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Repetitive subconcussive head impacts across a season of contact sports participation

are associated with a number of deficits in brain function. To date, no research

has investigated the effect of such head impact exposure on dynamic cerebral

autoregulation (dCA). To address this issue, 179 elite, junior-level (age 19.6 ±

1.5 years) contact sport (ice hockey, American football) athletes were recruited

for pre-season testing. Fifty-two non-concussed athletes returned for post-season

testing. Fifteen non-contact sport athletes (age 20.4 ± 2.2) also completed pre- and

postseason testing. dCA was assessed via recordings of beat-by-beat mean

arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) using

finger photoplethysmography and transcranial Doppler ultrasound, respectively, during

repetitive squat-stand maneuvers at 0.05 and 0.10Hz. Transfer function analysis was

used to determine Coherence (correlation), Gain (response amplitude), and Phase

(response latency) of the MAP-MCAv relationship. Results showed that in contact

sport athletes, Phase was reduced (p = 0.027) and Gain increased (p < 0.001)

at post-season compared to pre-season during the 0.10Hz squat-stand maneuvers,

indicating cerebral autoregulatory impairment in both the latency and magnitude of the

response. Changes in Phase were greater in athletes experiencing higher numbers and

severity of head impacts. By contrast, no changes in dCA were observed in non-contact

sport controls. Taken together, these results demonstrate that repetitive subconcussive

head impacts occurring across a season of contact sports participation are associated

with exposure-dependent impairments in the cerebrovascular pressure-buffering system

capacity. It is unknown how long these deficits persist or if they accumulate

year-over-year.

Keywords: cerebral blood flow, autoregulation, blood pressure, transfer function analysis, repetitive
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INTRODUCTION

Sport-related concussion is a global public health issue, with
growing concern over the effects of repetitive subconcussive
head impacts (1). Subconcussion can be defined as head
impact that does not elicit signs or symptoms typical of
concussion (2). A host of studies have revealed this type
of exposure—experienced during participation in sports in
which head impacts are common—is associated with various
deficits to brain structure and function at a subclinical level:
transient blood-brain barrier damage (3), alterations in white
matter microstructure (4–6), altered cerebrovascular sensitivity
to carbon dioxide (7), disrupted cerebral metabolism (8),
altered resting functional connectivity (9), and altered task-
based cortical activation patterns (10). Many of these studies
used head impact sensors whose accuracy has been questioned
(11–14) and some did not include non-contact sport control
athletes thus potentially limiting the interpretation of their
results. Despite these limitations, data from studies such as these
has led to growing concern of the potential for such deficits to
accumulate across multiple years of exposure to the development
of irreversible changes that are accompanied by deterioration
in clinical function (15). To further elucidate this possibility, it
is necessary to first identify which systems appear to be most
susceptible to repetitive subconcussive head impacts.

We have recently demonstrated using transcranial Doppler
ultrasound that acute concussion leads to alterations in cerebral
blood flow (CBF) as it pertains to neurovascular coupling (NVC)
dynamics (16). By contrast, alterations in NVC dynamics are
not apparent after a season of subconcussive head impacts
(17). Multiple controllers of CBF exist beyond NVC dynamics
including reactivity to carbon dioxide (CO2) and the blood
pressure (BP) buffering system (18). With respect to the
latter, in the face of changing BP, CBF is maintained via
alterations to resistance within the cerebrovascular tree. The
ability of the cerebrovasculature to buffer rapid changes in BP—
referred to as dynamic cerebral autoregulation (dCA)(19)—is an
important marker of cerebrovascular function, and encompasses
myogenic, neurogenic, and metabolic mechanisms (20). Our
group has recently demonstrated that dCA is systematically
altered following acute concussion (21) and an outstanding
question is whether exposure to repetitive subconcussive
head impacts is associated with alterations in dCA. Such
acute and chronic alterations would be consistent with the
hypothesis that disruptions to dCA underlie persistent post-
concussion symptoms (22, 23). Accordingly, our objective was to
prospectively evaluate the effect of repetitive subconcussive head
impact exposure on dCA indices, with deficits hypothesized to
be observed at post-season relative to pre-season in a group of
young adult elite contact sport athletes.

