  the  discretization  errors  are 

due to a number of factors including inaccurate 

description of curved grain boundaries  and closing 

of narrow pores. They finally concluded that 

considering discretization errors may lead to scale 

out the potential error due to channels not being 

resolved and hence an accurate continuum value 

for transport properties was obtained. Silin and 

Patzek in 2009 [13] considered sandstone images as 

discretized porous media and predicted fluid flow 

properties using some spherical models for voxels 

of 5 and 10 percent of grains diameter. They showed 

good agreements between computed parameters 

and direct experimental measurements. 

The aim of this study is to investigate the effects 

of discretization on porosity and saturation 

calculations in order to address a proper voxel/ 

mesh-grid size for practice.

The paper is organized as follows: First, It will be 

generated  some 3D Boolean models of random 

overlapping spheres of fixed and variable diameters 

in three dimensions. Then the generated model is 

discretized over a 3D grid of different number of 

voxels. After that, It is compared the calculated 

porosity and saturation of the discretized model 

with analytical solutions and evaluate the 

associated errors. Finally, It is applied the proposed 

procedure for the micro-CT images of two natural 

sedimentary core samples. The novelty of this 

study is that we focused on saturation calculation 

of wetting and non- wetting phases, say water and 
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oil, and expressed calculated adequate resolution 

in terms of average grain sizes. Knowing oil and 

water distributions in each section and every pore 

channel is vital for calculation of capillary pressure 

curves and also relative permeability curves. Since 

any preventable error in calculation of saturation 

distributions that comes from the selection 

of inadequate resolution will impact on the 

calculation of relative permeability and capillary 

pressure curves.

EXPERIMENTAL PROCEDURES
The Boolean Model
We used some 3D Boolean models of random 

overlapping spheres as porous medium prototypes. 

The Boolean model is a random closed set, a topic 

belong in the realm of stochastic geometry which 

deals with mathematical models for random 

geometric structure, (Schneider and Weil in 2008) 

[14]. In  essence, the Boolean model is constructed 

by a collection of points, called germs, distributed 

according to a Poisson point process of intensity 

λ and a system of objects, called grains, with the 

specified shape, size, and orientation, Bilodeau, 

Meyer, and Schmitt in 2005 [15]. The Poisson 

intensity indicates  the  mean number of objects 

per unit volume. The Boolean model includes 

two types of randomness, i.e., a spatial Poisson 

distribution of germs characterized by an intensity 

value, and randomness of the grains specified by the 

probability distribution of the grains, as Sobczyk, 

and Kirkner declared in 2012 [16]. In addition, in 

the Boolean model of overlapping spheres, the 

grains are spheres with a random radius, and the 

sphere centers are located on points of a Poisson 

point process of intensity λ, (Molohanov in 1990) 

[17]. In this case, the probability distribution of the 

grains is the distribution of their radius. The density 

of sphere centers is related to the sphere volume 

fraction.

Computational Methods
In this paper, It is considered a collection of 

randomly overlapping spheres of fixed and variable 

diameter in three dimensions. In the spherical 

model, the position and diameter of grains are 

taken into consideration while the orientation 

is irrelevant. In order to generate the model of 

overlapping spheres, the sphere centers are 

distributed randomly according to the Poisson 

distribution. Three random Poisson-distributed 

numbers represent the position of center of each 

spherical grain in a 3D cubic lattice of arbitrary size in 

Cartesian coordinates. In the model of overlapping 

spheres of fixed diameter, the diameter of all grains 

is fixed to a desired value. Here as case studies, two 

and three spheres mutually overlap each other are 

considered and illustrated in Figure 1 (2D slices in 

the top row). It is also possible to adjust ellipses 

instead of spheres to generate realizations which 

model rocks in which grains have no more spherical 

shape perhaps due to inadequate displacement 

time before sedimentation.

