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Diabetes is a common condition characterized by persistent hyperglycemia. High blood

sugar primarily affects cells that have a limited capacity to regulate their glucose intake.

These cells include capillary endothelial cells in the retina, mesangial cells in the renal

glomerulus, Schwann cells, and neurons of the peripheral and central nervous systems.

As a result, hyperglycemia leads to largely intractable complications such as retinopathy,

nephropathy, hypertension, and neuropathy. Diabetic pain neuropathy is a complex

and multifactorial disease that has been associated with poor glycemic control, longer

diabetes duration, hypertension, advanced age, smoking status, hypoinsulinemia, and

dyslipidemia. While many of the driving factors involved in diabetic pain are still being

investigated, they can be broadly classified as either neuron -intrinsic or -extrinsic.

In neurons, hyperglycemia impairs the polyol pathway, leading to an overproduction

of reactive oxygen species and reactive nitrogen species, an enhanced formation of

advanced glycation end products, and a disruption in Na+/K+ ATPase pump function. In

terms of the extrinsic pathway, hyperglycemia leads to the generation of both overactive

microglia and microangiopathy. The former incites a feed-forward inflammatory loop

that hypersensitizes nociceptor neurons, as observed at the onset of diabetic pain

neuropathy. The latter reduces neurons’ access to oxygen, glucose and nutrients,

prompting reductions in nociceptor terminal expression and losses in sensation, as

observed in the later stages of diabetic pain neuropathy. Overall, microglia can be seen

as potent and long-lasting amplifiers of nociceptor neuron activity, and may therefore

constitute a potential therapeutic target in the treatment of diabetic pain neuropathy.

Keywords: pain, diabetes, neuropathy, neurons, microglia, oxidative stress, hyperglycemia

INTRODUCTION

Pain is defined as an unpleasant sensation triggered by noxious stimuli, inflammation, or damage to
the nervous system. It is an evolutionarily-conserved defensive mechanism that prevents excessive
tissue damage and preserves homeostasis by generating defensive withdrawal reflexes (Scholz and
Woolf, 2002). Nociception is initiated by the detection of mechanical, chemical, or thermal noxious
stimuli by specialized ion channel receptors present on sensory neurons (Scholz and Woolf, 2002).
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The activation of these ion channels triggers an influx of various
cations, depolarizing the neurons’ membrane potentials, which,
in turn, activate voltage-gated sodium channels (NaVs). This
leads to an influx of sodium, and the subsequent firing of action
potentials. In the peripheral nervous system (first order fiber),
painful sensations are relayed by small, myelinated Aδ-fibers
(fast pain transmission) and unmyelinated C-fibers (slow pain
transmission) to the spinal cord (second order fiber) (Tesfaye and
Kempler, 2005). These action potentials then trigger defensive
reflexes, and travel up to the brain (third order fiber) where pain
information is integrated and its emotional perception occurs.

Chronic Pain
Chronic pain is a highly debilitating condition and it is the
most common reasons for visits to health care providers (Scholz
and Woolf, 2002). The most incapacitating type of chronic
pain is peripheral neuropathic pain. This pain is unique in
regard to its constancy, the severity of its symptoms, and its
resistance to current pharmacological treatment (Zimmermann,
2001; Woolf, 2004). Neuropathic pain is usually generated by
peripheral nerve damage resulting from neuronal or spinal
cord injuries, surgery, cancer, infection, or diabetes (Scholz and
Woolf, 2002; Woolf, 2004; Tsuda et al., 2005). In pathological
states, this pain often persists after the disappearance of its
causal stimulus. In some cases, pain can be perceived more
severely, a phenomenon known as hyperalgesia, or can be
generated by normally innocuous stimuli, a condition known
as allodynia. Tactile allodynia originates from afferent Aβ fibers
(light touch/pressure transmission) that gain the ability to release
pro-inflammatory neuropeptides (SP and CGRP) in the synaptic
cleft, and/or the sprouting of these fibers to the dorsal superficial
laminae IIb, a zone normally restricted to the projection of
C fibers (Woolf et al., 1992; Miki et al., 1998). In the CNS,
thalamic higher-order neurons often become hyperexcitable and
act as pain generators or amplifiers (Fischer and Waxman,
2010). For example, increasing N-Methyl-D-Aspartate receptor
(NMDAR) phosphorylation reduces its endogenous blockade
by magnesium, thereby enhancing calcium (Ca+2) and sodium
(Na+) influx. This ultimately promotes the establishment of
spinal windup, which is an increase in the excitability of spinal
neurons (Haigh and Blake, 2001).

Sensitization of Sensory Neurons
Most drugs targeted to alleviate neuropathic pain are designed
to block neurotransmission, and as such, only bring temporary
relief (Ji and Suter, 2007). Neuropathic pain is often accompanied
by persistent inflammation, as evidenced by the high levels
of oxidative substances (Pabreja et al., 2011), inflammatory
cytokines (Pabreja et al., 2011), and mediators (Tsuda et al., 2005)
present in the neuronal micro-environment. Unlike classical
neurotransmitters, these inflammatory molecules are mainly
produced by peripheral immunocytes and central glial cells
(Marchand et al., 2005; Tsuda et al., 2005). The transcriptomic
data of nociceptor neurons notably revealed the expression
of specific receptors for immunoglobulins, cytokines and
chemokines (Chiu et al., 2014). This evidences the role of
nociceptors in directly detecting and responding to interleukins