MATERIALS AND METHODS

Study Design
One hundred and seventy-nine elite male (mean age 19.6 ±1.5
years) junior hockey (n = 90) and football (n = 89) athletes
as well as 15 non-contact sport controls (mean age 20.4 ± 2.2

years; 12 cross-country running, 1 ultimate frisbee, 2 basketball)
were recruited to the study. They underwent baseline laboratory
testing prior to the beginning of the athletic season (preseason).
Testing was repeated within 2 weeks of the end-of-season (post-
season) for all non-contact sport controls and a subset of contact
sport participants (n = 52). An additional 109 contact sport
participants did not complete post-season testing for one of the
following reasons: (i) traded to a team in a different city, (ii)
returned to their hometown immediately following the end of the
season, (iii) unable to attend a testing session within 2-weeks of
season’s end, or (iv) injury preventing the completion of testing.
The remaining 18 contact sport athletes were diagnosed by
team physicians and medical staff with a concussion during the
season based on criteria outlined in the 4th Consensus Statement
(24) and followed a different post-injury protocol that has been
reported in a recent publication (21). Although the number of
control subjects is relatively low, the differences we observed in
the current study are larger than the within-subject coefficients
of variation for dCA measures (10–15%) reported for healthy
participants by our group (25). Thus, we are confident the sample
size of the control group did not impact the interpretation of the
current findings.

At the beginning of each testing session, participants
completed the Sport Concussion Assessment Tool, version 3
(SCAT3) (24) including a graded symptom checklist (7-point
Likert scale for 22 concussion symptoms), the Standardized
Assessment of Concussion (SAC), as well as the modified
Balance Error Scoring System (BESS). No participants were
excluded based on predefined criteria including a significant
history of cardiorespiratory, cerebrovascular, neurological, or
severe neurodevelopmental disorder. All subjects underwent
familiarization of testing procedures, and were asked to abstain
from exercise, caffeine, and alcoholic beverages for 12+ h prior
to testing. The experiment was performed in accordance with the
ethical standard as laid down in the 1964 Declaration of Helsinki.
Written informed consent was obtained prior to participation
and the study protocol was approved by the Clinical Research
Ethics Board at the University of British Columbia.

Instrumentation
A three-lead electrocardiogram (ECG) recorded R-R intervals
and heart rate. Cerebral blood velocity was recorded unilaterally
in the middle cerebral artery (MCAv) using transcranial
Doppler ultrasound (ST3, Spencer Technologies, Seattle, WA,
United States). Once vessels were identified and signals
optimized according to depth, waveform, and velocity (25), the
ultrasound probes were locked in place with a fitted headframe.
Beat-to-beat BP was continuously monitored with finger
photoplethysmography (Finometer PRO, Finapres Medical
Systems, Amsterdam, Netherlands) (26), while partial pressure
of expired CO2 (PETCO2) was sampled using an online gas
analyzer (ML206, AD Instruments, Colorado Springs, CO,
United States). All data were recorded at 1,000Hz (PowerLab
8/30 ML880, AD Instruments) and stored for offline analysis
using commercially available software (LabChart version 7.1, AD
Instruments).
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Experimental Protocol
All testing occurred at the same time of day and involved a
hemodynamic challenge protocol. In particular, repetitive squat-
stand maneuvers were used to induce rapid and systematic
oscillations in BP (25). First, spontaneous fluctuations in
physiological metrics were recorded while standing for 5min.
During squat-stand maneuvers, participants began in a standing
position, squatted to hold a knee angle of ∼90◦, then returned
to standing. Squat-stands were performed for 5min at each
of two metronome-paced frequencies, 0.05 and 0.10Hz (i.e., 1
cycle every 20 or 10 s, respectively)–thought to reflect myogenic
and autonomic contributions toward dCA, respectively (27).
This active technique was chosen for the current study because
it has been shown to result in markedly better between-day
reproducibility relative to spontaneous or passive (oscillatory
lower-body negative pressure) maneuvers (27).

Data Processing
Real time, beat-to-beat mean values of arterial pressure (MAP)
and MCAv were determined from each R-R interval. All data
were processed and analyzed with custom-designed software in
LabView 14 (National Instruments, Austin, TX, United States). In
accordance with recently published best-practice guidelines, the
CARNet algorithm was used to complete the transfer function
analysis (27). Figure 1 highlights the resulting augmented signal-
to-noise ratios at the frequencies associated with the squat-stand
maneuvers (0.05 or 0.10Hz) providing the rationale for sampling
Coherence, Phase, and Gain at these frequencies, falling within
the very low frequency (VLF; 0.02–0.07Hz) and low frequency
(LF; 0.07–0.20Hz) ranges where dCA is operant (28). Coherence
characterizes the proportion of variance in MCAv explained
by MAP; high coherence improves reliability of Phase and
Gain estimates (25). Phase measures the timing offset between
MAP and MCAv oscillations, whereas Gain provides a ratio of
MCAv amplitude to MAP amplitude. With intact dCA, high
Phase indicates rapid adjustment of cerebrovascular resistance
to changing MAP, whereas low gain indicates low magnitudes
of MAP oscillation transferred to the cerebrovasculature (i.e.,
greater buffering) (26). Phase wraparound was not present for
any point-estimates.