One can use specific functions to distribute grains 

according to desired algorithms. In order to do 

that, position and diameter of generated grains 

within Cartesian coordinates obey given functions 

instead of random function. In the model of 

overlapping spheres of variable diameter, four 

random numbers specify the generated grains. 

The first three random numbers denote the center 

of each grain in the Cartesian coordinate system 

according to the Poisson-point process. To have 

an appropriate diameter range, a maximum and 
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a minimum values are chosen. The fourth random 

number is multiplied by the difference of the 

largest and the smallest grain diameters and then 

is summed with the smallest possible diameter to 

give a range of random values for grain diameter. 

The slices in the bottom row of Figure 1 shows 

the examples of 2D images of the 3D overlapping 

spheres of variable diameter.

To develop the prescribed model, first It is 

considered a particular density of sphere centers 

within a 3D lattice. Then the first sphere is 

generated, and the associated volume fraction and 

surface area are exactly calculated by analytical 

formulae. Procedure continues until the specified 

number of grains reaches, and then grain generation 

terminates. If the generated grains overlap each other, 

shared volume and surface area are calculated and 

subtracted from grain volume and surface area. The 

result is an artificial rock model with known exact 

porosity and surface area. In the next step, the 

Boolean model is discretized over a 3D grid of n×n×n 

voxels as illustrated in Figure 2.

The 3D representations of the generated Boolean 

models of spheres with variable diameters are 

shown in Figure 3.

Figure 1: Slices through the 3D Boolean model of 
spheres in a lattice of 10003. Top row: fixed diameter 
sphere model, (left) 200, (middle) 100, and (right) 50 
units, Bottom row: variable diameter sphere model.

Figure 2: Examples of 2D slices representing 
discretization of the Boolean model of overlapping 
spheres in a lattice of 10003, Mesh-Grid sizes are 100, 
50, and 25 from left to right respectively.

Figure 3: 3D representations of the discretized Boolean 
model with the Mesh-Grid sizes of 100, 50, and 25 from 
left to right respectively.

If all eight corners of a voxel fully fall into the 

pore space of the discretized model, this voxel 

contributes in pore volume calculation, while if 

some of the corners of a voxel place in the pore 

region and some of them place in the solid region, 

this voxel lies in pore-grain interface region and is 

excluded from porosity computation. The remaining 

voxels are counted as grain region.

Fluid saturation is one of the important physical 

properties which its accurate prediction is essential 

in various reservoir engineering calculations. 

The initial (static) saturation distribution as well 

as the dynamic saturation redistribution during  

production and flow Processes in petroleum 

reservoirs highly depends on the wetting state of 

the reservoir rock. In this paper, we also aim at 

investigating the effect of discretization on wetting 

and non-wetting phase saturation calculation 

precision. We assume that the wetting phase 

surrounds solid grains, and non-wetting phase 
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occupies the remaining pore space of porous media. 

As a consequence, the wetting and non-wetting 

regions are considered as two phases along with 

the solid grain as a third phase. One can consider 

two main ways to generate n-phase systems. 

The first method is to place particles of different 

phases in the lattice. The second way employs a 

simple geometrical overgrowth algorithm based 

on parallel surfaces,

Arns in 2002 [18]. In this approach, particles are 

covered by a parallel layer with the thickness 

determined by saturations desired.

The second method is adopted to generate wetting 

phase in the developed models. The parallel layer 

represents water and oil in water-wet and oil- wet 

rocks respectively. Thickness of the parallel layer 

along each curved surface and in all corners is 

calculated according to two phase distribution 

formulas that determine local phase saturation in 

each pore. The total integration of local saturations 

must be equal to overall saturation of wetting and 

non-wetting phases.

