УДК 553.493+552.33(470.5)

DOI: 10.24930/1681-9004-2018-18-5-758-773

U-Pb ДАТИРОВАНИЕ РУДНЫХ НИОБИЕВЫХ МИНЕРАЛОВ ГРУППЫ ПИРОХЛОРА (ИЛЬМЕНО-ВИШНЕВОГОРСКИЙ КАРБОНАТИТ-МИАСКИТОВЫЙ КОМПЛЕКС, ЮЖНЫЙ УРАЛ)

© 2018 г. И. Л. Недосекова¹, В. А. Коротеев¹, Б. В. Беляцкий², В. В. Шарыгин^{3,4}, Е. Н. Лепехина², С. В. Прибавкин¹

¹Институт геологии и геохимии УрО РАН, 620016, г. Екатеринбург, ул. Акад. Вонсовского, 15, e-mail: vladi49@yandex.ru ²ВСЕГЕИ, 199106, г. Санкт-Петербург, Средний проспект, 74 ³Институт геологии и минералогии СО РАН, 630090, г. Новосибирск, просп. Акад. Коптюга, 3

⁴Новосибирский государственный университет, 630090, г. Новосибирск, ул. Пирогова, 2

Поступила в редакцию 26.12.2018 г., принята к печати 15.03.2018 г.

Проведено U-Pb датирование минералов группы пирохлора из редкометалльных месторождений ильменовишневогорского комплекса Южного Урала. Для измерения возраста отдельных кристаллов пирохлора была использована новая методика локального U-Pb датирования на вторично-ионном масс-спектрометре SHRIMP-II, разработанная в ЦИИ ВСЕГЕИ (г. Санкт-Петербург). U-Pb датирование высокоурановых пирохлоров (с содержанием окислов урана более чем 2.5 мас. %) проводилось с помощью лазерной абляции и масс-спектрометра с ИСП-МС (DUV-19 и LA-ICP MS). U-Pb система изученных образцов пирохлора свидетельствует о многоэтапном формировании редкометалльной ниобиевой минерализации ильмено-вишневогорского комплекса. Наиболее древний возраст (378 ± 4.9 млн лет) фиксируется изотопными U-Pb системами уранпирохлоров ранних карбонатитов Потанинского месторождения. Этот этап рудообразования, возможно, отражает завершающие стадии кристаллизации щелочно-карбонатитовой магматической системы. Следующие этапы рудообразования широко проявлены на Вишневогорском (230 ± 1.5 млн лет) и позднее на Потанинском (217.2 ± 1.9 млн лет) месторождениях и, вероятно, связаны с ремобилизацией и переотложением щелочно-карбонатитового и редкометалльного вещества на постколлизионном этапе эволюции карбонатитовых комплексов Урала.

Ключевые слова. U-Pbdamupoвaние, минералы группы пирохлора, ильмено-вишневогорский комплекс, Урал

U-Pb DATING OF NIOBIUM ORE MINERALS OF THE PYROCHLOR GROUP (ILMENO-VISHNEVOGORSKY CARBONATITE-MIASKITE COMPLEX, **SOUTH URALS**)

Irina L. Nedosekova¹, Viktor A. Koroteev¹, Boris V. Belyatsky², Viktor V. Sharygin^{3, 4}, Elena N. Lepechina², Sergei V. Pribavkin¹

¹A.N. Zavaritsky Institute of Geology and Geochemistry, Urals Branch of RAS, 15 Akad. Vonsovsky st., Ekaterinburg, 620016 Russia, e-mail: vladi49@yandex.ru

²A.P. Karpinsky VSEGEI, 74 Sredny av., St.Petersburg, 199106 Russia

³V.S. Sobolev Institute of Geology and Mineralogy SB RAS, 3 Akad. Kopfug av., Novosibirsk, 630090 Russia ⁴Novosibirsk State University, 2 Pirogov st., Novosibirsk, 630090 Russia

Received 26.12.2018, accepted 15.03.2018

U-Pb dating of the pyrochlore-group minerals from the Nb-rare metal ore deposits of ilmeny-vishnevogorsky carbonatitemiaskite complex of the Ural fold region was carried out. To date the individual pyrochlore crystals were used a new technique of local U-Pb SHRIMP-II dating which was developed at the CIR VSEGEI (St. Petersburg). In the case of high-U pyrochlore (with more than 2.5 wt % UO₂) a laser ablation and ICP-MS method was applied for U-Pb-dating. The studied isotope pyrochlore system indicates a multi-stage formation of rare metal niobium mineralization. The earliest age of ore formation $(378 \pm 4.9 \text{ Ma})$ is fixed by U-pychlore isotope systems of Potanino deposit. This stage of ore formation is probably associated with the final stages of the alkaline-carbonatite magmatic system crystallization. The next stages of ore formation $(230 \pm 1.5 \text{ Ma})$ are widely manifested in Vishnevogorsk and later on the Potanino deposit $(217.2 \pm 1.9 \text{ Ma})$ and were probably related to remobilization and redeposition of alkaline-carbonatite and rare metal substances.

Keywords: U-Pb dating, pyrochlore-group minerals, Ilmeny-Vishnevogorsk complex, the Urals

Для цитирования: Недосекова И.Л., Коротеев В.А., Беляцкий Б.В., Шарыгин В.В., Лепехина Е.Н., Прибавкин С.В. (2018) U-Pb датирование рудных ниобиевых минералов группы пирохлора (ильмено-вишневогорский карбонатит-миаскитовый комплекс, Южный Урал). Литосфера, 18(5), 758-773. DOI: 10.24930/1681-9004-2018-18-5-758-773

For citation: Nedosekova I.L., Koroteev V.A., Belyatsky B.V., Sharygin V.V., Lepechina E.N., Pribavkin S.V. (2018) U-Pb dating of niobium minerals from pyrochlor group (ilmeno-vishnevogorsk carbonatitis-miaskite complex, of the Southern Urals). Litosfera, 18(5), 758-773. DOI: 10.24930/1681-9004-2018-18-5-758-773

The work was performed under the RFBR project No. 17-05-00154 and theme of St. task IGG, UB of RAS

ВВЕДЕНИЕ

Датирование рудной минерализации и процессов рудогенеза, несмотря на развитие аналитических методов изотопной геохронологии, остается непростой задачей. Лучшим минералом-геохронометром, как известно, является циркон, но происхождение циркона, если он и присутствует в рудах, не всегда определенно, иногда он имеет ксеногенное происхождение. Минералы группы пирохлора (Ca,Na,U,Th,REE,Sr,Ba,вакансия)₂ (Nb,Ti,Ta)₂O₆ (F,OH,O), как минералы, содержащие достаточно высокие концентрации урана и тория, могут быть геохронологической альтернативой циркона и использоваться для датирования процессов рудообразования. Хотя пирохлор как геохронометр не получил широкого распространения из-за высокой метамиктности кристаллической структуры [Lumpkin, Ewing, 1995], разнообразия вторичных изменений и неустойчивости уран-торий-свинцовой системы [Pöml et al., 2007], тем не менее решить задачу датирования различных генераций пирохлора и использовать пирохлор в качестве минералагеохронометра стало возможным благодаря современным методам локального анализа изотопных систем. Возможности локального изотопного анализа отдельных фаз и доменов минеральных зерен позволяют выбрать подходящие для датирования участки кристаллов пирохлора [Wetzel et al., 2010]. В мировой практике работы по датированию пирохлоров единичны, но они есть, причем это возможно реализовать несколькими аналитическими методами - на вторично-ионном массспектрометре (SIMS) [Wetzel et al., 2010] и с помощью лазерной абляции с ИСП [Millonig et al., 2012, 2013; Braccialli et al., 2013; Deng et al., 2013].

Все минералы группы пирохлора имеют относительно высокую долю обыкновенного (нерадиогенного) свинца (Рb_c) по сравнению с радиогенным (и, соответственно, низкие величины отношения изотопов ²⁰⁶Pb/²⁰⁴Pb), так как, в отличие от циркона, в состав пирохлора в кристаллографическую позицию А входят двухвалентые катионы, в том числе кальций и свинец. Доля обыкновенного свинца в пирохлорах иногда составляет десятки процентов и является крайне высокой и не типичной для используемых внутрилабораторных и международных геохронологических стандартов при локальных методах анализа. Так, среди наиболее широко распространенных датируемых минералов – циркон, бадделеит, монацит, апатит – легче подобрать стандарты с минимальным содержанием

обыкновенного свинца. Вместе с тем при точном и аккуратном измерении изотопного состава Pb, а также правильной коррекции на состав обыкновенного (нерадиогенного) Pb результирующая воспроизводимость получаемых геохронологических данных достигает $\pm 2\%$ и обеспечивает удовлетворительное совпадение возрастных оценок SIMS с данными других изотопно-геохронологических методов (изотопное разбавление с ТИМС – ID-ТИМС, лазерная абляция с масс-спектрометрией в индуктивно-связанной плазме).

Для оценки возраста и длительности формирования редкометалльной минерализации нами было проведено изотопное U-Pb датирование рудных ниобиевых минералов Вишневогорского и Потанинского ниобиевых месторождений, связанных с ильмено-вишневогорским карбонатит-миаскитовым комплексом, расположенным в Уральской складчатой области.

Ильмено-вишневогорский комплекс (ИВК) является прототипом линейных карбонатитовых комплексов – самостоятельного формационного типа карбонатитов, связанных с линейными зонами щелочного метасоматоза и сиенит-нефелин-сиенитовым магматизмом. Их происхождение до сих пор является дискуссионным [Левин и др., 1997; Mitchell, 2005; Расс и др., 2006; Недосекова и др., 2009, 2010, 2012, 2016; Иванов и др., 2010; Иванов, 2011; Русин и др., 2012; Nedosekova et al., 2013; Багдасаров, 2014]. Наименее изученными вопросами остаются проблемы возраста и генезиса редкометалльной (Zr-Nb-REE) рудной минерализации и ее соотношения с различными магматическим фазами, постмагматической эволюцией, а также с процессами метаморфизма.

