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Glioblastoma is one of the first tumors where the biological changes accompanying

a single epigenetic modification, the methylation of the MGMT gene, were found to

be of clinical relevance. The exploration of the epigenomic landscape of glioblastoma

has allowed to identify patients carrying a diffuse hypermethylation at gene promoters

and with better outcome. Epigenetic and genetic data have led to the definition of

major subgroups of glioma and were the basis of the current WHO classification of

CNS tumors and of a novel classification based solely on DNA methylation data that

shows a remarkable diagnostic precision.The reversibility of epigenetic modifications is

considered a therapeutic opportunity in many tumors also because these alterations

have been mechanistically linked to the biological characteristics of glioblastoma. Several

alterations like IDH1/2 mutations that interfere with “epigenetic modifier” enzymes, the

mutations of the histone 3 variants H3.1 and H3.3 that alter the global H3K27me3

levels and the altered expression of histone methyltransferases and demethylases

are considered potentially druggable targets in glioma and molecules targeting these

alterations are being tested in preclinical and clinical trials. The recent advances on the

knowledge of the players of the “epigenetic orchestra” and of their mutual interactions are

indicating new paths that may eventually open new therapeutic options for this invariably

lethal cancer.
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INTRODUCTION

Glioblastoma (Glioblastoma Multiforme, GBM) is a rare tumor (Orphanet 360) that, being
responsible for 4% of all tumor deaths and with a 5-years survival of 2%, is one of the deadliest
human tumors (1) with the median survival ranging from 14 to 24–30 months depending from the
molecular subtype of the tumor (2).

GBM, like other tumors, harbors many genetic alterations that interfere with cancer-related
pathways (3), however clinical trials targeting molecular alterations in this tumor were largely
unsuccessful so far (4–6). In the last 30 years, the only significant improvement in OS occurred
with the introduction of Temozolomide (TMZ) in addition to surgery and radiotherapy (7,
8). GBM patients are stratified into two categories according to the methylation status of
the O-6-methylguanine-DNA methyltransferase gene (MGMT) that repairs the DNA damages
induced by TMZ and the patients whose tumor contains methylated MGMT have an overall
survival of 21.7 months compared to the 12.7 months of those carrying unmethylatedMGMT (9).

Epigenetic modifications are considered a key mechanism in GBM development (10).
Epigenetic inheritance is mediated by the four deeply interconnected layers shown in Figure 1:
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FIGURE 1 | Schematic representation of the interplay between the different

epigenetic layers. ncRNA can directly influence genome activity by interfering

with transcripts or, indirectly, by degrading transcripts involved in DNA

methylation, histone modification or chromatin remodeling. On the other hand

ncRNA can be epigenetically inactivated by DNA methylation (11, 12). DNA

methylation can directly interfere with gene expression and, indirectly, can

regulate the expression of chromatin and histone modifiers.

1- DNA methylation
2- Histone modifications
3- Chromatin remodeling
4- Non-coding RNA

These layers are controlled by a set of enzymes that
act as “writers,” “readers,” and “erasers” that modify
their target by adding, removing or regulating the
interactions between proteins and DNA. Both DNA
methylation and histone modification, along with chaperon
molecules, participate to chromatin remodeling thus
conferring an exquisite plasticity to the genetic apparatus
(13, 14).

The latest WHO classification defines subgroups of
glioma integrating genetic and epigenetic criteria (10, 15–
18) (Figure 2) and a novel classification of CNS tumors
based on DNA methylation data, shows a remarkable
diagnostic precision being able to correctly modify the
primary diagnosis in 12% of the cases (19). A large number

of intrinsically reversible cancer-related modifications that
are attractive targets of therapy was unveiled and the present
review provides an overview of the most recent preclinical
and clinical attempts to defy GBM through epigenetic
reprogramming.

TARGETING EPIGENETIC ALTERATIONS IN
GLIOBLASTOMA

Manipulating the epigenome has been lengthy considered a
therapeutic opportunity in cancer. The epigenetic landscape
of GBM was thoroughly explored, and many epigenetic
modifications were mechanistically linked to the biological
characteristics of this tumor and some of them were considered
as therapeutic targets. At the moment, only the molecules
acting on DNA methylation and histone methylation/chromatin
remodeling were tested in clinical trials. Manipulation of ncRNA
expression is restricted to pre-clinical studies and is not discussed
in the present review.

Layer 1: DNA Methylation
Methylation of cytosine at C-5 within CpG doublets, is mediated
by a set of DNA Methyltransferases that are responsible mainly
but not exclusively of maintenance (DNMT1) and de novo DNA
methylation (DNMT3a and 3b) to preserve genomic integrity
(20). The human genome contains approximately 3 X 107 CpG
doublets and although methylation at single doublets may, in
principle, have functional consequences (21, 22), the biologically-
relevant DNAmethylation is that occurring at CpG clusters (CpG
islands) in gene promoter regions and inversely correlates with
gene transcription (23, 24). Intragenic CpG clusters are generally
hypermethylated to prevent spurious initiation particularly at
internal promoters.

In GBM DNA methylation is tightly linked to the response
to TMZ treatment. The alkylating agent TMZ, the first-line
chemotherapy for GB, methylates guanine in position N7 and
O6 and Adenine in position N3. O6-methylguanine adducts lead
to strand breaks, triggering p53-mediated apoptosis through
the Fas/CD95/Apo-1 receptor in p53wt cells or through the
mitochondrial pathway in p53mut tumors (25). The action of
TMZ is counteracted by the MMR system and by the product of
theMGMT gene that repairs the O6 adducts that limit the activity
of the drug (26). To mimic the effects of MGMT methylation,
synthetic inhibitors of MGMT entered human trials (9, 27).
However, several studies revealed that the MGMT inhibitors O6-
benzylguanine and PaTrim-2 (Lomeguatrib) did not improve
the response rate to TMZ and increased the adverse effects of
chemotherapy (27–30).