Head Impact Monitoring
During games throughout the season, a subset of players who
completed both pre- and post-season testing wore impact
sensors (xPatch, X2 Biosystems, Seattle, WA, United States) on
the right mastoid (n = 29) to estimate linear and rotational
accelerations during each head impact. Acceleration profiles
were recorded for 100ms (10ms pre-impact, 90ms post-
impact) at 1,000Hz when translational acceleration exceeded
a 10 g threshold. Following each game, data were uploaded
using the Head Impact Monitoring System (X2 Biosystems).
Features within the software provide estimates of peak linear
(PLA) and peak rotational (PRA) acceleration for each detected
impact. Pilot testing of the devices during preseason non-
contact practices revealed multiple impact events being recorded
within the 10–20 g range during regular non-contact events
such as hard stops or cuts. Previous work has demonstrated

marked reduction in false-positive impacts when a 20 vs.
10 g threshold was used (29). Only acceleration events
exceeding a 20 g threshold were used in subsequent analyses
(30). Cumulative exposure to linear (cPLA) and rotational
(cPRA) acceleration were estimated by summing across all
impacts for the season. Non-contact sport athletes were not
monitored for head acceleration events during their competitive
season.

Statistical Analysis
Effects of exposure to repetitive subconcussive head impacts
during the course of a competitive season were estimated using
a 2 (group: contact vs. non-contact) × 2 (time: preseason vs.
post-season) × 2 (frequency: 0.05 vs. 0.10Hz) three-way mixed-
ANOVA. Secondary exploratory analyses were conducted using
independent samples t-tests to explore differences in change
scores from pre- to post-season for Phase (1Phase) and Gain
(1Gain) between high and low quartiles for estimated impact
exposure variables (Hits/season, cPLA, cPRA). Spearman’s
correlation coefficients were calculated between 1Phase/1Gain
and change in SCAT3 scores from pre- to post-season. All
statistical analyses were performed using SPSS version 22.0 for
Macintosh (IBM Corp., Armonk, NY, United States). Shapiro-
Wilks tests were used to assess for normality.

Bonferroni correction was used to correct for multiple
comparisons to achieve a family-wise error rate of 0.05.

RESULTS

Participant Demographics
Demographic characteristics, SCAT3 scores, and resting
physiological data are outlined in Table 1. No differences in
dCA function were observed at preseason between participants
who did vs. did not complete follow-up testing or between
those participants who did or did not wear the impact sensors
throughout the season. In addition, no differences in head impact
exposure were apparent in those participants who completed
the study vs. those who were lost to follow up. Biomechanical
descriptors of impact exposure for participants who completed
both the pre- and post-season testing are presented in Table 2.
Relative to football players, ice hockey players experienced fewer
hits per game, but greater cumulative number of hits due to
season length differences (62 games in hockey vs. 10 games in
football).

Dynamic Cerebral Autoregulation
As expected, the squat-stand maneuvers substantially increased
the power spectra of MCAv and MAP signals at the target
frequencies (Figure 1). The three-way interaction term
(frequency∗time∗group) was non-significant for Coherence
[F(1, 65) = 2.415, p = 0.125], Phase [F(1, 65) = 1.494, p = 0.226],
and Gain [F(1, 65) = 0.007, p = 0.931]. Significant interactions
existed for Gain between frequency and time [F(1, 65) = 7.577,
p = 0.008, partial eta2 = 0.104] and between group and
time [F(1, 65) = 5.898, p = 0.018, partial eta2 = 0.083], and
for Phase between frequency and time [F(1, 65) = 3.982,
p = 0.049, partial eta2 = 0.059]. Subsequent analysis of
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FIGURE 1 | Normalized power spectrum densities for mean arterial pressure (MAP, top) and middle cerebral artery blood velocity (MCAv, bottom) for preseason and

post-season squat-stands in contact sport athletes (red, left) and in non-contact sport control athletes (blue, right). The frequency at which PSD reached peak

amplitude (either 0.05 or 0.10Hz) was used for sampling point estimates for Coherence, Phase, and Gain.