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ И ВЕЩЕСТВЕННЫЙ СОСТАВ ИЛЬМЕНО-ВИШНЕВОГОРСКОГО МИАСКИТ-КАРБОНАТИТОВОГО КОМПЛЕКСА

Ильмено-вишневогорский миаскит-карбонатитовый комплекс находится на стыке Южного и Среднего Урала, в Восточно-Уральской мегазоне, которая наряду с Тагило-Магнитогорской и Зауральской мегазонами образует Восточный (палеоостроводужный) сектор Урала, представляющий собой сложный тектонический коллаж океанических, островодужных и коллизионных комплексов с блоками микроконтинентов [Пучков, 2010]. Восточно-Уральская мегазона отличается широким распространением гранитоидов и гнейсов и

7 Ю Вишневогорский массив г. Кыштым • Pz 1 2 O_3 3 O_1 4 O_1 5 (8) 6 7 Pz_1 Центральная щелочная полоса Pz_1 8 9 R₁₋₂ 10 PR 11 10 12 4 Ильменогорский

г. Миасс Рис. 1. Схема геологического строения ильменовишневогорского щелочно-карбонатитового комплекса по материалам [Левин и др., 1997; Золоев и др., 2004].

(11)

массив

0

10 км

1 – граниты (Рг₃); 2, 3 – ильмено-вишневогорский комплекс (О₃): 2 - миаскиты Вишневогорского и Ильменогорского массивов, 3 - зоны метасоматитов, карбонатитов, силикатно-карбонатных пород Центральной щелочной полосы; 4 - габбро офиолитовой формации (O₁); 5 – гипербазиты офиолитовой формации (O₁); 6- метаультрабазиты булдымского комплекса (PR?); - вулканогенно-осадочные образования Тагило-Магнитогорского мегасинклинория (Pz₁); 8 – сланцы Недосекова и др. Nedosekova et al.

гранато-слюдяные и эклогиты восточной периферии Уфалейского срединного массива (Pz₁); 9 – плагиосланцы и кварциты обрамления Сысертско-Ильменогорского срединного массива (R₁₋₂); 10 – плагиогнейсы, гранитные мигматиты, кристаллические сланцы, амфиболиты, кварциты Сысертско-Ильменогорского и Уфалейского срединных массивов (PR₁₋₂); 11 - тектонические разломы и несогласия; 12 – основные месторождения и рудопроявления Nb и P3Э, связанные с карбонатитами (цифры в кружках): 1 – Булдымское (Nb и РЗЭ); 2, 3 – Вишневогорское (Nb) (2 - зона 125; 3 - зона 140, 147); 4 - Спирихинское (РЗЭ); 5 - Светлинское (Nb); 6 - Каганское (РЗЭ); 7 – Потанинское (Nb); 8 – Увильдинское (Nb); 9 – Байдашевское (Nb); 10 – Ишкульское (Nb); 11 – Ильменское, копь 97 (Nb и P3Э).

Fig. 1. Geologiocal scheme of the Ilmeny-Vishnevogorsk alkaline-carbonatite complex according to [Levin et al., 1997; Zoloev et al., 2004].

1 - granites (Pz₃); 2, 3 - Ilmeny-Vishnevogorsk complex (O₃): 2 - miaskites of Vishnevigorsk and Ilmenogorsk massifs, 3 - metasomatites, carbonatites, silicate-carbonate rocks of the Central alkaline band; 4 - ophiolite gabbro (O1); 5 - ophiolite peridotites (O1); 6 - Buldym metaultrabasites (PR?); 7 - volcanogenic-sedimentary rocks of Tagil-Magnitogorsk megasynclinorium (Pz1); 8 - garnetmica shale and eclogites of the eastern margin of the Uphalei middle massif (Pz₁); 9 - plagioclase shale and quartzites of the Sysertsk-Ilmenogorsk middle massif frame (R₁₋₂); 10 – plagiogneisses, granite migmatites, crystalline schists, amphibolites, quartzites of Sysertsk-Ilmenogorsk and Uphalei middle massifs (PR₁₋₂); 11 – tectonic faults and nonconformities; 12 - Nb and REE main ore deposits and occurrences related with carbonatites (numbers in circles): 1 - Buldym (Nb and REE); 2, 3 - Vishnevogorsk (Nb) (2 – 125 zone; 3 – 140 and 147 zones); 4 – Spirikhinskoe (REE); 5 – Svetlinskoe (Nb); 6 – Kaganskoe (REE); 7 - Potanino (Nb); 8 - Uvil'dinskoe (Nb); 9 - Baidashevskoe (Nb); 10 – Ishkul'skoe (Nb); 11 – Ilmenskoe, dig 97 (Nb and REE).

присутствием микроконтинентальных блоков докембрийской(?) кристаллической коры (Талдыкский, Мурзинско-Адуйский, Кайрактинский, отчасти Сысертско-Ильменогорский и др.).

Ильмено-вишневогорский комплекс залегает в осевой части Сысертско-Ильменогорского антиклинория, в нижнепротерозойских породах селянкинской, ильменогорской и вишневогорской толщ (PR₁), в субмеридиональной (коллизионной) структуре и имеет протяженность с севера на юг более 100 км при максимальной ширине 4-6 км (рис. 1). Он включает два относительно крупных (20-25 × 6 км) интрузивных массива миаскитов – Вишневогорский и Ильменогорский, многочисленные пластовые и дайковые тела миаскитов, сиенитов и миаскит-пегматитов, пластовые и жильные тела карбонатитов, а также мощные зоны фенитизации во вмещающих породах вишневогорской и ильменогорской свит. Массивы миаскитов соединяются между собой Центральной щелочной полосой, сложенной фенитами, полевошпатовыми метасоматитами, мелкими телами миаскитов, сиенитов, меланократовыми карбонатносиликатными породами и карбонатитами.

Карбонатиты с рудной ниобиевой минерализацией широко развиты в северной части комплекса – в апикальной части Вишневогорского массива миаскитов и в"седловидной" залежи миаскитов (Вишневогорское месторождение ниобия), а также встречаются в корневой части массива (рудопроявление Пургино) (см. рис. 1). Карбонатиты образуют пластообразные, дайкообразные и жильные тела (мощностью до 10 м и протяженностью сотни метров), формируя рудную зону протяженностью 4 км и шириной 30 м (рудная зона 147, Вишневогорское ниобиевое месторождение). Наиболее богатая рудная зона этого месторождения (зона 140) приурочена к северному сателлитному телу миаскитов ("седловидной залежи"), которое залегает в замке вишневогорской антиклинали, в 50 м к северу от Вишневогорского массива, и сложена системой субпараллельных жил карбонатитов, альбититов и миаскитовых пегматоидов. Карбонатиты встречаются также в фенитовом ореоле Вишневогорского интрузива – в фенитизированных породах вишневогорской свиты, образуя штокверки и жильные тела выполнения.

Ранние карбонатиты (сёвиты I), залегающие в виде шлиров и пластообразных тел преимущественно в корневой части Вишневогорского интрузива, имеют кальцитовый состав и содержат нефелин, полевые шпаты, биотит, а также акцессорные циркон, чернобурый пирохлор (гатчеттолит), ильменит, апатит и др. Поздние карбонатиты (сёвиты II) широко развиты в апикальной части Вишневогорского массива, часто приурочены к замкам складок, образуют крупнозернистые, лейкократовые обособления и жилы в миаскитах и ранних карбонатитах, сложенные кальцитом и крупными кристаллами (до n см) фторапатита, красного и желтовато-бурого пирохлора, ильменита, биотита, пирротина, пирита. Поздние карбонатиты в экзоконтактовых фенитовых ореолах миаскитовых интрузивов также представлены крупнозернистыми кальцитовыми жилами и содержат пироксен (эгирин-авгит), красно-бурый пирохлор, апатит, ильменит, титанит.

Многочисленные месторождения и рудопроявления пирохлорсодержащих карбонатитов установлены и разведаны в Центральной щелочной полосе (см. рис. 1). Самое крупное из месторождений – Потанинское месторождение ниобия – находится в восточном контакте Центральной щелочной полосы, образуя линейную, иногда штокверковидную зону в миаскитах и фенитах протяженностью около 15 км и мощностью до 40 м. Кроме того, здесь известны Ишкульское, Байдашевское, Увильдинское и Светлоозерское рудопроявления [Левин и др., 1997] (см. рис. 1).

ГЕОХРОНОЛОГИЯ ИЛЬМЕНО-ВИШНЕВОГОРСКОГО КОМПЛЕКСА

Первые Rb-Sr и U-Pb изотопно-геохронологические данные для пород ильмено-вишнево-

LITHOSPHERE (RUSSIA) volume 18 No. 5 2018

горского комплекса были получены в 70–80-х гг. XX в. Для миаскитов ильмено-вишневогорского комплекса построены породные Rb-Sr изохроны с возрастом 446 ± 12 млн лет (O₃) (Ильменогорский массив) и $436 \pm 31(S_1)$, 478 ± 55 млн лет (O₁) (Вишневогорский массив), которые были интерпретированы как возраст внедрения и кристаллизации миаскитовых магм на завершающих этапах рифтогенеза в нижнем–верхнем ордовике (O₁-O₃) [Кононова и др., 1979; Кгатт et al., 1983]. При этом было установлено, что минеральные Rb-Sr изохроны для миаскитов соответствуют возрасту 245 ± 8 млн лет, который был соотнесен с возрастом метаморфизма.