(IL)-1β (Samad et al., 2001; Binshtok et al., 2008) and IL-6
(Opree and Kress, 2000), activin (TGFβ member) (Zhu et al.,
2007), TNF-α (Wagner and Myers, 1996), CCL3 (Zhang et al.,
2005), GDNF (Malin et al., 2006), histamine (Shim et al.,
2007), kinin (Talbot et al., 2012; De Brito Gariepy et al.,
2013), and PGE2 (Samad et al., 2001, 2002) released in the
context of pain. Nociceptors can also sense IL-5 produced
during allergic airway inflammation (Talbot et al., 2015), IL-
31 produced during lymphoma-associated itch (Cevikbas et al.,
2014), thymic stromal lymphopoietin (TSLP) and IL-4 produced
during atopic dermatitis (Wilson et al., 2013; Oetjen et al.,
2017), and IL-33 derived from contact with poison ivy (Liu
et al., 2016). Additionally, nociceptors can drive IL-23 production
during psoriasis (Riol-Blanco et al., 2014). Intracellular kinases
and transcription factors downstream of these tyrosine kinase
receptors, include PI3K (Pereira et al., 2015), MAP kinases (Ji
et al., 2002a), p38 (Ji et al., 2002b), JAK1 (Ludbrook et al., 2016;
Oetjen et al., 2017), and STAT3 (Mori et al., 2011) and their
activation can lead to pain. Thus, these kinases lead to the post-
translational modifications of ion channel transducers or voltage
gated sodium channels (Julius, 2013). Nociceptor sensitization
is thereby largely due to a decrease in the activation threshold
of transient receptor potential vannilloid-1 (TRPV1) or transient
receptor potential ankyrin-1 (TRPA1) (Davis et al., 2000; Bautista
et al., 2006), and NaV1.7, NaV1.8, and NaV1.9 (Kerr et al., 2001;
Nassar et al., 2004). In short, lowering the activation threshold
of nociceptors results in pain hypersensitivity. For example,
prostaglandin PGE2 is a well-known neuron sensitizer (Samad
et al., 2001), which partly explains why non-steroidal anti-
inflammatory drugs exhibit analgesic effects in inflammatory
conditions (Vardeh et al., 2009). Nerve growth factor (NGF)
has also been recognized as a major neuronal sensitizer (Ji
et al., 2002b), which has led to the development of neutralizing
monoclonal anti-NGF antibodies as a treatment for chronic
inflammatory pain conditions (Hefti et al., 2006). These changes
in hypersensitivity are limited to sites where sensitizingmediators
are produced, which are known as zones of primary hyperalgesia.
Outside of these zones, pain hypersensitivity usually results
from central sensitization, which involves changes in the CNS
(Woolf et al., 1992; Woolf, 2007; von Hehn et al., 2012).
During inflammation, many sensitizing mediators are likely to be
released simultaneously; therefore, the targeted pharmacological
blockade of only one of these agents will have a limited
effect. Conversely, targeting the sensitized nerve or convergent
signaling mediators or enzymes may have broader and more
durable effects as to treating inflammatory pain by stopping it at
its source (Khoutorsky and Price, 2017).

DIABETES

Diabetes, derived from the Greek word diabanein, means “to
pass through,” in reference to the symptomatic excessive urine
production observed in patients (Kumar et al., 2005). The term
diabetes, without qualification, usually refers to diabetes mellitus,
which roughly translates to “excessive production of sweet urine,”
known clinically as glycosuria (Kumar et al., 2005). According
to the World Health Organization, at least 422 million people
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worldwide suffered from diabetes in 2014, representing 8.5% of
the world’s adult population (WHO, 2016). In 2012, diabetes
was responsible for 1.5 million deaths, and its incidence is
increasing by more than 8% per year (WHO, 2016). In some
regions, such as in Eastern Mediterranean countries, prevalence
is increasing by nearly 14%. The National Diabetes Information
Clearinghouse estimates the yearly costs of diabetes to more
than $132 billion in the United States. In terms of pathology,
diabetes is the result of chronic high blood sugar stemming from
either low insulin production, as observed in type 1 diabetes;
or to a severe reduction in the response of insulin receptors
(IR) to insulin, as observed in type 2 diabetes (Kumar et al.,
2005). Chronic hyperglycemia causes the classical symptoms of
diabetes, including polyuria (frequent urination), polydipsia and
polyphagia (Kumar et al., 2005). While both types of diabetes
share similar symptoms, they can be distinguished by measuring
endogenous insulin production (Kumar et al., 2005).

Type 1 Diabetes
Formerly known as juvenile diabetes, type 1 diabetes (T1D)
represents approximately 10% of diabetes cases in North America
and Europe. There is currently no known preventive measure
against type 1 diabetes, which is considered immune-mediated
or idiopathic (Kumar et al., 2005). Insulin-dependent diabetes
mellitus is characterized by the auto-immune, T-cell mediated
(Rother, 2007) destruction of insulin-producing beta cells of the
pancreatic islets of Langerhans. The destruction of β cells triggers
insulin deficiency, which leads to increases of glucose in the
patient’s blood and urine. Evidence indicates that type I diabetes
is induced by a combination of genetic susceptibility [mutation(s)
to iddm1, drb1, dqa, and dqb1 gene locus], environmental factors
[diet, vitamin D deficiency (Mathieu et al., 2005)], or exposure
to a driving antigen (exposure to wheat protein (Knip and
Siljander, 2008), antibody from cow’s milk protein (Virtanen
et al., 1994). There is no current preventive measure against T1D,
which can be highly pathogenic, or even fatal, if left untreated.
Emerging treatments such as pancreas (Noguchi, 2010) and
islet transplants (Noguchi, 2009) have shown relatively positive
outcomes in pre-clinical models, and are currently being studied
in clinical trials. However, drawbacks to implantation include
the necessity for immunosuppressant administration, which
increased susceptibility to infection and cancer, graft rejection of
the implanted pancreas/islets, hypoglycemia, and a current lack
of suitable donors (Balamurugan et al., 2014).

Type 2 Diabetes
Type 2 diabetes (T2D), also known as non-insulin dependent
diabetesmellitus, is ametabolic disorder characterized by chronic
high blood glycemia and insulin receptor resistance, sometimes
in combination with relative insulin deficiency (Kumar et al.,
2005). This type of diabetes can be initially managed by
increasing exercise and dietary modification. It represents almost
90% of Western countries’ diabetic populations (Kumar et al.,
2005). The onset of T2D is related to genetic and environmental
factors. The environmental detrimental factors can include
smoking, obesity, diet, alcoholism, low physical activity, high
cholesterol, hypertension, metabolic syndrome, and Cushing

syndrome (Kumar et al., 2005). In recent years, compelling
research and efforts have been made to genetically identify
mutant or polymorphic genes that predispose individuals to
develop type 2 diabetes. These have been found to include tcf7l2,
pparγ , fto, kcnj11, notch2, wfs1, cdkal1, igf2bp2, slc30a8, jazf1,
hhex (Groop and Lyssenko, 2008; Lyssenko, 2008) and mody
genes, which themselves can account for up to 5% of T2D cases
(Billings and Florez, 2010). Mutations in both human leptin
production and the human leptin receptor gene can cause severe
obesity and pituitary dysfunction, which can in turn engender
T2D (Clement et al., 1998; Wabitsch et al., 2015).

Complications of Diabetes
The chronic impairment of glucose metabolism associated
with both types of diabetes has been associated with severe
macrovascular (cardiovascular) disease and microvascular
complications including retinopathy, nephropathy and sensory
poly-neuropathy (Schemmel et al., 2009). Neuropathy is the most
common complication seen in ambulatory care of type 2 diabetes
patients (Schemmel et al., 2009). Overall, the aforementioned
complications can result in debilitating and/or life-threatening
conditions such as renal failure, erectile dysfunction, blindness,
macular edema, impaired wound healing, hypertension, obesity,
coronary artery disease, cerebrovascular accidents, heart failure,
allodynia, hyperalgesia, nerve degeneration, insensitivity, and
limb amputation.