TABLE 1 | Demographics, SCAT3 performance, and resting physiological

parameters for contact and non-contact sport (Control) athletes at preseason and

post-season.

Metric Contact sport (n = 52) Control (n = 15)

Preseason Post-season Preseason Post-season

Age (years) 19.6 (1.5) 20.4 (2.2)

BMI (kg/m2) 28.2 (4.9) 22.6 (3.0)

Test Interval (days) 109.2 (25.8) 100.1 (23.8)

# of Symptomsa 3.7 (3.6) 5.4 (5.0) 5.5 (5.0) 5.7 (3.3)

Symptom Severitya 6.7 (7.8) 9.6 (10.1) 8.1 (8.3) 8.2 (7.2)

SAC Scorea 26.6 (1.9) 26.6 (1.8) 27.7 (1.5) 27.9 (1.4)

BESS Scorea 3.7 (3.3) 2.9 (3.2) 2.7 (2.4) 2.6 (3.6)

MAP (mmHg) 92.2 (12.2) 92.6 (12.7) 93.9 (13.8) 91.3 (9.7)

MCAv (cm/s) 54.5 (9.3) 53.8 (7.5) 55.6 (14.4) 57.3 (14.3)

HR (bpm) 74.5 (10.0) 78.3 (11.9) 71.0 (9.9) 72.8 (13.8)

PETCO2 (mmHg) 38.0 (3.0) 37.1 (2.6) 37.9 (1.8) 37.9 (1.3)

aComponents of the Sport Concussion Assessment Tool, version 3.

SAC, Standardized Assessment of Concussion; BESS, Balance Error Scoring System;

MAP, mean arterial pressure; MCAv, middle cerebral artery velocity; HR, heart rate;

PETCO2, end-tidal partial pressure of carbon dioxide.

simple effects revealed a 12.4% increase in 0.10Hz Gain
(95%CI = +0.096–0.238%MCAv/%MAP, p < 0.001) and a
9.0% decrease in 0.10Hz Phase (95%CI = −0.005 to −0.096
rads, p = 0.027) from pre- to post-season in contact sport
athletes (Figure 2), suggestive of autonomic dysfunction. No
changes were observed at 0.10Hz in control athletes (Figure 2)
for Gain (95%CI=−0.079–0.115%/%, p = 0.696) or Phase

TABLE 2 | Descriptives (median, IQ range) for head impact exposure across

subset of hockey (n = 10) and football (n = 19) players wearing impact sensors

during the season.

Metric Hockey Football p

Hits/game (#) 8.2

(6.1–11.2)

16.6

(8.7–21)

0.003

Hits/season (#) 353

(29–587)

166

(63–212)

0.002

PLA/hit (g) 36.3

(35–37)

36.6

(34–40)

0.448

cPLA (g) 11,920

(10,788–21,570)

5,794

(2,507–7,117)

0.002

PRA/hit (rad/s2) 5,036

(4,772–5,510)

6,601

(6,104–7,441)

<0.001

cPRA (rad/s2) 2,016,603

(11,592–24,322)

1,057,691

(486,976–1,376,735)

0.003

p-values reflect results of Mann-Whitney U-tests comparing across sport.

PLA, peak linear acceleration; PRA, peak rotational acceleration; cPLA/cPRA, cumulative

PL.

(95%CI = −0.103–0.029 rads, p = 0.247). No significant
changes were observed for 0.05Hz Gain or Phase in either group
(p > 0.05).

Relation To Head Impacts
Comparing high-vs.-low quartiles of total number of hits
experienced by the contact sport athletes revealed significant
differences in 1Phase at 0.10 Hz–players experiencing fewer
hits exhibited a mean ± SD increase in Phase of 0.092 ± 0.108
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FIGURE 2 | Transfer function analysis outcomes for each individual subject

(pale lines) and for group averages (bold lines) for Coherence (top), Phase

offset (middle), and Gain (bottom) during squat-stand maneuvers performed

at 0.05Hz (left) and 0.10Hz (right), assessed at preseason and postseason

in contact sport (red lines) and non-contact sport control (blue lines) athletes.

*indicates significant simple effects of time in the contact sport group; no

significant differences were observed in non-contact sport athletes. Error bars,

standard deviation.

rads from pre- to post-season, whereas those experiencing more
hits exhibited a decrease in Phase (i.e. impairment) of 0.070
± 0.067 rads [t(12) = 2.366, p = 0.036]. Similarly, 1Phase at
0.10Hz differed between high-vs.-low quartiles of cPLA, wherein
players exposed to lower cumulative linear acceleration exhibited
a Phase increase of 0.092 ± 0.108 rads, while those in the highest
cPLA quartile exhibited a Phase decrease of 0.043 ± 0.107 rads
[t(12) = 3.381, p= 0.005].