It should be noted that the remaining pore-phase 

is considered to be filled with the non-wetting 

phase. Since the variable-diameter grain models 

are more realistic, we developed saturated models 

for grains with variable diameters. If all eight 

corners of a voxel fully fall into the wetting or non-

wetting phase of the discretized model, this voxel 

contributes in the wetting-phase or non-wetting 

phase saturation calculation respectively. Since 

the wetting phase may overlap other phases, and 

the corners of a voxel may place in the wetting 

phase, solid, or non-wetting regions. In this case, 

such a voxel which is in the interface is excluded 

from saturation calculation. The generated model 

is then discretized over a 3D grid of n×n×n voxels 

to study the effects of mesh-grid size on wetting 

and non-wetting phase saturation calculations. 

Figure 4 shows a slice of a 3D model with artificial 

saturation. All the process of model development 

and the related calculation were coded using 

MATLAB R2012a.

RESULTS AND DISCUSSION
Effects of Discretization on Porosity 
Calculation
In order to prepare Boolean models, generate 

spheres with fixed and also variable diameters 

(from a Poisson distribution with λ=200) are 

imaginary dropped into an assumed cubic lattice of 

side L=1000 units to generate multiple realizations 

of the model.

Figure 4: An example of a 2D slice through the 3D 
Boolean model of overlapping spheres with added 
artificial saturation in a lattice of 10003 with mesh- grid 
size of 25.

The chosen lattice size accompanying of spheres 

overlap leads to porosities lower than 20% to 30% 

in our work. The models are then discretized over 

a 3D grid of n×n×n voxels. Since the fixed number 

of voxels in the lattice gives results with varying 

accuracy for large and small grains, we consider 

the voxel size as a portion of the grain diameter. 

Hence, the number of voxels differs for each 

specific realization, and this leads to a more

 general result independent of the grain diameter. 

Table 1 shows the calculated porosities from 
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several realizations of discretized models that 

are compared with analytically calculated values 

in fixed diameter spherical models. For multiple 

realizations of the fixed diameter grain models, 

the grain diameter range from from 20 to 200 is 

considered with arbitrary length unit. The 3D 

mesh-grid (voxel) sizes range from 1 to 20 percent 

of the specified grain diameters as illustrated in 

Table 1. As a result, the number of voxels decreases 

as the grain diameter increases. For instance, if the 

voxel size is 10% of the grains with diameters of 

50 and 200, the number of voxels will be 2003 and 

503 respectively in a lattice of side 1000 arbitrary 

length unit. Note that the calculated porosity for 

the discretized model and the actual porosity 

mathematically calculated are the averages from 

multiple realizations. As indicated in Table 1, 

when the voxel size becomes smaller, values of 

the calculated porosities from discretized models 

converge to analytical values.

The results also show the similarity in relative error

 for all cases when the voxel size is presented as 

fractions of the grains diameter. For example, the 

relative error is about 5% when voxels are set to

5% of grains diameter. This error is about 15% and

30% for voxels which are set to 10% and 20% of the 

grain sizes respectively. If we consider the relative 

error of 5% as a satisfactory threshold for porosity 

calculation, the fixed diameter grain model limits 

us to choose voxels with size of at most 5% of grain 

diameter. It seems from tabulated results that when 

CT-scan imaging power is used to provide pixel 

sizes smaller than 3% of grain average diameter, 

negligible effects appear in calculated results. Then 

we generated multiple realizations of variable  size 

models with diameters ranged from 20 to 80 units, 

as shown in Table 2. For each average grain diameter, 

we allow grains to be generated with diameters of 

±10%, ±20%, and ±50% larger and smaller than the 

average value. For example, for average diameter 

of 20 units, we allow random generation of grains 

with 20 ±2, 20 ±4, and 20 ±10 units.

Table 1: Porosity values of the Boolean models of fixed-diameter overlapping spheres computed on 
various grid sizes.