Diabetic Pain Neuropathy
Diabetic pain neuropathy (DPN) is defined as the presence
of signs and symptoms of peripheral nerve dysfunction in
people with diabetes after having excluded other potential causes
(Crofford, 1995). DPN is considered the principal cause of
mortality, morbidity (Ziegler, 2008), and amputation (Molines
et al., 2010) in diabetic patients, as well as the most common
cause of neuropathy (Obrosova, 2009). The prevalence of DPN
is thought to be proportional to disease duration and seems to be
potentiated by an improper control of blood glycemia (Kumar
et al., 2005). Ten percentage of 1-year diabetes patients suffer
from neuropathy; this number increases to 50% amongst 25-year
diabetes patients. Overall, 30% of diabetic patients suffer from
DPN (Guastella and Mick, 2009). Interestingly, 39% of diabetic
patients either receive no treatment for their symptoms or remain
unmanaged (Daousi et al., 2004). While the prevalence of poorly-
managed blood glycemia makes a significant proportion of
diabetic patients highly susceptible to developing DPN, glycemic
management in clinical care is slowly improving (Aschner et al.,
2018). There is emerging evidence that genetic factors may play
an important role in DPN pathogenesis (Prabodha et al., 2018).

DPN symptoms include paresthesia, numbness, and burning
(Schemmel et al., 2009), which vary in nature and severity
depending on the particular subpopulation of neurons being
affected (Kumar et al., 2005). Certain patients with DPN do
not present any symptoms; however, most report pain and/or
loss of function in distal regions such as in their toes, feet,
fingers, hands, or arms (Ziegler, 2008). Thus, at the onset
of DPN, peripheral nerves often act as pulse generators,
maintaining distal terminals of sensory nerve fibers in a state
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of hyperexcitability (Obrosova, 2009). When these fibers
undergo active degeneration or impaired regeneration, they
can begin to generate ectopic discharges, which induce positive
pain symptoms. Later stages of DPN are characterized by a
progressive loss of neuronal fibers, which is associated with a loss
of sensation, and can ultimately cause diabetic foot syndrome
(Yagihashi et al., 2007). The specific clinical diagnosis of DPN
involves both electrophysiological and electromyography
testing, respectively, assessing nerve conduction and muscular
responses to electric stimulation (Kumar et al., 2005; Guastella
and Mick, 2009). The metrics of blood glycemia, arterial
pressure, heart rate, muscle force, reflex quality, and sensitivity
to spatiotemporal changes can be used to indirectly help
diagnose diabetic neuropathy in a more general sense
(Guastella and Mick, 2009).

A FOCUS ON THE MOLECULAR DRIVERS
OF DIABETIC PAIN NEUROPATHY

The origins of DPN are multifactorial (Figure 1), and result
from neuron intrinsic (Figure 2) and extrinsic factors (Figure 3).
This review will examine pre-clinical evidence supporting
how chronic hyperglycemia dysregulate neurons’ biochemical
pathways, activates glia and how such impairments trigger DPN.
Current theories (Brownlee, 2001, 2005) regarding neurons
intrinsic factor driving the development of DPN include:
uncontrolled oxidative stress (section Reactive Oxygen Species)
(Nishikawa et al., 2000; Pop-Busui et al., 2006), the formation
of reactive nitrogen species (section Reactive Nitrogen Species)
(Zochodne and Levy, 2005), the formation of advanced glycation
end products (section Advanced Glycation End Products)
(Brownlee, 2005; Sugimoto et al., 2008), impaired Na+/K+

ATPase activity (section Ion Imbalance) (Vague et al., 1997;
Gerbi et al., 1998; Raccah, 1998), an imbalance in the polyol
pathway (section Polyol Pathway) and/or to the activity of
the aldol reductase (section Aldose Reductase) (Oates, 2002).
Extrinsically, it is believed that, at the spinal synapse, the
neuro-immune interplay occurring between activated microglia
and pain-sensing neurons maintains DPN (section Painful Glia
to Microglia, an Emerging Target in DPN). The neuronal
loss of energy supply occurring through microangiopathy (see
Microangiopathy section) appears to be responsible for the loss
of sensation observed in later stages of DPN. Finally, future
therapeutic avenues will be discussed in the Conclusion and
Future Therapeutic Directions section.

NEURON INTRINSIC FACTORS DRIVING
DIABETIC PAIN NEUROPATHY

Reactive Oxygen Species
Cellular aerobic respiration generates themajority of intracellular
free radicals (Kumar et al., 2005; Marieb et al., 2009), which
are implicated in normal aging processes (Kumar et al., 2005).
Cells are said to be in an oxidative stress state when their
levels of reactive oxygen species (ROS) exceed their antioxidant
capacity (Kumar et al., 2005). ROS are characterized by their high
reactivity stemming from their unpaired valance electrons. These

electrons can damage or modify the function of RNA, DNA and
proteins. Given that neurons are unable to limit their glucose
uptake (Brownlee, 2001), possess numerous mitochondria and
long axons make them highly sensitive to oxidative damage.
Excessive glucose metabolism by the mitochondrial respiratory
chains increases the generation of superoxide anions (Nishikawa
et al., 2000).

As seen in Figure 2, mitochondrial superoxide anions
reduce glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
activity, which in turn reduces cells’ anti-oxidative capacity
(Du et al., 2000). The exposure of mitochondria to ROS
progressively induces mitochondrial dysfunction, which in turn
promotes energy deficiency, axonal degeneration and DPN.
Mitochondria are key regulators of cell survival and apoptosis.
Damaged mitochondria trigger axon degeneration through
caspase activation and cycles of fusion and fission (Green and
Reed, 1998). The fission of mitochondria is partly regulated
by dynamin related protein 1 (DRP1) (Twig et al., 2008).
Increased DRP1 levels have been associated with mitochondria
dysfunction, reduced ATP production, and axonal degeneration
(Leinninger et al., 2006). DRP1 is notably upregulated in the
axons of diabetic patients (Leinninger et al., 2006). Overall, an
excess of ROS generation along with the inability of neurons
to metabolize free radicals can promote the progressive loss of
organelles and dysfunction in nuclear cell membranes (Figueroa-
Romero et al., 2008).