U-Pb датирование цирконов из миаскитов ильмено-вишневогорского комплекса, полученных методом изотопного разбавления, показало нижнесилурийские возраста: 434 ± 15 млн лет [Крамм и др., 1993] и 422 ± 10 млн лет [Чернышев и др., 1987]. При датировании цирконов локальными методами (SHRIMP и лазерная абляция) получен диапазон возрастов от нижнего силура до верхнего девона: возраст цирконов миаскит-пегматитов, миаскитов и малиньитов Ильменогорского массива - 432 ± 3.7 (S₁), 419 ± 7 (S₂), 417 ± 7 (S₂), 383 ± 14 (D₃) млн лет соответственно [Краснобаев и др., 2010а, 2014], возраст цирконов карбонатитов Вишневогорского массива – 419 ± 20 млн лет [Краснобаев и др., 20106] и 417 \pm 3 млн лет (S₂) [Недосекова и др., 2010, 2012, 2016].

Кроме того, U-Pb изотопные системы цирконов ильмено-вишневогорского комплекса фиксируют более поздние процессы метаморфизма, сопровождающиеся потерей радиогенного Pb, с возрастом 261 ± 14 млн лет [Чернышев и др., 1987] и 279 ± 10 млн лет (P) [Краснобаев и др., 2010а]. Значительное количество зерен цирконов миаскитов и миаскит-пегматитов при U-Pb датировании локальными методами показали пермские возраста: 269 ± 6 и 251 ± 6 млн лет соответственно [Краснобаев и др., 2014], так же как и Rb-Sr минеральные изохроны, полученные ранее [Кононова и др., 1979; Kramm et al., 1983].

Sm-Nd минеральная изохрона для карбонатитов Вишневогорского массива, построенная по 5 аналитическим точкам (минеральным фракциям кальцита, биотита, апатита, пирохлора и валовой пробе), показала нижнесилурийский возраст 425 ± 44 млн лет (S₁), фиксируя карбонатитовый магматический этап функционирования щелочно-карбонатитовой магматической системы [Недосекова, Беляцкий, 2012]. Кроме того, для карбонатитов седловидной залежи миаскитов была получена Sm-Nd минеральная изохрона с возрастом 388 ± 50 млн лет (конец D₂) [Иванов и др., 2010], вероятно отражающая наиболее поздний завершающий этап становления ильмено-вишневогорского миаскит-карбонатитового комплекса.

Рис. 2. Особенности морфологии пирохлоров ильмено-вишневогорского комплекса: уранпирохлор из ранних карбонатитов, Увильдинское Nb-рудопроявление (а); Sr-REE-содержащий пирохлор из поздних карбонатитов, Вишневогорское Nb-месторождение (б, в).

Fig. 2. Morphological features of pyrochlores from Ilmeny-Vishnevogorsky complex: uranpyrochlore of early carbonatite, Uvildinskoe Nb-occurrences (a); Sr-REE-containing pyrochlores of late carbonatite, Vishnevogorsky Nb-deposit (δ , B).

Таким образом, данные U-Pb, Rb-Sr и Sm-Nd геохронологии щелочных пород и карбонатитов ильмено-вишневогорского комплекса свидетельствуют о многостадийном магмообразовании на этапе палеозойской активизации (≈440–390 млн лет), а также о масштабных процессах щелочного метасоматоза и пегматитообразования на этапе герцинской орогении (≈350–250 млн лет) и последующего постколлизионного растяжения (≈250–240 млн лет).

РУДНАЯ НИОБИЕВАЯ МИНЕРАЛИЗАЦИЯ

В ильмено-вишневогорском комплексе известно более 10 месторождений и рудопроявлений ниобия, циркония и редких земель (см. рис. 1). Вишневогорское месторождение – первое в России, на котором велась промышленная добыча ниобиевого сырья, – связано с пирохлорсодержащими карбонатитами в апикальной части Вишневогорского миаскитового интрузива. В породах Центральной щелочной полосы разведаны Потанинское ниобиевое месторождение, Светлоозерское, Байдашевское, Ишкульское, Увильдинское рудопроявления, также связанные с карбонатитами [Левин и др., 1997; Золоев и др., 2004].

Рудная ниобиевая минерализация редкометалльных месторождений ильмено-вишневогорского миаскит-карбонатитового комплекса представлена минералами надгруппы пирохлора: собственно пирохлором, Уранпирохлором (гатчеттолитом), бетафитом, а также Та-, РЗЭ- и Sr-содержащими разновидностями группы пирохлоров. Реже встречаются такие минералы, как ильменорутил, колумбит, ферсмит, чевкинит-(Се) [Еськова, Назаренко, 1960; Еськова и др., 1964; Ефимов и др., 1985; Левин и др., 1997; Недосекова, Прибавкин, 2015; Недосекова и др., 2017].

Основными рудными минералами карбонатитовых месторождений ильмено-вишневогорского комплекса являются минералы группы пирохлора. Пирохлор присутствует во многих разновидностях пород – в миаскитах и сиенитах, особенно в их пегматоидных разностях, в миаскит-пегматитах, сиенит-пегматитах, карбонатитах и щелочных метасоматитах (альбититах, фенитах, слюдитах и др.). В наиболее значительных количествах пирохлор встречается в карбонатитах как ранних, так и поздних стадий карбонатитообразования (сёвитах I и II соответственно) в Вишневогорском миаскитовом массиве и в породах Центральной щелочной полосы [Левин и др., 1997; Золоев и др., 2004; Недосекова, 2007; Недосекова и др., 2009, 2017].

В миаскитах и сиенитах пирохлор представлен октаэдрическим кристаллами темно-бурого, иногда оранжевого цвета размером 0.01-0.1 мм. В пегматоидных разностях размеры пирохлора увеличиваются до 0.5 см, а в пегматитах – до нескольких сантиметров. Распределение пирохлора неравномерное: в пегматитах и альбититах он образует струевидные скопления и мелкую рассеянную вкрапленность (размеры кристаллов от 2-3 мм до нескольких сантиметров). В силикокарбонатитах (меланократовых карбонатно-силикатных породах) и в ранних карбонатитах (сёвитах I) пирохлор образует мелкие зерна черного и зеленовато-черного цвета (U-пирохлор) (рис. 2a). В поздних карбонатитах (сёвитах II) пирохлор образует октаэдрические и кубооктаэрические кристаллы размером 0.05–1.5 см красно-бурого и желтого цвета (рис. 26, в), в которых присутствуют реликты раннего (черного) пирохлора со следами растворения и преобразования. Внутреннее строение кристаллов пирохлора поздних карбонатитов иллюстрирует рис. За-е: в ядрах кристаллов иногда сохраняются реликты черного U-(Ta)-содержащего пирохлора, окруженные промежуточной зоной U-содержащего гидратированного пирохлора, а периферическая часть кристалла сложена светлобурым Sr-содержащим пирохлором (см. рис. 3д).

Рис. 3. Морфология и внутреннее строение кристаллов пирохлора из карбонатитов ильмено-вишневогорского комплекса (обр. 331, сёвит II, Вишневогорское месторождение), изображение в отраженных электронах (BSE). Точки анализов соответствуют приведенным в табл. 1.

Fig. 3. Morphology and internal structure of pyrochlore crystals from carbonatites of the Ilmeno-Vishnevogorsky complex (sample 331, Sevite II, Vishnevogorsky deposit), BSE-image.

Analysis number corresponds to those denoted in Table 1.

В ильмено-вишневогорском комплексе установлены несколько минералов группы пирохлора, формирование которых связано с определенными эволюционными стадиями функционирования щелочно-карбонатитовой магматической системы и метаморфических преобразований комплекса [Недосекова и др., 2017]. Согласно последней номенклатуре группы пирохлора (надгруппа пирохлора) (на основе преобладающего катиона или аниона в позициях B = Nb, Ti, Ta; A = Ca, Na, REE, Y, Sr, Ba, Mn, Mg, U, Th μ Y = O, OH, F) [Atencio et al., 2010], пирохлоры ильмено-вишневогорского и булдымского комплексов могут быть классифицированы как U-(Та)-содержащие оксикальциопирохлоры (или уран-пирохлоры, по [Hogarth, 1977]) и фторкальциопирохлоры (в том числе Та-, РЗЭ_{Се}- и Sr-содержащие разновидности). Среди U- и Sr-содержащих разновидностей встречаются кенопирохлоры (с вакансией в позиции А более 50% по отношению к катионам этой позиции). Составы пирохлоров представлены на тройных диаграммах, характеризующих заполнение А, В и Ү позиций (рис. 4).

U-(*Ta*)-содержащие оксикальциопирохлоры (15–24 мас. % UO₂, 1–14 мас. % Ta₂O₅) встреча-

LITHOSPHERE (RUSSIA) volume 18 No. 5 2018

ются в ранних высокотемпературных карбонатитах (сёвитах I) и силикокарбонатитах Центральной щелочной полосы (Потанинское месторождение, Увильдинское рудопроявление) [Левин и др, 1997; Недосекова и др., 2009]. Этот тип пирохлоров, вероятно, образуется раньше, чем другие, на позднемагматической стадии кристаллизации, о чем свидетельствуют реликты U-содержащего пирохлора в более поздних генерациях Sr-содержащего пирохлора из поздних карбонатитов (сёвитов II) [Левин и др., 1997] (см. рис. 3в, д).

Фторкальциопирохлоры с максимальными содержаниями Nb_2O_5 (65–69 мас. %), с наиболее стехиометричными составами и низкими содержаниями микропримесей широко развиты в полевошпатовых жилах и в поздних кальцитовых карбонатитах в седловидной залежи миаскитов Вишневогорского массива. Этими пирохлорами сложены основные рудные зоны Вишневогорского месторождения (рудные зоны 140 и 147), встречаются они также и на Потанинском месторождении.

Та-содержащие разновидности фторкальциопирохлоров (1.5–5.0 мас. % Ta_2O_5 ; 0–4.2 мас. % UO_2) образуются в нефелиновых пегматитах в апикаль-

Рис. 4. Состав пирохлоров на треугольных диаграммах, отражающих заполнение В- и А-позиций в структуре пирохлора (ф. ед.).

1 – U-(Та)-содержащие оксикальциопирохолоры, 2 – Та-содержащие фторкальциопирохлоры, 3 – фторкальциопирохлоры, 4 – РЗЭ-Sr-содержащие фторкальципирохлоры, 5 – Sr-РЗЭ-содержащие фторкальципирохлоры.