Voxel size as a fraction 
of grain diameter

Grains diameter (arbitrary length unit)

20 30 50 80 100 150 200

0.2 13.3 11.4 9.7 7.8 6.6 5.6 4.8

0.15 14.9 12.8 10.8 8.6 7.4 6.3 5.4

0.10 16.2 13.8 11.8 9.5 8.1 6.9 5.9

0.05 18.1 15.5 13.2 10.6 9.0 7.7 6.5

0.03 18.4 15.8 13.4 10.8 9.2 7.8 6.6

0.02 18.7 16.0 13.6 10.9 9.3 7.9 6.7

0.01 19.0 16.2 13.8 11.1 9.4 8.0 6.8

Actual average porosity (%) 19.1 16.3 13.9 11.2 9.5 8.1 6.9
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Table 2: Porosity values of the Boolean models of variable-diameter overlapping spheres computed on 
various grid sizes.

Voxel size as a fraction 
of grain diameter

Grains diameter (arbitrary length unit)

20 ±2 20 ±4 20±10 50 ±5 50 ±10 50 ±25 80 ±8 80 ±16 80 ±40

0.1 of the largest 
grain

13.6 13.5 13.4 10.9 10.8 10.6 9.5 9.2 9.1

0.1 of the smallest 
grain

17.5 17.4 17.1 14.0 13.9 13.7 12.1 11.9 11.7

0.05 of the largest 
grain

17.9 17.7 17.5 14.3 14.1 14.0 12.4 12.1 12.0

0.05 of the 
smallestgrain

18.9 18.7 18.5 15.1 14.9 14.7 13.1 12.8 12.6

Actual average 
porosity

(%)

19.5 19.3 19.1 15.6 15.4 15.2 13.5 3.2 13.0

Similar to the fixed diameter model, the calculated 

porosity for the discretized model and the actual 

porosity mathematically calculated are compared 

together in Table 2.

In variable diameter grain models, it is essential 

to choose voxel sizes with attention to distributed 

range limits. If voxel sizes are 10% of the largest 

grains in each realization, about 30% relative error 

results in calculated porosity. But if we set voxel 

sizes as 10% of smallest grain, the relative error 

becomes only about 10%. Table 2 also shows that 

when voxel sizes are 5% of the largest grains, the 

relative error becomes 8% while if we set voxel 

sizes as 5% of the smallest grains, we will have only

3% error. If relative error of 5% is considered to 

be a satisfactory threshold, the variable diameter 

grain models suggest voxels with size of 8% of the 

smallest  grains.

Effects of Discretization on Saturation 
Calculation
The variable diameter grain model is used to study 

the effects of discretization on wetting phase and 

non-wetting phase saturations.

Table 3 shows the calculated average wetting phase 

saturations of the models of variable-diameter 

spheres for the case where the grain diameters 

range from 16 to 25 (i.e., 20 ± 4).

Table 3: Average wetting phase saturation values of the Boolean models of variable-diameter overlapping spheres 
(grain diameters: 20 ± 4) computed on various grid sizes.

Voxel size as a fraction of the 
smallest grain diameter (i.e. d = 16)

Calculated wetting phase saturation (%)

0.15 3.0 6.2 10.6 14.3 21.5 28.3 37.0

0.10 3.5 7.1 12.0 16.2 24.3 32.4 41.5

0.05 4.2 8.5 14.3 19.1 28.5 38.2 47.8

0.03 4.6 9.4 14.6 19.5 29.2 39.0 48.7

0.02 4.8 9.8 14.8 19.8 29.7 39.7 49.3

Actual wetting phase saturation
(%)

5 10 15 20 30 40 50
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For relative error of 5% as a satisfactory threshold 

for saturation calculation, and for realizations in 

which the wetting phase saturation is larger than

15%, model offers voxels with size, at most, 5% of 

the diameter of the smallest grains. Conversely, for 

realizations in which saturation is lower than 15%, 

the voxel size should be 3% or less of the smallest 

grains diameter to have a relative error less than 

or equal to 5%. Authors believe this difference is 

caused due to this fact that for lower saturations 

the wetting fluid covers grain surface as form of 

a thin layer and hence, is more sensitive to voxel 

size, and relatively smaller voxels are required to 

distinguish wetting phase from grains and non-

wetting phase. The same procedure is performed to 

investigate the effects of resolution and voxel sizes 

on non-wetting phase saturation calculations, with 

this difference that if all eight corners of voxels are 

placed in non-wetting phase, voxel is considered to 

count non-wetting phase saturation.