ROS also reduce axon neurotrophic factor (IGF-1, IGF-II,
NGF, and NT-3) production levels, thereby impairing neurons’
ability to regenerate (Ishii, 1995; Tomlinson et al., 1997). High
glucose levels stimulate the generation of pro-oxidant and
highly reactive advanced glycation end products (AGE; section
Advanced Glycation End Products) (Baynes and Thorpe, 1999).
AGEs and ROS appear to be interdependent (Metz et al., 2003;
Monnier, 2003), and central to the etiology of neurovascular
dysfunction (Cameron et al., 2001). AGE generation is enhanced
by oxygen and ROS; AGE formation can trigger ROS generation
and oxidative damage (Monnier, 2003). Finally, hyperglycemia
promotes the over-activation of polyol pathways (section Polyol
Pathway), reducing cells’ NADPH/NADP+ ratios and neurons’
antioxidant capacities (Figueroa-Romero et al., 2008). Chronic
hyperglycemia also enhances PKC activity, either through
PLC-DAG pathways, or by reducing DAG-kinase activity (Xia
et al., 1994) (King and Loeken, 2004). Enhanced PKC activity
also increases mitochondrial NADPH oxidase activity (Inoguchi
et al., 2000), further enhancing ROS levels (Balbi et al., 2018). A
visual summary of ROS effects on neurons and glia can be found
in Figures 2, 3.

ROS are normally metabolized by endogenous antioxidant
enzymes such as superoxide dismutase, catalase and glutathione
peroxidase, and by certain vitamins such as A, C (ascorbic acid)
and E (tocopherol) (Figueroa-Romero et al., 2008; Midaoui et al.,
2015; Talbot et al., 2016a). Nutritional supplementation with
antioxidants was shown to reduce DPN in rodents (Pop-Busui
et al., 2006). While alpha-lipoic acid and superoxide dismutase
improved symptoms and electroneurographic parameters among
subjects with diabetic neuropathy (Bertolotto and Massone,
2012), clinical studies generally have shown mixed results in
terms of antioxidant efficacy (Oyenihi et al., 2015). Overall, it is
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FIGURE 1 | Schematic representation of a spinal dorsal horn tripartite synapse. Overview of the pre (A) and post- synaptic neurons interplay with microglia (B) in the

spinal cord dorsal horn.

believed that increasing the bioavailability of antioxidant, as well
as associated reductive stress, have limited impact on the patients’
health outcome.

Reactive Nitrogen Species
Nitric oxide (NO) is a potent vasoactive gas formed by three nitric
oxide synthase (NOS) isoenzymes: neuronal (nNOS), endothelial
(eNOS), and inducible (iNOS) (Kumar et al., 2005). In
physiology, eNOS releases NO, which dilates vascular endothelial
cells (Kumar et al., 2005) and reduces platelet aggregation
(Riddell and Owen, 1999). In the context of inflammation, as
is seen in diabetes, iNOS is overexpressed/activated, producing
large amounts of NO (∼100-fold than other NOS) (Vareniuk
et al., 2008; Haddad and Couture, 2016). In DPN, iNOS
hyperactivation is found in keratinocytes, macrophages,
leukocytes, sensory neurons, and microglia (Zochodne et al.,
2000). Excess NO from nNOS acts as a pro-nociceptive mediator
in sensory C fibers (Matsui et al., 2010). It can also overactivate
neuronal NADPH oxidase and mitochondrial xanthine oxidase.
These effects reduce the antioxidant capacity of cells and
contribute to ROS overproduction. Hyperglycemia-induced
ROS react with cellular and/or circulating NO to form reactive
nitrogen species (RNS) and peroxynitrite (Zochodne et al., 2000).
RNS react with the thiol groups of SNAP proteins (Di Stasi et al.,
2002), impairing the formation of neuronal regeneration cones.
Consequently, RNS severely impact the capacity of neurons
to repair themselves after oxidative damage (Kennedy and
Zochodne, 2005). Currently, no therapy aims to reduce RNS

generation, as it is still considered to be a contributing factor
to DPN rather than an inducer. Please refer to Figures 2, 3 for
visual summaries of NO interactions with neurons and glia.

Advanced Glycation end Products
Advanced glycation end products (AGE) comprise a
heterogeneous group of molecules formed by the non-enzymatic
reaction of a sugar with an amino acid, a protein, a lipid,
or a nucleic acid (Marieb et al., 2009). AGE precursors pass
through several dehydration and redox reactions and molecular
rearrangements to form AGEs (Sugimoto et al., 2008). The initial
reaction leading to AGE formation is reversible, and depends
on the available quantity of substrate (glucose) (Brownlee,
2005). However, in cases of chronic hyperglycemia (diabetes),
AGE precursors are not degraded, but rather build in numbers,
thereby generating AGEs (Sugimoto et al., 2008). As seen in
Figure 2, AGEs are highly reactive, and can affect any type
of protein, including matrix, basal membrane and structural
proteins (Sugimoto et al., 2008). For example, AGEs bind to
and modify the myelin of nervous fibers, prompting their
phagocytosis by circulating macrophages or microglia (Bruck
and Friede, 1990). This process contributes to classical DPN
segmental demyelination (Said, 2007). AGEs can also directly
interact with tubulin and actin neurofilaments found in neurons’
axonal cytoskeletons (Sugimoto et al., 2008). AGE-directed
modification of these proteins impairs axonal transport, and
promotes axonal atrophy and/or degeneration (Sugimoto
et al., 2008). The glycation of extracellular matrix (laminin)
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FIGURE 2 | Chronic hyperglycemia impairs neuron function. Sensory neurons have a limited capacity to regulate their uptake of glucose. In the context of chronic

hyperglycemia, such as in diabetes, high glucose concentrations drive mitochondria to produce ATP and transfer electrons. Excess glucose is also metabolized

through the polyol pathway, leading to the production of advanced glycation end products. The electrons from the mitochondrial respiratory chain combine with

intracellular oxygen and nitric oxide to produce ROS and RNS. Consequently, RNS, ROS, and AGE activate nuclear transcription factors, which enhance the

expression of ion channel transducers (TRP and NaV channels) in addition to impairing neurons’ capacity to self-repair. At the same time, microglia-released mediators

(cytokines, ATP, BDNF, NO) stimulate GPCR and tyrosine kinase receptors, triggering downstream signaling cascades, which lead to the phosphorylation of TRP and

NaV channels. A decrease in the activation threshold of these ion channel transducers can augment the influx of cations, which ultimately results in action potential

firing and ectopic discharges. These effects enhance pain perception and signaling to the CNS. Chronic hyperglycemia also increases oxidative stress in the blood

vessels that supply oxygen and nutrients to neuron terminals. This oxidative stress can cause microangiopathy, a phenomenon characterized by the loss of capillaries,

which starves neuronal energy supplies. These phenomena are responsible for the loss of neuron terminals and pain insensitivity, as typically observed in later stage of

DPN.