Fig. 4. Triangle composition diagrams for pyrochlore reflected occupation of B- and A-sites in the pyrochlore structure (pfu).

 $1-U\mbox{-}(Ta)\mbox{-}containing oxical ciopyrochlores, 2-Ta-containing fluor calciopyrochlores, 3-fluor calciopyrochlores, 4-REE-Sr-containing fluor calciopyrochlores.$

ной части Вишневогорского массива (рудная зона 147), а также встречаются в карбонатитах Потанин-

ского месторождения. Этот пирохлор формируется на пегматитовой стадии кристаллизации.

Sr- и РЗЭ-содержащие фторкальциопирохлоры (3-6 мас. % LREE₂O₃, 1.5-4.5 мас. % SrO) широко распространены в поздних карбонатитах (сёвитах II) и в экзоконтактовых фенитах Вишневогорского и Потанинского месторождений. Эти разновидности пирохлора образуют кристаллы октаэдрической и кубооктаэдрической формы (см. рис. 2 и 3г, е) с признаками метасоматического роста, а также образуют каймы вокруг U-содержащих реликтовых (?) ядер пирохлора (см. рис. 3в, д). Вероятно, что формирование этих разновидностей пирохлоров происходит на завершающих стадиях (позднекарбонатитовой и сиенит-пегматитовой) эволюции комплекса, а также может быть связано с этапом метаморфических преобразований коллизионной стадии.

МЕТОДЫ АНАЛИЗА

Химический состав пирохлоров и эшинитов ИВК был изучен на микрозонде САМЕВАХ в ИГМ СО РАН, г. Новосибирск, при 60 нА и 20 кВ, при размере пучка зонда 2 мкм (аналитик В.В. Шарыгин) и на микрозонде Сатеса-100 в ИГГ УрО РАН (аналитик Д.В. Замятин).

U-Pb датирование высокоурановых пирохлоров проводилось с помощью лазерной абляции и массспектрометра с ИСП-МС (DUV-19 и LA-ICP MS). Для датирования пирохлоров с содержанием окислов урана менее чем 2.5% была использована методика локального U-Pb датирования отдельных кристаллов пирохлора на вторично-ионном массспектрометре SHRIMP-II, разработанная в ЦИИ ВСЕГЕИ (г. Санкт-Петербург). Детальное описание методики приведено в работе [Лепехина и др., 2016]. Измерения U-Th-Pb изотопных отношений и концентрации элементов в пирохлорах, а также калибровка стандарта производились на ионном микрозонде SHRIMP-II в Центре изотопных исследований Всероссийского геологического института (ВСЕГЕИ, г. Санкт-Петербург). Поскольку кристаллохимически пирохлор существенно отличается от циркона, на этапе, предваряющем собственно аналитические измерения уран-свинцовых отношений в пирохлорах нашей коллекции, экспериментально были подобраны оптимальный режим и последовательность регистрации ионных токов элементов с учетом возможных изобарных наложений и состава матрицы минерала, разработана схема измерительного протокола и расчета U-Pb возрастов. Локальное датирование пирохлора сопровождалось детальным определением химического состава кристаллов на микроуровне.

В качестве внутрилабораторного стандарта использовался пирохлор-331 из сёвитов II Вишневогорского массива, который характеризуется относительной площадной геохимической гомогенностью с возрастом 230 ± 1.3 млн лет и содержанием $U 1500 \pm 365$ г/т. Регулярный, на протяжении 10 месяцев, масс-спектрометрический анализ пирохлора-331 демонстрирует приемлемый для стандарта разброс получаемых ²⁰⁶Pb/²³⁸U отношений при использовании метода калибровки по линейной зависимости ln(Pb/U) от ln(UO/U). Измеренные ²⁰⁶Pb/²³⁸U отношения пирохлоров нормализовались по значению 0.0363, которое соответствует возрасту 230 млн лет (по модели [Stacey, Kramers, 1975]. Погрешность измерения изотопных отношений при количестве анализов в среднем 10-15 за сессию для стандарта варьирует в интервале 1–2% (2о). Концентрация ²³⁸U в анализируемых образцах пирохлоров оценивалась относительно усредненного содержания урана в пирохлоре-331 (≈1500 г/т). Поправка измеренного изотопного состава Рb на нерадиогенный свинец вносилась, исходя из модельного состава Pb_c, на соответсвующий возраст про модели Стейси-Крамерса [Stacey, Kramers, 1975]. Погрешности единичных анализов (отношений и возрастов) рассчитывались на уровне 1о, а погрешности вычисленных конкордантных возрастов приводятся на рис. 5-7 на уровне 20. Обработка первичных данных массспектрометрического анализа и построение графиков с конкордией по полученным изотопным отношениям осуществлялись с использованием программ SQUID и ISOPLOT/EX [Ludwig, 2003].

U-PB ДАТИРОВАНИЕ МИНЕРАЛОВ ГРУППЫ ПИРОХЛОРА ИВК И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Нами изучена U-Th-Pb изотопная система трех химически охарактеризованных образцов пирохлоров ИВК, формирующихся на различных стадиях рудообразования: а) из ранних карбонатитов (U-(Та)-оксикальциопирохлор, обр. К-37-95, сёвиты I, Потанинское месторождение), б) из поздних карбонатитов (Та-содержащий фторкальциопирохлор, обр. К-43-62, сёвиты II, Потанинское месторождение), в) из поздних карбонатитов (РЗЭ-Sr-содержащий фторкальциопирохлор, обр. 331, сёвиты II, Вишневогорское месторождение). Представительные анализы исследованных образцов пирохлоров (характеризующие центр и край кристаллов) и их пересчет на кристаллохимическую формулу приведены в табл. 1. Оптические изображения и изображения в обратно-рассеянных электронах (BSE) разновидностей пирохлоров показаны на рис. 2, 3.

Для использования в качестве изотопно-геохимического и геохронологического стандарта, как упоминалось ранее, был выбран образец пирохлора-331 Вишневогорского месторождения. Этот пирохлор классифицируется, согласно [Atencio et al., 2010], как Sr-P3Э-содержащий (1.5–4.5 мас. % SrO и 1.0–2.5 мас. % LREE) фторкальциопирохлор. Образуется он в поздних карбонатитах (сёвиты II) – в биотит-кальцитовых карбонатитах с апатитом, ильТаблица 1. Химический состав (мас. %) и формулы (ф. ед.) минералов группы пирохлора ильмено-вишневогорского карбонатит-миаскитового комплекса, Урал

Table 1. Compositions (wt %) and formulae (a.p.f.u.) of the pyrochlore-group minerals from ilmeno-vishnevogorsky carbonatite-miaskite complex, Urals