Relation to Symptom Scores
For the contact sport athletes, significant Spearman’s correlations
were observed between 1Phase at 0.10Hz and symptom scores
for “pressure in the head” (rho=−0.344, p= 0.043), and between
1Gain at 0.10Hz and headache scores (rho=−0.512, p= 0.002).
No significant correlations were observed between change in
performance on a cognitive screening test (SAC) and 1Phase
(r =−0.101, p= 0.562) or 1Gain (r = 0.17, p= 0.328).

DISCUSSION

In the current report, we present transcranial Doppler ultrasound
data showing impairments in both the Gain and Phase of

the cerebral pressure-flow relationship in contact sport athletes
who did not sustain a concussion during the season, but not
in non-contact sport athletes. The observed deficits suggest
a delayed change in vascular resistance in response to BP
oscillations associated with a greater magnitude change in CBF.
The data also demonstrate greater deficits in dCA in athletes
exposed to a higher number of hits and higher cPLA compared
to those exposed to lower head impact levels based on data
recorded from the xPatch system, the limitations of which are
emphasized below. Although the permanence of the observed
dCA impairments has not been established, the current data
suggest the potential for a season of subconcussive head impacts
to impair dynamic cerebral autoregulation.

A number of studies have reported minimal or no detrimental
effects of subconcussive head impact, particularly on clinical
measures of behavior/neuropsychological function [reviewed in
(31)]. Despite exposure to over 1,000 impacts in a collegiate
football season, scores on common assessments of concussion
were not meaningfully impaired, although a higher number
of years of collegiate playing experience was associated with
worse Sensory Organization Test performance (32). Thus,
findings to date suggest neuropsychological function is relatively
unaffected by repetitive subconcussive head impacts and/or that
subconcussive sequelae may require more time to develop than a
single season (31).

By contrast, evidence suggests repetitive subconcussive head
impacts, in the absence of symptoms, are associated with
disruptions in various aspects of brain structure and function,
including white matter microstructure (6), cerebral metabolism
(15), cortical activation patterns (10), vestibular function (33),
and functional connectivity (9). While these studies provide
important insight into this issue, it is important to consider
potential shortcomings in this body of research. First, many
studies which have undertaken the effort to relate head impact
exposure to changes in brain structure or function have either
not directly quantified head impact exposure or used impact
monitoring systems whose accuracy has been questioned (11–
14) thus potentially limiting any interpretations that could be
made. Second, some of these studies have not included an
appropriate non-contact sport control group to disentangle the
effects of a season of competitive sports participation in general
from the potentially more specific effects of exposure to head
impacts induced by participating in a contact sport in particular.
With these limitations in mind, the current results demonstrate
impairments in physiological function, including the integrity
of CBF control, following one season of play. Interestingly,
increases in dCA gain over the course of the season were
related to increased headache scores, while decreases in dCA
phase were related to increased reporting of pressure-in-the-
head (34). Finally, the dCA changes observed were unrelated to
cognitive performance as assessed by the SAC consistent with
previous reports of minimal effects of repetitive subconcussive
head impacts on neuropsychological performance (31).

Although acute and chronic disruptions in CBF have been
well-documented following concussions (35), our understanding
of the association between subconcussive head impacts and
cerebral perfusion is relatively modest. Svaldi and colleagues
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(7) demonstrated impairments in cerebrovascular reactivity in
collegiate football players following the onset of the season.While
the subconcussive nature of head impacts in professional boxing
is debatable, Bailey and colleagues (22) reported impairments in
CO2 reactivity related to the volume and intensity of sparring but
not the frequency of knock-outs suffered or number of rounds
fought. Considered alongside the current data these findings
are concerning, as the underlying mechanisms governing CO2

reactivity and dCA are thought to represent distinct processes
(36), suggesting repetitive subconcussive head impacts are
associated with deficits to multiple aspects of cerebrovascular
control.