membranes is AGE-mediated and can counteract the innate
ability of neurons to self-repair (Duran-Jimenez et al., 2009;
Singh et al., 2014). AGE additionally binds to specific membrane
receptors known as RAGE (Haslbeck et al., 2005), driving
the transcription of pro-inflammatory mediators (Brownlee,

2005). RAGE stimulation increases matrix metalloproteinase
production, which can further exacerbate nerve fiber damage
(King, 2001). AGEs demonstrably accumulate in hyperglycemic
patients experiencing retinopathy, nephropathy, hypertension
and neuropathy (Brownlee, 2005). Environmental pollutants,
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FIGURE 3 | Chronic hyperglycemia impairs microglial function. Circulating glucose is taken up by microglia, which enhances mitochondrial ATP production and

electron transfer. The released electrons combine with intracellular oxygen to produce reactive oxygen species. Sensory neurons release ATP, which in turn activates

microglial P2X4R; this drives microglial calcium influx, MAPK activation, receptor phosphorylation and protein transduction (cytokines, prostaglandins, BDNF) as well

as NO production. These mediators are subsequently released by microglia, and either block inhibitory interneurons or enhance neuronal activation.

smoking, and poor nutrition also enhance AGE formation
(Sugimoto et al., 2008). Avoiding these factors can help
control AGE formation and its associated damage (Sugimoto
et al., 2008; Singh et al., 2014). Specific inhibitors such as
aminoguanidine improve patients’ nerve conduction velocity
and neuronal blood flow, in addition to mitigating apoptosis
and oxidative stress (Sugimoto et al., 2008; Orman et al.,
2015).

Ion Imbalance
Na+/K+ ATPase Pump

The Na+/K+ ATPase pump is a ubiquitous, energy-dependent
enzyme implicated in the cellular membrane transport of
ions. Using ATP, it transfers three sodium ions outside the
cell in exchange for two potassium ions transported into
the cell (Kumar et al., 2005). In doing so, it maintains the
membrane’s electric potential and nerve conductance (Creange
et al., 2006). During hyperglycemia, impairments to polyol
pathways (section Polyol Pathway) and PKC activity alter
the function of the Na+/K+ ATPase pump leading to faulty
nerve conduction (Creange et al., 2006). Reduced intracellular
potassium levels curbed nodal potassium conductance, thereby
affecting axonal excitability (Misawa et al., 2005). Hypokalemia
can also alter Ca2+/K+ pump function, leading to neuronal
hypocalcaemia.

Calcium

In early stages of DPN, the elevated levels of intracellular
calcium disrupt nerve conductance (Kostyuk et al., 2001) and
can, through calcium cytotoxicity, cause irreversible damage
to the nerve fibers (Creange et al., 2006). Conversely, the
hypocalcaemia observed in later stages of DPN mediates
axonal degeneration, as seen in Figure 2 (Gispen and Hamers,
1994). Overall, impaired neurotrophic factor levels in DPN-
afflicted neurons drive mitochondrial depolarization and Ca2+

concentration impairment, which in turn negatively impacts
the TCA cycle and ATP production (Fernyhough and Calcutt,
2010). ATP dysregulation impairs cellular calcium homeostasis,
reducing levels of endoplasmic reticulum (ER) and plasma
membrane Ca2+ pumps (PMCA), as evidenced in streptozotocin
(STZ)-treated rats. The impairment of ER calcium homeostasis
disrupts protein synthesis, post-translational modification, and
trafficking, all of which may contribute to distal axonal
degeneration (Fernyhough and Calcutt, 2010). T-type calcium
channel blockers notably improve thermal and mechanical
hypersensitivity in T2D mice (Misawa et al., 2009).

Sodium

The DRG neurons of STZ-treated rats show an increased
expression of sodium channels (NaV1.3, NaV1.6, and NaV1.9)
(Craner et al., 2002; Hong et al., 2004), which contributes
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to ectopic impulse generation and neuronal hypersensitivity
(Fischer and Waxman, 2010). The groups of Howe (Howe
et al., 1977) and Wall (Wall and Gutnick, 1974) demonstrated
that thermal, mechanical, and chemical stimuli thresholds are
reduced following spontaneous electrical activity. Uninjured
axons proximal to the affected neurons also exhibit ectopic
discharge. Both of these phenomena result in increased electrical
impulses in the spinal dorsal horn. The association between
ectopic discharges and increased sodium channel expression can
partly account for the therapeutic efficacy of anticonvulsant and
tricyclic antidepressants in the treatment of DPN (Spruce et al.,
2003).

Polyol Pathway
Cellular glucose is converted into pyruvate by the actions
of diverse enzymes implicated in glycolysis. In hyperglycemic
conditions, excess glucose is not oxidized, but rather directed
to the polyol pathway (Oates, 2002). Firstly, aldose reductase
(AR)metabolizes glucose into sorbitol, which is later transformed
into fructose by sorbitol dehydrogenase. Fructose is, notably, ten
times more potent than glucose in generating AGE (Oka and
Kato, 2001) (section Advanced Glycation End Products). Aldose
reductase and sorbitol dehydrogenase are characterized by their
lowered substrate affinity (elevated Km); the concentration of
available substrate is therefore the limiting factor of this reaction
(Oates, 2002).

Elevated sorbitol levels have been associated with cellular and
organ damage (Oyama et al., 2006). It is believed that sorbitol
directly depletes bioavailable myoinositol (MI) and increases
its expulsion from the cell (Oka and Kato, 2001; Oates, 2002).
Elevated blood sugar also prevents sorbitol’s cellular reuptake
by saturating its membrane transporter. A deficit in MI alters
the metabolism of phospho-inositides, reducing diacylglycerol
(DAG) and inositol triphosphate (IP3) production. This results
in a lesser activation of PKC, which is itself a key activator of
the Na+/K+ ATPase pump (Oka and Kato, 2001). A reduction in
Na+/K+ ATPase pump activity triggers an intracellular reduction
in K+, combined with increases in the concentration of Na+. In
neurons, imbalances in ionic charges directly contribute to DPN
by generating conductance anomalies (Oka and Kato, 2001). In
this context, decreases in intracellular sodium concentrations
affect sodium-dependent membrane transport. This transport
is implicated in the reuptake of several amino acids and MI,
contributing to a retro-positive feedback loop (Das Evcimen and
King, 2007; Oates, 2008). Disruptions in the polyol pathway
also increase ROS levels (section Reactive Oxygen Species)
by reducing the production of glutathione, in addition to
intracellular levels of antioxidants (NADPH). Polyol pathway
pathologies also reduce the production of NO, which can in
turn enhance vessel constriction. This impairs endothelial cell
function can lead to the onset of microangiopathy (section
Microangiopathy) (Oka and Kato, 2001); the effects of polyol
pathways in DPN can be seen in Figure 1.