Компо-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
нент		Обр. К37-95 Обр. К43-6		(43-62					Обр. 331							
	Точки анализа															
	2c	2r	8c	4r alt	2	3	5	9	1-1c	1-2r	7-1c	7-2r	6-1c*	6-2c alt*	6-3r*	8-1c
Nb ₂ O ₅	38.72	39.58	45.60	50.42	63.83	61.66	62.03	63.44	65.58	60.23	66.59	65.64	60.33	52.08	59.26	66.98
Ta ₂ O ₅	4.02	4.20	4.37	4.39	2.12	3.53	2.92	2.30	0.02	0.27	0	0.13	0.31	0.00	0.00	0.00
TiO ₂	12.50	12.06	9.48	7.95	4.32	4.89	4.60	4.47	4.23	5.06	3.33	4.52	4.45	4.42	3.51	3.24
SiO ₂	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.01	4.99	0.00	0.00	1.58	0.00	0.00	0.00
UO ₂	22.11	21.00	16.43	12.44	0.08	1.80	0.83	0.00	0.16	0.57	0.19	0.21	3.72	3.72	0.85	0.2
ThO ₂	0.78	0.80	0.59	1.11	2.05	1.59	1.97	2.26	0.56	0.78	0.63	0.61	0.3	0.53	0.59	0.46
Fe ₂ O ₃	0.00	0.02	0.00	0.81	0.06	0.07	0.07	0.07	0.03	1.59	0.04	0	1.52	1.69	1.5	0.02
Y_2O_3	0.12	0.10	0.05	0.07	H.o.	H.o.	H.o.	H.o.	0.1	0.04	0.13	0.11	0.1	0	0.03	0.15
La ₂ O ₃	0.31	0.41	0.44	0.61	0.32	0.22	0.59	0.14	0.51	1.49	0.22	0.54	0.37	0.7	1.08	0.68
Ce ₂ O ₃	0.72	1.02	1.11	1.82	0.88	0.82	1.33	0.56	1.43	4.52	0.96	1.42	1.52	2.42	2.98	1.96
Nd ₂ O ₃	0.94	0.95	0.95	0.94	0.38	0.26	0.37	0.12	H.o.	H.o.	H.o.	H.o.	H.o.	H.o.	H.o.	H.o.
MnO	0.00	0.00	0.00	0.02	H.o.	H.o.	H.o.	H.o.	0	0.74	0.00	0.00	0.21	0.42	0.5	0.04
MgO	0.03	0.01	0.01	0.02	H.o.	H.o.	H.o.	H.o.	H.o.	но	H.o	H.o.	H.o.	H.o.	H.o.	H.o.
CaO	11.06	10.65	11.08	6.65	15.48	15.47	15.03	16.07	14.98	6.69	15.04	14.37	11.68	6.04	12.24	13.2
BaO	0.00	0.00	0.00	0.14	H.o.	H.o.	H.o.	H.o.	0	1.58	0.06	0	0.77	2.39	0.73	0
SrO	0.28	0.31	0.46	0.44	0.56	0.39	0.47	0.47	1.53	4.4	1.02	1.44	1.97	5.01	3.27	1.8
PbO	0.91	0.91	0.53	0.50	H.o.	H.o.	H.o.	H.o.	0.18	0.46	0.19	0.33	0.48	0.31	0.05	0.46
Na ₂ O	5.11	5.40	5.79	0.16	6.55	6.51	6.53	6.48	6.99	0.35	7.12	6.98	3.64	0.05	2.09	6.71
K ₂ O	0.01	0.01	0.01	0.57	H.o.	H.o.	H.o.	H.o.	H.o.	н.о	H.o.	H.o.	H.o.	H.o.	H.o.	H.o.
F	1.44	1.51	1.38	1.65	5.25	4.74	4.86	5.21	4.58	0.50	4.29	4.43	2.76	0.24	2.13	4.21
Total	99.04	99.04	98.25	90.71	101.87	101.95	101.59	101.58	100.89	94.26	99.81	100.73	95.71	80.02	90.81	100.11
$O = F_2$	0.61	0.64	0.58	0.69	2.21	2.00	2.05	2.19	1.93	0.21	1.81	1.87	1.16	0.10	0.90	1.77
Total	98.44	98.41	97.67	90.02	99.67	99.95	99.55	99.39	99.0	94.0	98.0	98.9	94.55	79.92	89.9	98.3
	· ·				∙ ⊅ормул	ы рассч	итаны і	на 2 кат	иона в	В-позиц	ции (ф. «	ед.)	I	1		
Позиция В																
Nb	1.250	1.270	1.425	1.491	1.764	1.712	1.734	1.753	1.804	1.460	1.845	1.793	1.632	1.673	1.753	1.850
Та	0.078	0.081	0.082	0.078	0.035	0.059	0.049	0.038	0.000	0.004	0.000	0.002	0.005	0.000	0.000	0.000
Ti	0.672	0.644	0.493	0.391	0.199	0.226	0.214	0.205	0.194	0.204	0.153	0.205	0.200	0.236	0.173	0.149
Fe3+	0.000	0.004	0.000	0.040	0.003	0.003	0.003	0.003	0.001	0.064	0.002	0.000	0.068	0.090	0.074	0.001
Sum B	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Позици	яΑ															
Ca	0.847	0.810	0.820	0.466	1.014	1.018	0.996	1.052	0.977	0.268	0.987	0.930	0.749	0.460	0.858	0.864
Mn	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.384	0.000	0.000	0.011	0.025	0.028	0.002
Mg	0.003	0.001	0.001	0.002	0.000	0.000	0.000	0.000	H.o.	0.034	H.o.	H.o.	H.o.	H.o.	H.o.	H.o.
Ba	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.033	0.001	0.000	0.018	0.067	0.019	0.000
Sr Dl	0.011	0.013	0.018	0.01/	0.020	0.014	0.01/	0.017	0.054	0.13/	0.036	0.050	0.068	0.206	0.124	0.064
PD No	0.018	0.017	0.010	0.009	0.000	0.000	0.000	0.000	0.003	0.007	0.003	0.005	0.008	0.000	0.001	0.008
K	0.708	0.743	0.770	0.020		0.775	0.785	0.708	0.823	0.030	0.040	0.017	0.422	0.007	0.203	0.795
Y	0.001	0.001	0.001	0.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005
LP3Э	0.051	0.061	0.063	0.080	0.035	0.029	0.052	0.018	0.043	0.118	0.027	0.043	0.0415	0.081	0.0975	0.059
U	0.351	0.332	0.253	0.181	0.001	0.025	0.011	0.000	0.002	0.007	0.003	0.003	0.050	0.059	0.012	0.003
Th	0.013	0.013	0.009	0.017	0.029	0.022	0.028	0.031	0.008	0.010	0.009	0.008	0.004	0.009	0.009	0.006
Sum A	2.007	1.996	1.953	0.847	1.875	1.883	1.887	1.886	1.915	0.767	1.916	1.861	1.374	0.920	1.414	1.806
F	0.325	0.339	0.302	0.341	1.015	0.921	0.950	1.007	0.881	0.085	0.831	0.846	0.522	0.054	0.441	0.813

Примечание. Химический состав минералов группы пирохлора определен: 1–8 – на микрозонде САМЕВАХ в ИГМ СО РАН (г. Новосибирск, аналитик В.В. Шарыгин); 9–16 – на микрозонде Саmeca-100 в ИГГ УрО РАН (г. Екатеринбург, аналитик Д.В. Замятин); alt – изменен; с – центр кристалла, г – край кристалла. Н.о. – не определялся. *Зерно пирохлора с реликтами ранних генераций. 1, 2, 3 – U-(Ta)-содержащий оксикальциопирохлор; 4 – U-(Ta)-содержащий гидропирохлор (обр. К-37-95, сёвит I, Потанинское месторождение, ИВК); 5–8 – Та-содержащий фторкальциопирохлор (обр. К-43-62, севит II, Потанинское месторождение, ИВК); 9–16 – (обр. 331, сёвит II, Вишневогорское месторождение, ИВК): 9, 11, 12, 16 – Sr-(РЗЭ)-содержащий фторкальциопирохлор; 10 – Sr-(РЗЭ)-содержащий кеноцирох пор. 13 – реликты U-содержащието цирох дора (ядро зерна 6-1С, обр. 331). 14 – U-содержащий гидороци. (РЗЭ)-содержащий кенопирохлор; 13 – реликты U-содержащего пирохлора (ядро зерна 6-1С, обр. 331), 14 – U-содержащий гидропирохлор (средняя зона зерна 6-2с, обр. 331); 15 – Sr-(РЗЭ)-содержащий фторкальциопирохлор (кайма зерна 6-3г, обр. 331) (см. рис. 3).

ЛИТОСФЕРА том 18 № 5 2018

U-Pb датирование минералов группы пирохлора ильмено-вишневогорского комплекса U-Pb dating of pyrochlor group minerals (Ilmeny-Vishnevogorsk complex)

Note. Compositions of the pyrochlore-group minerals was determined: 1-8 - on the microprobe CAMEBAX in the IGM SB RAS (Novosibirsk, analyst V.V. Sharygin); 9-16 - on the microprobe Cameca-100 in the IGG, UD RAS (Ekaterinburg, analyst D.V. Zamyatin); alt – changed; c – the center of the crystal, r – the rim of the crystal. H.o – not determined. *Pyrochlore grain with early generation relics. 1, 2, 3 – U-(Ta)-containing oxycalciopyrochlore; 4 - U-(Ta)-containing hydropyrochlore (sample K-37-95, Sövit I, Potaninskoye deposit, IVC); 5-8 - Ta-containing fluorcalciopyrochlore (sample K-43-62, Sövit II, Potaninskoye deposit, IVC); 9-16 - (sample 331, Sövit II, Vishnevogorskoye deposit, IVC): 9, 11, 12, 16 - Sr-(REE)-containing fluorcalciopyrochlore; <math>10 - Sr-(REE)-containing ksenopyrochlore; 13 - relics of U-containing pyrochlore (grain core 6-1c, sample 331), 14 - U-containing hydropyrochlore (middle zone of grain 6–2c, sample 331); 15 - Sr-(REE)-containing fluorcalciopyrochlore (rim of grains 6-3r, sample 331) (see Fig. 3).

Рис. 5. U-Pb-диаграмма уранпирохлора по результатам локального анализа методом ЛА ИСП-МС (приведены только конкордантные анализы), обр. 37-95 из карбонатитов Потанинского месторождения, ильменовишневогорский комплекс, Южный Урал.

На врезке представлены внешние формы датированных зерен (в проходящем свете). Здесь и на рис. 6, 7: размеры эллипсов ошибок при 2*5*.

Fig. 5. U-Pb-diagram on laser ablation ICP-MS uranpyrochlore data (only concordant analises are viewed), sample 37-95 from carbonatites of the Potanino ore deposit, II'meny-Vishnevogorsky complex.

Insert shows external forms of dated grains (transparent light). Here and on Figs 6,7 – error elipses are 2σ .

менитом, пирротином, пиритом (апикальная часть Вишневогорского массива миаскитов). Пирохлор образует крупные и мелкие октаэдрические кристаллы и зерна бурого, светло-бурого (почти желтого) и красно-бурого цвета.

Уран-свинцовый изотопный анализ этого пирохлора как локальными методами (SHRIMP-II, лазерная абляция с ИСП-МС), так и методом изотопного разбавления с применением хроматографического разделения элементов и термо-ионной масс-спектрометрии показал удовлетворительную сходимость результатов. Так, датировки различных зерен пирохлора-331 двумя локальными методами отличаются не более чем на 0.5–1.0 млн лет, а оценки содержания урана варьируют в пределах 30% (SHRIMP-II и лазерная абляция с ИСП-МС). Коррекция измеренного изотопного состава Pb внутрилабораторного стандарта пирохлора на изотопный состав нерадиогенной компоненты проводилась по составу свинца в сингенетичном пирохлору кальците (минерале-акцепторе Pb с высоким соотношением Pb/U), а также по соответствующим параметрам модельной кривой [Stacey, Kramers, 1975] эволюционного развития изотопного состава свинца Земли 230 млн лет назад: ²⁰⁷Pb/²⁰⁶Pb = 0.851, ²⁰⁸Pb/²⁰⁶Pb = 2.082 и ²⁰⁶Pb/²⁰⁴Pb = 18.35. В пределах полученной погрешности возрастные и концентрационные характеристики зерен этого пирохло-

Таблица 2. Характеристика состава и U-Th-Pb изотопной системы минералов группы пирохлора ниобиевых месторождений ильмено-вишневогорского комплекса (Южный Урал)

 Table 2. Composition and U-Th-Pb isotope system of the pyrochlore-group minerals from Nb-deposits of Ilmeno-Vishnevogorsky carbonatite-miaskite complex (the Southern Urals)