As indicated in Table 4, non-wetting phase 

saturation is less sensitive to voxel size, and grids  

with sizes, 5% of grains diameter, satisfy 95% 

accuracy as our chosen threshold. Authors believe 

that this less sensitivity, which can be explained 

with respect to this fact that the porous media 

space that occupy the non-wetting phase has 

less corners and sharp regions and thus do not 

require very small voxels for saturation calculation. 

Presenting required voxel sizes for calculation of 

wetting and non-wetting phase saturation with 

acceptable accuracy, in terms of average grain sizes is 

very valuable when we want to advance work to predict 

relative permeability and capillary  pressure curves.

Case Studies
Several sandstones and many other sedimentary 

rock types like silts, shale, and even some 

carbonates can be represented with variable size 

grain Boolean models. In order to examine the 

applicability of the results of this paper to real 

sedimentary rock samples, the micro-CT images of 

two core samples are used and compared with the 

results of the artificial models.

Figure 5 shows examples of the 2D slices through 

the 3D micro-CT images of sandstone (Figure 4a) 

and carbonate (Figure 4b) samples with voxel sizes

of 2.67 and 2.44 μm respectively.

Table 4: Average non-wetting phase saturation values of the Boolean models of variable-diameter overlapping 
spheres (grain diameters: 50 ± 10) computed on various grid sizes.

Voxel size as a fraction of the smallest 
grain diameter

(i.e. d = 40)

Calculated non-wetting phase saturation (%)

0.15 14.9 22.5 29.8 37.2 44.1 51.5 57.6

0.10 17.0 25.4 34.0 42.3 50.8 59.2 67.4

0.05 19.1 28.7 38.3 47.8 57.1 66.6 76.2

0.03 19.4 29.2 38.9 48.5 58.0 67.8 77.7

0.02 19.6 29.5 39.3 49.0 58.9 68.6 78.5

Actual non-wetting phase
saturation (%)

20 30 40 50 60 70 80
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Figure 5: Examples of 2D slices through the 3D micro-
CT tomograms of (a) sandstone and (b) carbonate core 
samples.

Visual inspections of the images reveal that the 

sandstone sample is relatively a clean core with 

some clay regions near the core center. Its grains can 

be considered to be 0.05 to 0.3 millimeter in size. 

It is apparent that the sandstone sample consisted 

of distinct grains with approximately well-rounded 

shape and a variety of sizes, adequate to be 

represented with spherical Boolean  models.  The  

carbonate  sample  seems to contain three main 

minerals in which grains range from 0.02 to 0.1 

millimeters. Despite the carbonate sample exhibits 

more complex grains structure, the sample may 

be assumed to have a potential to be compared 

with a Boolean model. From visual inspection of 

the tomograms, the voxel sizes of both images are 

apparently smaller than 2% of the smallest grain 

diameters of each core samples.

The procedure adopted in this study to examine the 

effect of discretization on the tomographic images 

is as follows. First, the original grey-scale images 

are exported to MATLAB. Next, we simply binarize 

the images and calculate the porosity based on 

the original resolution. Then, neighbor voxels 

within pore or grain regions will be merged to give 

upgrided voxels with side lengths of 5 % and 10 % 

of the smallest and largest grains. In other words, a 

mesh-grid is superimposed on the image in which 

the grid size is chosen by visual inspection of the 

original image and identification of the smallest 

and largest grains.

Moreover, It is simply taken an average voxel values 

to denote the values of the upgrided voxels. The new 

mesh-grids are used to calculate the porosity of case 

study samples by the same procedure as the one used 

for the original image. Results are presented in Table 5.