Aldose Reductase
In patients with T1D, polymorphisms in the genes coding for
aldose reductase (AR) can impair thermal nociceptive thresholds

(Thamotharampillai et al., 2006). Higher AR levels also correlate
with a higher severity of intra-epidermal nerve fiber loss (Hirai
et al., 2000). AR specific inhibitors (ARi) have been shown
to reverse or delay the onset of DPN in diabetic animals
(Schemmel et al., 2009). While ARis are unavailable on the
US market, they are currently being used clinically in Japan
(Hotta et al., 1996). Epalrestat is currently the only commercially
available inhibitor (Singh Grewal et al., 2016); and prevented the
progression of diabetic neuropathy and retinopathy/nephropathy
in neuropathic patients as compared to a control group (Hotta
et al., 2012).

NEURON EXTRINSIC FACTORS
PROMOTING DIABETIC PAIN
NEUROPATHY

Several neuron-extrinsic factors contribute to the onset and
maintenance of neuropathic pain. Recent data has highlighted
the key contribution of immune cells, acting as extrinsic factors,
in driving DPN. Normally, the immune and sensory nervous
systems work in concert to preserve homeostasis. They do so
via interactions and exchanges between receptors, cytokines
and neuropeptides (Talbot et al., 2016b; Veiga-Fernandes and
Mucida, 2016). While this bidirectional communication helps
to protect humans from danger, it can also contribute to
disease pathophysiology (Chiu et al., 2013; Wilson et al., 2013;
Talbot et al., 2015, 2016b; Foster et al., 2017). In fact, the
somatosensory nervous system is anatomically positioned within
primary and secondary lymphoid tissues and mucosa so as to
interact with the cells of the immune system (Downing and
Miyan, 2000; Rosas-Ballina et al., 2011; McMahon et al., 2015;
Talbot et al., 2015; Veiga-Fernandes and Mucida, 2016; HD iPSC
Consortium., 2017). Nociceptors, when sensing immunocyte-
released cytokines, lower their firing thresholds; in doing so, they
incite pain hypersensitivity (Wilson et al., 2013). While various
immunocytes contribute to this phenomenon, this review will
focus on the crucial role of microglia. Finally, we will review the
role of blood vessels, which supply oxygen and glucose to the
nerve, in generating DPN.

Microglia
The central nervous system (CNS) is primarily composed of
afferent and efferent neuron fibers that transport electrical signals
to and from the periphery, oligodendrocytes that form and
repair myelin, and astrocytes and microglia that support and
protect neurons (Marieb et al., 2009). Microglial cells represent
10–15% of all cells found within the human brain (Foster
et al., 2015). Glia act as resident macrophage-related cells of
the CNS, comprising the first line of defense against pathogen
invasion, generating innate immune responses by recognizing,
sequestering and processing antigens (Lawson et al., 1992).While
there are two major types of microglia: resident, and perivascular
(Gosselin et al., 2010), which express receptors for most
inflammatory neurotransmitters (Hickey and Kimura, 1988), it
seems that glia exists in nine distinct subtypes with different
functions, appearance, and presence. Resident microglial cells

Frontiers in Neuroscience | www.frontiersin.org 8 January 2019 | Volume 13 | Article 25

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rajchgot et al. Diabetic Pain Neuropathy

are bone marrow-derived hematopoietic cells that invade the
CNS during embryonic development (Pocock and Kettenmann,
2007). These are very rarely replaced, and rapidly proliferate
while activated (Milligan and Watkins, 2009). Conversely,
perivascular microglial cells are continuously replenished by
bone marrow-derived hematopoietic precursors (Gosselin et al.,
2010), particularly during CNS inflammation (Romero-Sandoval
et al., 2008). Perivascular microglia can alter the blood-brain
barrier’s permeability, and exert anti-inflammatory effects, while
resident microglial cells exert both pro- and anti-inflammatory
effects (Milligan and Watkins, 2009).

While on a polarization continuum, microglia activation can
be classified as either resting or activated. A resting microglial cell
possesses a small soma with thin and ramified processes (Tsuda
et al., 2005), express immunoreceptors (Lawson et al., 1992),
and perform immune roles to maintain CNS homeostasis (Tsuda
et al., 2005). Upon activation due to trauma, inflammation,
or infection, microglia undergo several stereotypic changes in
morphology, gene expression, function, and number (Tsuda
et al., 2005). They upregulate various transmitters and receptors,
including the complement receptor 3 (CR3) (Eriksson et al.,
1993; Lassmann et al., 1993), major histocompatibility complex
2 (MHC2) (Shi et al., 2017), TLR4 (Sweitzer et al., 2002), and
CD14 (Sweitzer et al., 2002). The intracellular events promoting
glial cell activation remain unclear, but are known to involve
the activation of cannabinoid CB2 receptors (Tanga et al., 2004),
kinin B1 receptors (Li and Kim, 2017), P2X4R (Noda et al.,
2007), NK-1R (Inoue, 2008), CX3CR-1 (Abbadie et al., 2009;
Gao and Ji, 2010; Zhou et al., 2010), CCR-2 (Zhang and De
Koninck, 2006; Milligan et al., 2008), MMP9 (Thacker et al.,
2009), BDNF-R (Kawasaki et al., 2008), TLR3 (Tender et al.,
2010) and TLR4 (Kim et al., 2007); leading to the phosphorylation
of p38 MAPK (Jin et al., 2003; Tsuda et al., 2004; Tanga et al.,
2005; Daulhac et al., 2006; Ji et al., 2009). For more information
onmicroglia intracellular signaling refer to Popiolek-Barczyk and
Mika (Chang et al., 2010). Furthermore, microglial activation can
occur via endogenous pro-inflammatory signals (IL-1β, TNFα,
IL-6, and NO), opioids (Popiolek-Barczyk and Mika, 2016) or
heat shock protein (Hutchinson et al., 2008). Activatedmicroglial
soma increase in size and their long and thin ramifications
withdraw, ultimately resulting in an amoeboid shape with few
ramifications (Tsuda et al., 2005). They have implicated microglia
in reward behavior (Costigan et al., 1998) as well as in the
onset of chronic neurodegenerative diseases (Taylor et al., 2015;
Hammond et al., 2018), such as lupus erythematosus (Salter and
Stevens, 2017), Huntington’s chorea (Nestor et al., 2018), and
Alzheimer’s disease (Eriksson et al., 1993).