№ обр	Вмещающая	Хим. тип пирохлора	Состав пирохлора (основ-	Характеристика	U-Рb возраст						
-	порода	по [Atencio, 2010]	ные компоненты в мас. %)	U-Th-Pb системы пи-	пирохлора,						
				рохлора	млн лет						
Потанинское Nb месторождение, Центральная щелочная полоса											
К37-95*	Сёвиты І	U-(Та)-содержащий	$Na_{2}O - 4.6$	[U]: 130000-240000	378.3 ± 4.9						
		оксикальциопирохлор	CaO – 9.1	Th/U: 0.3-0.9	n = 28						
			$Nb_2O_5 - 42.5$								
			$(PbO+ThO_2+UO_2) - 20$								
К43-62	Сёвиты II	Та-содержащий фтор-	$Na_2O - 8.4$	[U]: 300-2800	216 ± 5.0						
		кальциопирохлор	CaO – 14.6	Th/U: 8.6-92.0	n = 15						
			$Nb_2O_5 - 60.7$	²⁰⁶ Pb _c : 25-68 %							
			$(PbO+ThO_2+UO_2) - 2$								
Вишневогорское Nb месторождение											
331	Сёвиты II	Sr-содержащий	$Na_2O - 8.5$	[U]: 620–4700	230 ± 1.5						
		фторкальциопирохлор	CaO – 13.1	Th/U: 0.7–5.2	n = 40						
			$Nb_2O_5 - 65.1$	²⁰⁶ Pb _c : 9–39 %							
			$(PbO + ThO_2 + UO_2) - 1$								

Примечание. Для датирования отдельных кристаллов пирохлора с содержанием окислов урана менее чем 2.5% была использована методика локального U-Pb датирования на вторично-ионном масс-спектрометре SHRIMP-II, разработанная в ЦИИ ВСЕГЕИ (г. Санкт-Петербург). Детальное описание методики приведено в работе [Лепехина и др., 2016]. *U-Pb датирование урансодержащего пирохлора (с содержанием окислов урана более, чем 2.5%) выполнено с помощью метода лазерной абляции и массспектрометрии в индуктивно связанной плазме; п – количество анализов, [U] – содержание урана (г/т), рассчитанное относительно концентрации урана (1500 г/т) внутрилабораторного стандарта пирохлор-331, ²⁰⁶Pb_c – относительная доля нерадиогенного свинца. Детали химического состава см. в табл.1.

Note. U-Pb dating of pyrochlore (with a uranium oxide content of less than 2.5%) was performed using the methodof ID-TIMS on the secondary ion mass spectrometer SHRIMP-II, developed at VSEGEI (St.Petersburg). A detailed description of the technique in [Lepekhina et al., 2016].*U-Pb dating of uranium-containing pyrochlore (with a content of uranium oxides of more than 2.5%) was performed using the method of laser ablation and mass spectrometry in inductively coupled plasma; n - number of analyzes, [U] – the concentration of U (ppm) calculated in regards to the concentration of U (1500 ppm) in the in-house standard pyrochlore-331; ²⁰⁶Pb_c is the relative portion of nonradiogenic Pb. Details of the chemical composition see in Table 1.

ра воспроизводятся удовлетворительно и для дальнейших U-Pb измерений коллекции образцов пирохлора был принят возраст внутрилабораторного стандарта "пирохлор-331" 230 \pm 1.3 млн лет, а содержание U – 1500 \pm 365 г/т.

Используя возрастные и концентрационные характеристики пирохлора-331, U-Pb отношения коллекции пирохлоров редкометалльных месторождений карбонатитовых комплексов Урала измерялись относительно U/Pb отношений зерен пирохлора-331, измеряемых в той же сессии в качестве калибровочного стандарта. Несмотря на существенные вариации в содержании урана (от 300 г/т до 1.9 %), тория (от 1400 г/т до 3 %) и высокой доли нерадиогенного свинца (от 9 до 65% ²⁰⁶Pb), уран-свинцовые изотопные системы изучаемых фторкальциопирохлоров оказались практически ненарушенными, а возраст в пределах погрешности - конкордантным. Относительно высокие содержания радиогенного свинца (206 Pb_{rad} = 14–300 г/т) обеспечили низкую погрешность единичных измерений изотопных отношений и воспроизводимость результатов, которая в пересчете на возраст приводит к погрешности конкордантных оценок на уровне 1–6 млн лет. Результаты U-Th-Pb изотопного анализа пирохлоров представлены в табл. 2 и на рис. 5–7.

Уранпирохлоры, формирующиеся на ранних стадиях карбонатитообразования в сёвитах I Центральной щелочной полосы (обр. К-37-95, U-(Та)-оксикальциопирохлор, Потанинское месторождение), характеризуются частично нарушенной U-Pb изотопной системой и имеют возраст 378.3 ± 4.9 млн лет (см. рис. 5). Обнаруженное нарушение замкнутости изотопной системы этих пирохлоров отражает не только повышенную степень метамиктизации кристаллической структуры минерала из-за высокого содержания радиоактивных U и Th, но и воздействие поздних процессов, связанных с постколлизионной руднометасоматической стадией эволюции комплекса 220-250 млн лет назад.

Для Sr-P3Э-содержащего пирохлора (обр. 331, фторкальциопирохлор) из сёвитов II Вишневогорского месторождения, как уже упоминалось выше, получен возраст 230 ± 1.5 млн лет (см. рис. 6).

Рис. 6. U-Pb диаграмма с конкордией по результатам SHRIMP-II анализа пирохлора (обр. 331) из поздних карбонатитов Вишневогорского ниобиевого месторождения, ильмено-вишневогорский комплекс, Южный Урал.

Fig. 6. U-Pb concordia diagram with pyrochlore SHRIMP-II data, sample 331 from carbonatites of the Vishnevogorsk Nb-ore deposit, Ilmeny-Vishnevogorsky complex.

Наиболее молодой возраст показали Та-содержащие фторкальциопирохлоры поздних карбонатитов Потанинского месторождения (обр. К-43-62) – 216 ± 5 млн лет (см. табл. 2, рис. 7).

Таким образом, U-Pb система изученных образцов пирохлора свидетельствует о многоэтапном формировании Nb-редкометалльной минерализации ИВК.

Наиболее ранний этап рудообразования (378 ± ± 4.9 млн лет) фиксируется изотопными U-Pb системами U-(Та)-пирохлоров Потанинского месторождения и, возможно, связан с первичной кристаллизацией щелочно-карбонатитовой магматической системы [Краснобаев и др., 2010а, 2014; Недосекова и др., 2010, 2014; Иванов и др., 2010; Недосекова, 2012]. U-Pb системы цирконов ИВК также фиксируют близкий возрастной кластер – 383 ± ± 14 млн лет [Краснобаев и др., 2010а]. Наиболее близкий возраст 388 + 50 млн лет показала Sm-Nd минеральная изохрона для карбонатитов самой богатой рудной зоны Вишневогорского месторождения (рудной зоны 140, "седловидная залежь" миаскитов) [Иванов и др., 2010], который, вероятно, отражает завершающие стадии функционирования щелочно-карбонатитовой магматической системы и один из основных этапов рудообразования на Вишневогорском ниобиевом месторождении.

Следующие этапы рудообразования широко проявлены на Вишневогорском (230 ± 1.5 млн лет) и позднее на Потанинском (217.2 ± 1.9 млн лет) месторождениях. Близкий возраст 245 ± 8 млн лет (T_2) показывают Rb-Sr минеральные изохроны для миаскитов, который был соотнесен с этапом метаморфических преобразований ИВК [Кононова и др.,

Рис. 7. U-Pb диаграмма с конкордией по результатам SHRIMP-II анализа пирохлора (обр. К-43-62) из карбонатитов Потанинского месторождения, ильмено-вишневогорский комплекс, Южный Урал.

Fig. 7. U-Pb concordia diagram with SHRIMP-II data for pyrochlore (sample K-43-62) of carbonatites from the Potanino ore deposit, Ilmeny-Vishnevogorsky complex.

1979; Кгатт et al., 1983]. Возрасты, связанные с этапом позднеколлизионного метаморфизма [Пучков, 2010], также фиксируются U-Pb изотопными системами цирконов миаскитов – 269 ± 6 , 279 ± 10 млн лет [Краснобаев и др., 2010а, 2014] – и цирконов карбонатитов ИВК – 279 ± 10 млн лет [Краснобаев и др., 2010б], 280 \pm 8 (Недосекова и др., 2014). Значительная часть цирконов миаскит-пегматитов имеет возраст 251 \pm 6 млн лет, подтверждающий, что процессы пегматитообразования и редкометалльного рудообразования в пегматитах ИВК связаны с позднеколлизионным и постколлизионным этапами развития Уральской складчатой области.

Таким образом, формирование ниобиевых руд происходило как на завершающем этапе функционирования щелочно-карбонатитовой магматической системы (≈380-390 млн лет назад), так и на постколлизионном этапе (~230-250 млн лет назад) становления карбонатитовых комплексов Урала. Поздние этапы рудообразования в ильменовишневогорском комплексе, вероятно, связаны с ремобилизацией и переотложением щелочнокарбонатитового и редкометалльного вещества. Рудный процесс (образование пирохлора из обогащенного HFSE флюида) связан с масштабными процессами щелочного метасоматоза и пегматитообразования и завершал процессы преобразований пород карбонатитовых комплексов на позднеколлизионном и постколлизионном этапах становления Уральской складчатой области (≈280–220 млн лет).

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что использование U-Pb изотопной системы пирохлора для датирования редкометалльной минерализации, по крайней мере в локальном варианте, оказывается вполне успешным даже в случае высокоурановых разновидностей минерала. Более того, применение минералого-парагенетического анализа пирохлора, сопровождающего и предваряющего уран-свинцовые аналитические работы, позволяет успешно корректировать варианты применяемого аналитического метода (лазерная абляция, вторично-ионный микрозонд) и произвести корректную интерпретацию получаемых геохронологических данных. Очевидно, что редкометалльная ниобиевая минерализация ильменовишневогорского комплекса формировалась в течение относительно длительного временного интервала – от 380 до 220 млн лет – и ее развитие сопровождало различные этапы становления и преобразования магматических комплексов. При этом рудный потенциал минерализации также эволюционировал со временем: если на ранних этапах преимущественно формировались высокоурановые разновидности пирохлора, основного рудного минерала, то РЗЭ-Sr высоко-Nb разновидности в основном связаны с поздними стадиями метасоматической перекристаллизации.