In addition, a comparison graph between calculated  

porosities from the  Boolean  models of spherical 

grains and from the case studies is shown in Figure 

6. The horizontal axis of the graph refers to the 

generated artificial mesh-grids as a fraction of 

smallest and largest grain diameters. It is evident 

form Figure 6 that the predicted porosities from 

both carbonate and sandstone case studies has 

a good agreement with artificial model results. 

Figure 6 clearly shows that the discretization errors 

introduced by superimposing the artificial mesh-

grids over the models or actual rock images are 

almost the same. This is because the rock samples 

can be properly represented by the spherical grain 

models (SGMs).

Table 5: Calculated porosities for case study samples.
Rock sample Sandstone Carbonate

Smallest and largest grains diameter (μm) 50-300 20-100
Using upgrided pixels with side length of 10% of largest grain 12.8 4.6

Using upgrided pixels with side length of 10% of smallest grain 16.5 5.9
Using upgrided pixels with side length of 5% of largest grain 16.8 6.0

Using upgrided pixels with side length of 5% of smallest grain 17.8 6.3
Actual average porosity (calculated based on the original images) 18.3 6.5
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Figure 6: A comparison of the predicted porosities 
from the Boolean models, carbonate and sandstone 
case studies.

CONCLUSIONS
Despite the simplicity of the Boolean model of 

spherical grains, it can be applicable to represent a 

variety of rock samples. An appropriate model of a 

sandstone or carbonate rock can be used to predict 

their properties and interrelationships. Several key 

findings can be summarized as follow;

(1) In simulated fixed-size grain models, the relative  

error for calculated porosity was about 15% when 

mesh-grid sizes were 10% of the grains diameter. 

This is while only 5% relative error was achieved 

when applying mesh-grids with the sizes of 5% 

of the grains diameter. Conversely in variable size  

grain  models, when mesh-grids were 10% of the 

upper limit of grains diameter range, the relative 

error was about 30%. The relative error decreased 

to 10% when mesh-grid sizes were 10% of the 

lower limit grains diameter.

(2) To achieve the relative error of 5% error in 

porosity calculation when using the variable size 

grain models, one should pay a close attention to 

the lower limit of grain size distribution and adjust the 

mesh-grid size to about 8% of the smallest diameter  

grains.

(3) In variable size grain models, if the grain size 

distribution covers a wide range, it is recommended  

to adjust the mesh-grid size to <5% of the smallest grains.

(4) In the case of clay- or cement-rich rock samples, 

the relative error in porosity calculation increases 

since the inter granular pore-filling materials 

are irregular in shape and the Boolean model of 

spherical grains fails to properly represent the rock  

structure.

(5) In the case of high wetting phase saturation, i.e.  

larger than 15%, the mesh-grid size of 5% of the 

smallest grains would be sufficient to accurately 

calculate the wetting phase saturation using the 

Boolean model. Conversely, if wetting phase 

saturation is low (e.g., for the case of connate  water  

saturation),  mesh-grid size should be adjusted to 2 

to 3% of the smallest grains diameter to decrease 

the relative error of saturation calculation.

(6) The calculation of non-wetting phase saturation 

using the Boolean model is less sensitive to the 

chosen mesh-grid size and mesh-grids with sizes of 

about 5% of the grains diameter would be sufficient.

The results of this paper show that the Boolean 

model of spherical grains can quantitatively 

characterize the porosity and saturation  

distributions in clastic and carbonate rocks using 

the pre-defined mesh-grid sizes based on the 

rough knowledge about the grain size distribution 

of the rock samples. In addition, the present study 

can be considered as a guidance for choosing a 

proper voxel/ mesh-grid size in advance in image 

acquisition or numerical simulation of the rock 

samples in order to avoid gratuitously consuming 

computational and  memory resources.
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NOMENCLATURES
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