An impaired dCA response at 0.10Hz implies dysregulation
in the autonomic control of the cerebrovasculature (27).
Increasingly, the rich sympathetic innervation of the
cerebrovascular tree is recognized to play an important role in
the dynamic regulation of BP variability (37). Numerous lines
of evidence have outlined the detrimental effects of concussion
on autonomic function (20) including systematic alterations in
dCA (21). In the current study, disruptions were observed in
both the latency and magnitude of the dCA response following
subconcussive head impacts, indicating evenmild repetitive head
impacts are associated with disruptions to CBF regulation during
BP challenges. Additional research is warranted to further clarify
the underlying mechanisms of cerebrovascular dysfunction,
which may be influenced by age, sex, previous impact exposure,
and baseline autonomic function.

Prior work has demonstrated the effects of repetitive blows to
the head may be cumulative, with impact exposure correlating
to pathologic alterations on functional MRI (38), white matter
diffusion (39), and cerebral metabolism (40). For example, in
collegiate football and ice hockey players, diffusion changes
in multiple regions of white matter were associated with
head impact exposure, including total number of hits and
exposure to linear acceleration (39). Moreover, football players
sustained a higher number and severity of head impacts prior
to diagnosed concussions than on days without concussions,
suggesting subconcussive impacts may incrementally alter
cerebral susceptibility and thereby lower the threshold for
injury (41). While it has been established there is no reliable
biomechanical threshold for concussion incidence, the collective
findings suggest subconcussive head impacts may influence
injury risk. The current results associating change in dCA
function with impact exposure should be considered preliminary,
and further study is warranted to investigate potential long-
term consequences of repetitive hits on cerebrovascular and
neurologic function.

This study has a number of limitations that should be
acknowledged. First, transcranial Doppler ultrasound measures
the velocity of red blood cells, rather than CBF explicitly. For
velocity to approximate flow in this scenario, the diameter
of the insonated vessel must remain constant, which cannot
be verified. However, debate continues over the importance
of diameter changes in evaluating cerebral hemodynamics,
particularly when PETCO2 is held stable (42), as it was in
this study. Second, while previous research has demonstrated
head impact exposure is typically greater during games than

practices (43), impact data were collected during games only
and therefore underestimate absolute exposure levels. Were it
available, undocumented impacts during practices may have
altered the populations of high vs. low quartile groups; this seems
unlikely however, as impact exposure has been related more
closely to player characteristics [e.g., aggression (44), BMI (43),
position (45, 46)], which are unlikely to change meaningfully
between game and practice settings. Furthermore, the skin-worn
impact sensors used in this study have been shown to exhibit
appreciable in-vivo overestimation error due partly to non-rigid
skull coupling among other factors (11, 47). Moreover, when
tested in a biofidelic context, the X2 system has a number of
other shortcomings which limit the extent to which the head
impacts it records are a robust and accurate representation of
the head impacts that actually occurred. Namely, proprietary
internal ‘de-clacking’ algorithms—designed to reduce erroneous
impact recordings—create a high false-negative rate, wherein
a substantial portion of true simulated impacts were deemed
“invalid” by the system (11). In addition, some impacts may be
missed entirely (47). Furthermore, inconsistencies were noted
based on which surrogate was used, and which side of the
surrogate was equipped with the patch (11). We attempted to
limit the influence of the latter factor by ensuring sensors were
always worn on the participants’ right, however the relative
influence of impact location relative to device location cannot
be assessed. How these numerous limitations may have affected
the distribution of cumulative loading estimated in the current
study cannot be discerened. Thus, our analysis was restricted
to high vs. low quartiles of head impact exposure, but may
nevertheless be of limited utility. Third, all of our participants
were male and, given the known differences in both cerebral
autoregulation (48) and responses to repetitive subconcussive
head impacts (49) between the sexes, it is unlikely the results
would be the same in female participants. Nevertheless, despite
these limitations and toward the primary objective of this
study, significant dCA impairments were observed in contact
sport athletes but not in non-contact control athletes, thus
emphasizing the need for in-depth prospective investigations
into the effects of subconcussive head impacts on CBF control
mechanisms.

CONCLUSION

There is growing concern that even low-magnitude,
subconcussive head impacts can cause lasting neurological
injury.Whereas, behavioral changes in response to subconcussive
head impacts have been difficult to identify, this study suggests
the cerebral autoregulatory system is vulnerable to repetitive
head impacts. Our data provide evidence of cumulative
impairment in the dCA response of contact sport athletes
associated with exposure to repetitive head impacts. Importantly,
non-contact athletes exhibited no such changes in dCA integrity.
Future prospective cohort studies in a larger number of subjects
are warranted to investigate the clinical relevance of dCA
changes induced by subconcussive head impacts toward injury
susceptibility and long-term outcomes.
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