Работа выполнена по проекту РФФИ № 17-05-00154 и темы государственного задания ИГГ УрО РАН № АААА-А18-118052590028-9.

СПИСОК ЛИТЕРАТУРЫ

- Багдасаров Ю.А. (2014) О некоторых условиях образования карбонатитов линейно-трещинного типа. *Литосфера*, (4), 113-119.
- Еськова Е.М., Жабин А., Мухитдинов Г. (1964) Минералогия и геохимия редких элементов Вишневых гор. М.: Наука, 319 с.
- Еськова Е.М., Назаренко И.И. (1960) Пирохлор Вишневых гор, его парагенетические ассоциации и особенности химического состава. Вопросы геологии, геохимии и генезиса месторождений редких элементов *Тр. ИМГРЭ*, **4**, 33-50.
- Ефимов А.Ф., Еськова Е.М., Лебедева С.И., Левин В.Я. (1985) Типохимизм акцессорного пирохлора в породах щелочного комплекса Урала. *Геохимия*, (2), 202-208.
- Золоев К.К., Левин В.Я., Мормиль С.И., Шардакова Г.Ю. (2004) Минерагения и месторождения редких металлов, молибдена, вольфрама Урала. Екатеринбург: ИГГ УрО РАН, ОАО УГСЭ, 336 с.
- Иванов К.С. (2011) О природе карбонатитов Урала. *Литосфера*, (1), 20-33.
- Иванов К.С., Вализер П.М., Ерохин Ю.В., Погромская О.Э. (2010) О генезисе карбонатитов складчатых поясов (на примере Урала). Докл. АН, **435**(2), 218-222.
- Кононова В.А., Донцова Е.И., Кузнецова Л.Д. (1979) Изотопный состав кислорода и стронция Ильмено-Вишневогорского щелочного комплекса и вопросы генезиса миаскитов. *Геохимия*, (12), 1784-1795.
- Крамм У., Чернышев И.В., Грауэрт Б., Кононова В.А., Брёкер В. (1993) Типология и U-Pb систематика цирконов: изучение цирконов в нефелиновых сиенитах Ильменских гор, Урал. *Петрология*, 1(5), 536-549.
- Краснобаев А.А., Вализер П.М., Анфилогов В.Н., Немов А.Б., Бушарина С.В. (2014) Цирконология пегматитов Ильменских гор. Докл. АН, **457**(4), 455.
- Краснобаев А.А., Русин А.И., Бушарина С.В., Лепехина Е.Н., Медведева Е.В. (2010а) Цирконология амфиболовых миаскитов Ильменогорского массива (Южный Урал). Докл. АН, **430**(2), 227-231.
- Краснобаев А.А., Русин А.И., Вализер П.М., Бушарина С.В. (2010б) Цирконология кальцитовых карбонатитов Вишневогорского Массива (Южный Урал). Докл. РАН, **431**(3), 1-4.
- Левин В.Я., Роненсон Б.М., Самков В.С., Левина И.А., Сергеев Н.И., Киселев А.П. (1997) Щелочно-карбонатитовые комплексы Урала. Екатеринбург: Уралгеолком, 274 с.
- Лепехина Е.Н., Антонов А.В., Беляцкий Б.В., Родионов Н.В., Бережная Н.Г., Шевченко С.С., Сергеев С.А. (2016) Особенности U-Pb датирования пирохлора из щелочно-ультраосновного полифазного массива Ковдор (Сев. Карелия): изотопногеохимические характеристики эволюции состава минералов группы пирохлор. Регион. геология и металлогения, (67), 86-94.
- Недосекова И.Л. (2007) Новые данные по карбонатитам Ильмено-Вишневогорского комплекса (Ю. Урал, Россия). Геология руд. месторождений, **49**(2), 146-164.
- Недосекова И.Л. (2012) Возраст и источники вещества Ильмено-Вишневогорского щелочного комплекса (Ю. Урал): геохимические и Rb-Sr, Sm-Nd, U-Pb и

U-Pb датирование минералов группы пирохлора ильмено-вишневогорского комплекса U-Pb dating of pyrochlor group minerals (Ilmeny-Vishnevogorsk complex)

Lu-Hf изотопные данные. Литосфера, (5), 77-95.

- Недосекова И.Л., Белоусова Е.А., Шарыгин В.В. (2010) Источники вещества Ильмено-Вишневогорского щелочного комплекса по данным Lu-Hf изотопии в цирконах. Докл. AH, **435**(2), 234-239.
- Недосекова И.Л., Беляцкий Б.В. (2012) Возраст и источники вещества Ильмено-Вишневогорского щелочного комплекса (Ю. Урал): изотопные Rb-Sr, Sm-Nd, U-Pb и Lu-Hf данные. Докл. АН, **446**(1), 71-76.
- Недосекова И.Л., Белоусова Е.А., Беляцкий Б.В. (2014) U-Pb возраст и Lu-Hf изотопные системы цирконов Ильмено-Вишневогорского щелочно-карбонатитового комплекса, Южный Урал. Литосфера, (5), 19-32.
- Недосекова И.Л., Беляцкий Б.В., Белоусова Е.А. (2016) Редкие элементы и изотопный состав гафния как индикаторы генезиса циркона при эволюции щелочнокарбонатитовой магматической системы (Ильмено-Вишневогорский комплекс, Урал, Россия). *Геология* и геофизика, **57**(6), 1135-1154.
- Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Баянова Т.Б. (2009) Ильмено-Вишневогорский миаскиткарбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия). *Геология руд. месторождений*, **51**(2), 157-181.
- Недосекова И.Л., Замятин Д.А., Удоратина О.В. (2017) Рудная специализация карбонатитовых комплексов Урала и Тимана. Литосфера, **17**(2), 60-77.
- Недосекова И.Л., Прибавкин С.В. (2015) Рудная ниобиевая минерализация редкометальных месторождений и рудопроявлений Ильмено-Вишневогорского щелочно-карбонатитового комплекса (Южный Урал). Ежегодник-2014. Вып. 162. Екатеринбург: ИГГ УрО РАН, 175-183.
- Пучков В.Н. (2010) Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 280 с.
- Расс И.Т., Абрамов С.С., Утенков У.В. (2006) Роль флюидов в петрогенезисе карбонатитов и щелочных пород: геохимические индикаторы. *Геохимия*, (7), 692-711.
- Русин А.И., Вализер П.М., Краснобаев А.А., Банева Н.Н., Медведева Е.В., Дубинина Е.В. (2012) Природа гранат-анортит-клинопироксен-амфиболовых пород ильменогорского комплекса (Южный Урал). *Литосфера*, (1), 91-109.
- Чернышев И.В., Кононова В.А., Крамм У., Грауерт Б. (1987) Изотопная геохронология щелочных пород Урала в свете данных уран-свинцового метода по цирконам. *Геохимия*, (3), 323-338.
- Atencio D., Andrade M.B., Christy, Giere R., Kartashov P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. *Canad. Miner.*, 48, 673-698.
- Braccialli L., Parrish R.R., Horstwood M.S.A., Condon D.J., Najman Y. (2013) U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance. *Chem. Geol.*, **347**, 82-101.
- Deng X.-D., Li J.-W., Zhao X.-F., Hu H., Selbyc D., Souza Z.S (2013) U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: implications for geochronology of pegmatite and associated ore deposits. *Chem. Geol.*, 344, 1-11.

Hogarth D.D. (1977) Classification and nomenclature of the

LITHOSPHERE (RUSSIA) volume 18 No. 5 2018

pyrochlore group. Amer. Mineral., 62, 403-410.

- Kramm U., Blaxland A.B., Kononova V.A., Grauert B. (1983) Origin of the Ilmenogorsk-Vishnevogorsk nepheline syenites, Urals, USSR, and their time of emplasement during the history of the Ural fold belt: a Rb-Sr study. J. Geol., 91, 427-435.
- Ludwig K.R. (2003) User's manual for Isoplot/Ex. Version 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA, USA. Spec. Pub. 1a., 75 p.
- Lumpkin G.R., Ewing R.C. (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. Amer. Miner., 80, 732-743.
- Millonig L.J., Gerdes A., Groat L.A. (2012) U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a geodynamic perspective. *Lithos*, **152**, 202-217.
- Millonig L.J., Gerdes A., Groat L.A.(2013) The effect of amphibolite facies metamorphism on the U-Th-Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks. *Chem. Geol.*, 353, 199-209. doi: 10.1016/j.chemgeo.2012.10.039
- Mitchell R.H. (2005) Carbonatites and carbonatites and carbonatites. *Canad. Mineral.*, 43, 2049-2068.
- Nedosekova I.L., Belousova E.A., Sharygin V.V., Belyatsky B.V., Baynova T.B.(2013) Origin and evolution of the Il'meny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-elements compositions, Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data. *Mineral. Petrol.*, 107, 101-123.
- Pöml P., Menneken M., Stephan T. Niedermeier DDR, Geisler T., Putnis A. (2007), Stephan T. (2007) Mechanism of hydrothermal alteration of natural self-irradiated and synthetic crystalline titanite-based pyrochlore.*Geochim. Cosmochim. Acta*, 71, 3311-3322.
- Stacey J.S., Kramers J.D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth Planet. Sci. Lett.*, **26**, 207-221.
- Wetzel F., Schmitt A.K., Kronz A., Worner G. (2010) In situ ²³⁸U-²³⁰Th disequilibrium dating of pyrochlore at submillennial precision. *Amer. Miner.*, **95**, 1353-1356.