Painful Glia
Microglial cells produce and release various excitatory peptides,
including PG, SP, EAA, NO, and ATP, and express selective
receptors for immunomodulatory neurotransmitters. Both
peptides and receptors allow microglia to detect, and respond
to, neuronal signals, thereby generating autocrine or paracrine
feed forward inflammatory loops (McMahon et al., 2005). For
example, TNFα and MMPs activate microglial p38 MAPK in
the spinal cord dorsal horn during peripheral neuropathic pain

(Svensson et al., 2005). MMP9-induced pro-IL-1β cleavage
leads to p38 MAPK phosphorylation in microglia during the
onset and early stages of neuropathic pain. MMP2-induced
pro-IL-1β cleavage leads to astrocyte activation in later disease
stages (Kawasaki et al., 2008). ATP-stimulated microglial
P2X4R enhances the levels of intracellular Ca2+. Such influx
activates various transcription factors, including NF-κB, p38,
and ERK-MAPK (Tsuda et al., 2005), leading to the synthesis
of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6)
(Watkins et al., 2001a; Marchand et al., 2005) or neuroexcitatory
substances such as D-serine (Petrenko et al., 2003). This
transcriptomic profile can initiate and maintain neuropathic
pain by facilitating neuron-glial interactions (Hickey and
Kimura, 1988; Abbadie et al., 2009). The interplay between
neurons and glia can therefore sustain neuronal stimulation and
sensitization by increasing glutamatergic stimulation and by
reducing GABAergic inhibitory signals (Tsuda et al., 2005; Inoue,
2006; Scholz and Woolf, 2007; Biggs et al., 2010); the process can
be seen in Figure 3.

In current pre-clinical literature, activated microglia have
emerged as key drivers of pathological pain in chemotherapy-
induced neuropathy and peripheral nerve and spinal cord
injuries (Watkins et al., 2001b; Marchand et al., 2005; Tsuda
et al., 2005; Daulhac et al., 2006; Pocock and Kettenmann, 2007;
Gadani et al., 2015; McMahon et al., 2015). For example, CB2
receptor agonists dramatically attenuate iNOS induction and
ROS generation in LPS-activated microglia (Ribeiro et al., 2013).
The incitement of inflammation signals microglia to migrate,
proliferate, synthesize and release pro-inflammatory mediators
that maintain neuron activation. In keeping with the fact that an
intrathecal injection of activated microglia induces both thermal
hyperalgesia and tactile allodynia (Tsuda et al., 2003; Narita et al.,
2006), while resting microglia or activated astrocytes are without
effect (Narita et al., 2006). Blockades of p38 MAPK (Tanga et al.,
2005; Ji et al., 2009), CX3CR-1 (Milligan et al., 2004; Verge et al.,
2004; Sun et al., 2007) or P2X4R (Tsuda et al., 2003) have been
shown to alleviate chronic pain in rodents. Other chemokines,
such as RANTES, IP-10, and SDF1 are also implicated in
enhanced microglia migration, infiltration, phagocytosis; they
are therefore contributors tomicroglia-induced neuropathic pain
(White et al., 2007).

Salter and Beggs have made several discoveries linking
neuronal hypersensitivity to overactive microglia (Beggs and
Salter, 2016). Firstly, they were able to show that nerve
injury activates microglia and causes them to express P2X4R.
They demonstrated that the IRF-8/IRF-5 transcriptional cascade
clearly regulates the expression of P2X4R gene. Additionally,
they showed that external stimulation (CCL2 and LPS) leads
to the translocation of P2X4R protein from lysosome to cell
surface (Tsuda and Inoue, 2016). A targeted silencing of P2X4R
suppressed injury-induced tactile allodynia, while an intraspinal
administration of P2X4R-expressing glia had the opposite effect
(Tsuda et al., 2003). They also identified spinal dorsal horn
neurons as a source of ATP (Masuda et al., 2016), and that
ATP-stimulated microglia release brain derived neurotrophic
factor (BDNF). BDNF limits GABAergic inhibitory signals sent
to afferent nociceptor neurons (Torsney andMacDermott, 2005);
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this enhances their activity by uncoupling the transmembrane
anion gradient (Coull et al., 2005). A disruption of chloride
transport changed spinal lamina I neurons’ phenotype, causing
them to (i) increase nociceptive responsiveness, (ii) relay
innocuous mechanical inputs, and (iii) generate spontaneous
bursts of activity; respectively, accounting for (a) hyperalgesia,
(b) mechanical allodynia, and (c) spontaneous pain (Keller
et al., 2007). The microglia-to-neuron P2X4R -BDNF-KCC2 axis
was also found to drive opioid-induced thermal hyperalgesia.
Interestingly, Salter and Beggs found that this hyperalgesia
mechanistically differs from opioid-induced tolerance (Beggs and
Salter, 2016). Microglia-derived BDNF also emerged in their
research as a negative regulator of reward in opioid-dependent
states (Taylor et al., 2016), while the Panx1-mediated release of
microglial ATP controls morphine withdrawal without affecting
opiate-induced analgesia (Burma et al., 2017).

Peripheral tissue injury was found to increase the intensity,
spatial distribution, and persistence of Iba-1+ microglial
activity within the spinal dorsal horn, resulting in a long-
lasting priming of withdrawal reflex sensitivity and microglial
responsiveness (Beggs et al., 2012). MCP-1+ neurons drive the
bone marrow-derived microglial infiltration of injured spinal
cords. These neurons also facilitate glial activation and drive
mechanical allodynia (Zhang et al., 2007). CCL21, a microglial
activator, is also found to be upregulated in the cell bodies
of spinothalamic tract neurons following nerve injury. This
molecule is transported rostrally to the thalamus, where it
activates microglia and drives neuron hyperexcitability (Zhao
et al., 2007b). Spinal microglia consequently remain activated
for more than 3 months following nerve injury in rodents,
therebymaintaining chronic pain (Echeverry et al., 2017). Newly-
generated microglia also appear to be coded with an inherent
“memory” of previous injuries, contributing to long-lasting
neuropathic pain (Yao et al., 2016).

Following a spinal cord injury, microglial ERK kinases are
activated, prompting the intraspinal release of PGE2, which
results in spinal cord dorsal horn neuron hyperresponsiveness
(Zhao et al., 2007a). Following the spinal release of IL-1β and
IL-6, fractalkine triggers pain by activating microglia expressing
CX3CR1 (Milligan et al., 2004, 2005). IL-1β upregulates both
neuronal NMDAR phosphorylation and expression. These effects
enhance NMDAR conductivity (Zhang et al., 2008) and calcium
influx (Viviani et al., 2003), increasing neuronal excitability
and synaptic strength (Beattie et al., 2002; Stellwagen and
Malenka, 2006). Microglial NO and PGE2 can also increase the
excitability of pain-projecting neurons (Besson, 1999). Overall,
a modulation of microglial polarization was shown to alleviate
neuropathic pain (Chang et al., 2010; Piotrowska et al., 2016;
Xu et al., 2018). Intriguingly, microglia only induce mechanical
pain hypersensitivity in male rodents (Mapplebeck et al., 2018),
as T-lymphocytes appear to be responsible for this mechanism in
females (Sorge et al., 2015).

Microglia, an Emerging Target in DPN
Given that db/db mice and T2D patients show increased levels
of activated microglia (Arroba and Valverde, 2017), and that the
pharmacological inhibition of spinal resident microglia reverses
painful neuropathy (Wodarski et al., 2009; Sun et al., 2015; Lin,

2017; Zhang et al., 2018), we take the overall view that microglia
may drive DPN (Figure 1). Activated microglia levels have been
found to correlate with thalamus hyperresponsiveness (Fischer
and Waxman, 2010), and the brain thalami of DPN patients
demonstrate increases in blood flow (Paulson et al., 2007),
spontaneous neuronal activity (Fischer et al., 2009), receptive
field size enhancement (Fischer et al., 2009), and alterations
in neuronal connectivity (Cauda et al., 2010). Additionally,
activated microglia drive DPN in STZ-treated rats (Wodarski
et al., 2009; Talbot et al., 2010); this process can successfully be
reversed by gabapentin (Wodarski et al., 2009) or minocycline
treatment (Talbot et al., 2010).

Additionally, diabetes-induced hyperglycemia enhances
microglial NADPH oxidase and iNOS activation (Figure 3),
promoting the production of ROS (Quan et al., 2007, 2011) and
peroxynitrite (Li et al., 2005). As a result of the iNOS-NO-NRS
axis, activated microglia are a major source of free radicals in the
spinal cords of animals with DPN (Li et al., 2005; Candelario-Jalil
et al., 2007). Glial-released NO inhibits neuronal cytochrome
oxidase, blocking mitochondrial respiration, which in turn
depletes the production of ATP (Brown and Bal-Price, 2003).
Moreover, ROS and RNS deplete endothelial cell NO levels,
contributing to the generation of microangiopathy (section
Microangiopathy). A reduction in neuronal blood supply leads
to hypoxia and mitochondrial dysfunction; this results in cellular
energy deficits, and ultimately, neuron death. Finally, elevated
ROS levels also impair axonal transport (Larsen and Sidenius,
1989) and the capacity of the nerve to repair itself (Longo et al.,
1986), further worsening nerve health in DPN patients.

Microglia exposed to high glucose levels show increases
in mRNA expression, and secrete TNFα and MCP-1,
leading to neuronal activation (Quan et al., 2011). The
spinal microglia’s activation of P2Y12 and P2Y13 receptors
triggers the production of IL-1β and IL-6 in a rat model
of DPN (Liu et al., 2017; Zhou et al., 2018). The activation
of microglial RAGE (Thornalley, 1998) leads to the release
of chemokines CCL3, CCL5, and CXCL12, which activate
microglia (Bianchi et al., 2011). The resulting activated microglia
actively phagocyte neuronal myelin, thereby promoting DPN
(Mosley and Cuzner, 1996).

Microangiopathy
Microangiopathy is characterized by the shrinking and
weakening of small blood vessels. This pathology leads to
a reduction in blood flow, protein leakage, and bleeding.
In diabetic states, endothelial cells take up excessively large
quantities of circulating glucose, raising the production of
AGE (section Advanced Glycation End Products). These AGEs
enhance the proliferation of endothelial cells, which leads
to a thickening of basal membranes and progressive vessel
occlusion, which are associated with reduced neuronal blood
flow (Tuck et al., 1984; Cameron et al., 1991) and ischemia.
In turn, the ischemia reduces neuronal oxygen and nutrient
supplies, triggering nerve fiber loss (Yagihashi et al., 2007).
Microangiopathy in neuron-irrigating vessels also impairs their
capacity to regenerate and repair (Kennedy and Zochodne,
2005). A thickening of basement membranes and endothelial
cell swelling thereby positively correlates with reduced nerve
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fiber myelin densities (Yagihashi et al., 2007). The occlusion
of neuronal capillaries promotes axonal degeneration and a
dysfunctional loss of sensory perception, as typically observed in
the later stages of DPN.

Multifocal nerve lesions and alterations in endoneurial
capillaries indicate a role for circulatory factors in the
symmetrical form of DPN (Dyck et al., 1986; King et al.,
1989). Peripheral nerve fiber loss in DPN is well-associated with
the increased migration and infiltration of inflammatory
cytokines released by T-lymphocytes and macrophages
(Said et al., 2003; Said, 2007). These cytokines increase
vessel damage and promote microangiopathy (Said, 2007).
Considering that microglia and macrophages share similar
roles and inflammatory characteristics, it is probable that
microglia may also promote microangiopathy within the CNS
(Figure 3).

CONCLUSION AND FUTURE
THERAPEUTIC DIRECTIONS

Multiple molecular mechanisms generate and amplify
hyperglycemia-induced neuropathic pain. This collaboration
involves voltage-gated ion channels, ligand-gated channels,
cytokine receptors, direct myelin damage (Edwards et al., 2008;
Vincent et al., 2008), neuronal depolarization (Abbadie et al.,
2009), conduction impairment (Kramer et al., 2004), a loss of
interneuron inhibitory input (Wood, 2008), Aβ-fiber sprouting
(Yasuda et al., 2003), and neuronal death (Inoue, 2006). This
multicentric view accounts for why hyperglycemia-induced DPN
remains highly refractory to treatment paradigms. Given such
potential heterogeneity amongst patients, personalizing of DPN

management may prove useful. This will necessitate improved
diagnostic methods and personalized medicine tailored to the
specific pathology in question.

While design, safety and drug efficacy often vary between
rodent and clinical models of disease, calcium channel α2-
delta ligands (pregabalin, gabapentin), antidepressants (TCA and
SSRI), and opioid-like drugs as well as topical agents including
capsaicin, lidocaine, or botulinum toxin A can help alleviate
patients’ DPN (Finnerup et al., 2015). The long-term efficacies of
these approaches have yet to be demonstrated. Overall, the high
plasticity of microglial phenotypic and transcriptomic changes
persists even after glycemic control, inciting and maintaining
neuron sensitization (Milligan et al., 2008). Therefore, the
microglia, which potentially act upstream of pain neurons,
should rightly be considered as a crucial therapeutic target in
the treatment of diabetic pain neuropathy. Future therapies
may therefore involve targeting specific receptors and signaling
cascades which engage such deleterious neuro-immune crosstalk.
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