REFERENCES

- Atencio D., Andrade M.B., Christy, Giere R., Kartashov P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. *Canad. Miner.*, 48, 673-698.
- Bagdasarov Yu.A. (2014) On some conditions of formation of carbonatites of the linear fissure type. *Litosfera*, (4), 113-119. (In Russian)
- Braccialli L., Parrish R.R., Horstwood M.S.A., Condon D.J., Najman Y. (2013) U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance. *Chem. Geol.*, **347**, 82-101.
- Chernyshev I.V., Kononova V.A., Kramm U, Grauetrt B. (1987) Isotope geochronology of alkaline rocks of the Urals in the light of zircon uranium-lead data. *Geokhimiya*, (3), 323-338. (In Russian)
- Deng X.-D., Li J.-W., Zhao X.-F., Hu H., Selbyc D., Souza Z.S (2013) U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: implications for geochronology of pegmatite and associated ore deposits. *Chem. Geol.*, 344, 1-11.
- Efimov A.F., Es'kova E.M., Lebedeva S.I., Levin V.Ya.

Недосекова и др. Nedosekova et al.

(1985). Typochemistry of accessory pyrochlore in rocks of the alkaline complex of the Urals. *Geokhimiya*, (2), 202-208.

- Es'kova E.M., Nazarenko I.I. (1960) Pyrochlor of Cherry Mountains, its paragenetic associations and features of the chemical composition. *Voprosy geologii, geokhimii i genezisa mestorozhdenii redkih ehlementov* [Questions of geology, geochemistry and genesis of deposits of rare elements]. Proc. IMGRE, **4**, 33-50.(In Russian)
- Es'kova E.M., Zhabin A., Mukhitdinov G. (1964) *Mineralogiya i geokhimiya redkikh elementov Vishnevykh gor* [Mineralogy and geochemistry of rare elements of the Cherry Mountains]. Moscow, Nauka Publ., 319 p. (In Russian)
- Hogarth D.D. (1977) Classification and nomenclature of the pyrochlore group. *Amer. Mineral.*, **62**, 403-410.
- Ivanov K.S. (2011)About the nature of Ural carbonatites. *Li*tosfera, (1), 20-33.(In Russian)
- Ivanov K.S., Valizer P.M., Erokhin Yu.V., Pogromskaya O.E. i dr. (2010) On the genesis of carbonatites of the fold belts (on the example of the Urals). *Dokl. Akad. Nauk*, 435(2), 218-222.(In Russian)
- Kononova V.A., Dontsova E.I., Kuznetsova L.D. (1979) The isotopic composition of oxygen and strontium of the Ilmen-Vishnevogorsky alkaline complex and the genesis of miaskites. *Geokhimiya*, (12), 1784-1795. (In Russian)
- Kramm U., Blaxland A.B., Kononova V.A., Grauert B. (1983) Origin of the Ilmenogorsk-Vishnevogorsk nepheline syenites, Urals, USSR, and their time of emplasement during the history of the Ural fold belt: a Rb-Sr study. J. Geol., 91, 427-435.
- Kramm U., Chernyshev I.V., Grauert B., Kononova V.A., Breker V. (1993) Typology and U-Pb systematics of zircons: the study of zircons in the nepheline syenites of the Ilmen mountains, the Urals. *Petrologiya*, 1(5), 536-549. (In Russian)
- Krasnobaev A.A., Rusin A.I., Busharina S.V., Lepekhina E.N., Medvedeva E.V. (2010a) Zirconology of amphibole miaskites of the Ilmenogorsk massif (South Urals). Dokl. Akad. Nauk, 430(2), 227-231.(In Russian)
- Krasnobaev A.A., Rusin A.I., Valizer P.M., Busharina S.V. (2010b) Zirconology of calcite carbonatites of the Vishnevogorsky Massif (Southern Urals). *Dokl. Akad. Nauk*, **431**(3), 1-4.(In Russian)
- Krasnobaev A.A., Valizer P.M., Anfilogov V.N., Nemov A.B., Busharina S.V. (2014) Zirconology of pegmatites of the Ilmensky mountains. *Dokl. Akad. Nauk*, 457(4), 455. (In Russian)
- Lepekhina E.N., Antonov A.V., Belyatskii B.V., Rodionov N.V., Berezhnaya N.G., Shevchenko S.S., Sergeev S.A. (2014) Features of U-Pb pyrochlore dating from the alkaline-ultrabasic polyphase massif Kovdor (North. Karelia): isotope-geochemical characteristics of the evolution of the composition of pyrochlore group minerals. *Region. geologiya i metallogeniya*, (67), 86-94. (In Russian)
- Levin V.Ya., Ronenson B.M., Samkov V.S., Levina I.A., Sergeev N.I., Kiselev A.P.(1997) Shchelochno-karbonatitovye kompleksy Urala [Alkali-carbonatite complexes of the Urals]. Ekaterinburg, Uralgeolkom Publ., 274 p. (In Russian)
- Ludwig K.R. (2003) User's manual for Isoplot/Ex. Version 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA, USA.

Spec. Pub., 1a., 75 p.

- Lumpkin G.R., Ewing R.C. (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. Amer. Mineralog., 80, 732-743.
- Millonig L.J., Gerdes A., Groat L.A. (2012) U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a geodynamic perspective. *Lithos*, **152**, 202-217.
- Millonig L.J., Gerdes A., Groat L.A. (2013) The effect of amphibolite facies metamorphism on the U-Th-Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks. *Chem. Geol.*, 353, 199-209. doi: 10.1016/j.chemgeo.2012.10.039
- Mitchell R.H. (2005) Carbonatites and carbonatites and carbonatites. Canad. Mineral., 43, 2049-2068.
- Nedosekova I.L. (2007) New data on carbonatites of the Ilmeny-Vishnevogorsk complex (the Sourthern Urals, Russia). *Geol. Rud. Mestorozhd.*, **49**(2), 146-164. (In Russian)
- Nedosekova I.L. (2012) Age and sources of the Ilmeny-Vishnevogorsk alkaline complex (the Southern Urals): geochemical and Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotopic data. *Litosfera*, (5), 77-95.(In Russian)
- Nedosekova I.L., Belousova E.A., Sharygin V.V. (2010) Sources of the substance of the Ilmeny-Vishnevogorsk alkaline complex according to Lu-Hf isotopic data in zircons. *Dokl. Akad. Nauk*, 435(2), 234-239.(In Russian)
- Nedosekova I.L., Belousova E.A., Sharygin V.V., Belyatsky B.V., Baynova T.B. (2013) Origin and evolution of the II'meny-Vishnevogorsk carbonatites (Urals, Russia): insights from trace-elements compositions, Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data. *Mineral. Petrol.*, 107, 101-123.
- Nedosekova I.L., Belousova E.A., Belyatskii B.V. (2014) U-Pb age and Lu-Hf isotopic systems of zircons of the Ilmeny-Vishnevogorsk alkaline carbonatite complex, Southern Urals. *Litosfera*, (5), 19-32. (In Russian.
- Nedosekova I.L., Belyatskii B.V. (2012) Age and sources of the substance of the Ilmeny-Vishnevogorsk alkaline complex (the Southern Ural): Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data. *Dokl. Akad. Nauk*, **446**(1), 71-76. (In Russian)
- Nedosekova I.L., Belyatskii B.V., Belousova E.A. (2016) Rare elements and isotopic composition of hafnium as indicators of the genesis of zircon during the evolution of the alkali-carbonatite magmatic system (Ilmeny-Vishnevogorsk complex, Urals, Russia).*Geol. Geofiz.*, **57**(6), 1135-1154. (In Russian)
- Nedosekova I.L., Vladykin N.V., Pribavkin S.V., Bayanova T.B. (2009) Ilmeny-Vishnevogorsk miaskite-carbonatite complex: origin, ore content, sources of matter (Urals, Russia). *Geol. Rud. Mestorozhd.*, **51**(2), 157-181. (InRussian)
- Nedosekova I.L., Zamyatin D.A., Udoratina O.V. (2017) Ore specialization of carbonatite complexes of the Urals and Timan. *Litosfera*, **17**(2), 60-77. (In Russian)
- Nedosekova I.L., Pribavkin S.V. (2015) Ore niobium mineralization of rare-metal deposits and ore occurrences of Ilmeny–Vishnevogorsk alkaline carbonatite complex (Southern Urals). *Ezhegodnik-2014. IGG UrO RAN*, **162**, 175-183. (In Russian)
- Pöml P., Menneken M., Stephan T. Niedermeier DDR, Geisler T., Putnis A. (2007) Mechanism of hydrothermal alteration of natural self-irradiated and synthetic crys-

ЛИТОСФЕРА том 18 № 5 2018

talline titanite-based pyrochlore. *Geochim. Cosmochim.* Acta, 71, 3311-3322.

- Puchkov V.N. (2010) Geologiya Urala i Priural'ya (aktual'nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) [Geology of the Urals and Urals (Current problems of stratigraphy, tectonics, geodynamics and metallogeny)]. Ufa: DizainPoligrafServis Publ., 280 p. (In Russian)
- Rass I.T., Abramov S.S., Utenkov U.V. (2006) The role of fluids in the petrogenesis of carbonatites and alkaline rocks: geochemical indicators. *Geokhimiya*, (7), 692-711. (In Russian)
- Rusin A.I., Valizer P.M., Krasnobaev A.A., Baneva N.N., Medvedeva E. V., Dubinina E.V. (2012) Nature of gar-

net-anorthite-clinopyroxene-amphibole rocks of the Ilmenogorsk complex (South Ural). *Litosfera*, (1), 91-109. (In Russian)

- Stacey J.S., Kramers J.D.(1975) Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth Planet. Sci. Lett.*, **26**, 207-221.
- Wetzel F., Schmitt A.K., Kronz A., Worner G. (2010) In situ ²³⁸U-²³⁰Th disequilibrium dating of pyrochlore at submillennial precision. *Amer. Mineral.*, **95**, 1353-1356.
- Zoloev K.K., Levin V.Ya., Mormil' S.I., Shardakova G.Yu. (2004) Minerageniya i mestorozhdeniya redkikh metallov, molibdena, vol'frama Urala [Minerageny and deposits of rare metals, molybdenum, tungsten of the Urals]. Ekaterinburg, 336 p. (In Russian)