Inducing TMZ sensitivity in MGMT-unmethylated tumors
with other molecules (Resvetrol, oncolytic viruses or by MGMT
depletion) was tested only in preclinical models with alternate
success (31). The correlation between MGMT methylation and
MGMT protein expression is controversial and the lack of
correlation seen in recent studies likely depends on the early
method utilized for methylation analysis (32–34).
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FIGURE 2 | Schematic representation of the different subtypes of glioma with the principal molecular and epigenetic characteristics. In this chart are represented the

possible carcinogenic evolutions of the precursor cells. The major genetic and epigenetic alterations are reported along with the clinical characteristics of each subtype.

Layer 1: Methylator Phenotype and IDH1/2

Mutations
The discovery of mutations of the Isocitrate Dehydrogenase
(IDH) genes and of the DNA hypermethylation signature
(Glioma CpG Island Methylator Phenotype: G-CIMP) has led
to the definition of a distinct GBM subtype characterized by
younger age and improved survival (2, 17, 18, 35) (Figure 2,
N. 1). IDH mutations are rare in GBM developing in older
patients who usually carry EGFR and PTEN alterations (primary
GBM), (Figure 2, N. 2), but are present in a large proportion
of low-grade glioma and, along with TP53 mutations, in high-
grade glioma that evolved from low–grade tumors (secondary
glioblastoma) (35) Figure 2, N. 3 and 4). IDH genes can
be mutated at two mutually exclusive sites, R132 (IDH1) or
R172 (IDH2) and these mutations have important metabolic
consequences and are driving alterations in gliomagenesis.
The product of IDH converts Isocitrate into αKetoglutarate
(αKG) which is involved in a variety of cellular processes
(Supplementary Figure 1). IDH mutants produce 2-Hydroxy
Glutarate [2-HG] that is a competitive inhibitor of αKG-
dependent dioxygenases including the histone demethylases
JHDM1 and KDM4 and the DNA demethylase TET2. Thus,

IDH mutations, that are not restricted to brain tumors, result in
extensive epigenetic dysregulation including DNA and histone
hypermethylation (36, 37) and altered cell differentiation (38).
Other IDH mutations were occasionally found but only few of
them produce 2-HG (39).

Strategies to target IDH-mutant tumors can be designed to
either inactivate the functions of IDH mutants or to block
the effects of 2-HG. The treatment with hypomethylating
agents of mice xenografted with IDHmut GBM cells resulted
in delayed tumor growth and improved survival (40, 41).
Along this line phase I and II clinical trials were started to
test two formulations of 5-azacytidine (NCT02223052) and
the combination decitabine/immunotherapy (NCT02332889) in
GBM and other solid tumors.

Normalizing the 2-HG concentration could reverse DNA
hypermethylation and release the block of differentiation in
IDH-mutated cells. Several inhibitors of mutated IDH1/2 were

synthesized and showed to be effective in in vitro models (42–
44); this finding was the starting point for a large series of clinical

trials to assess the safety and bioavailability of the molecules
under investigation in a variety of tumors, mainly AML, MDS
and glioma (Supplementary Table I). Preliminary data on the
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clinical efficacy of IDH inhibitors showed promising results
in hematological malignancies opening the way for stringent
randomized trials (45–47). As of June 2018, no public data are
yet available for glioma patients.

Mutated IDH1/2 can be functionally considered as highly
specific tumor-associated neoantigens that could be targeted
by immunotherapy; a vaccine targeting mutant IDH1 showed
antitumor activity in a glioma animal model opening the
possibility of new experimental therapies (48).

Layer 2: Histone Modifications
Histones are subject to modifications that could either repress
or activate transcription (Supplementary Figure 2). More than
100 enzymes act in concert to assemble a “code” of histone
modifications that define the transcriptional properties of a given
gene (49) determining drug response (50) and the development
of cancer and other diseases (10, 51–53).

The rapid acquisition of drug resistance is a major cause
of treatment failure in GBM (54) and could be explained by
the development of epigenetically poised cells that undergo
chromatin remodeling and display transient drug resistance (55–
57).

Histone Acetylation
The addition of acetyl groups to certain lysines of H3 and
H4 weakens the interaction between the core histones and
DNA favoring the accessibility of the transcription apparatus.
Deacetylation removes the acetyl groups provoking chromatin
condensation and gene inactivation (49, 58). Acetylation and
deacetylation are dynamic processes mediated by histone
acetyltransferases (HAT) and histone deacetylases (HDAC) that
maintain the balanced state of acetylation. Gain of HDAC
expression has been found in many tumors, including GBM, and
inhibitors of HDAC (HDACi) have been extensively explored
for GBM therapy. HDACi have a large spectrum of antitumor
activity and six HDACi have been approved by FDA: Vorinostat
(11 studies concluded and 3 ongoing), Romidepsin (one study
concluded), Belinostat (one study ongoing), Panobinostat (2
studies terminated before completion), Valproic acid (two
studies terminated before completion and two recruiting) and
Entimostat (no studies yet) (59) (https://clinicaltrials.gov, June
2018). Preclinical studies have shown that HDACi are very
effective against GB cells, but the results of the clinical trials
were largely disappointing. In adult patients Vorinostat was
utilized as single agent and in combination with standard
or biological therapies and in one study (NCT00238303)
prolonged disease stabilization in a small subset of patients
when used as single agent (60) but its addition to the standard
radio/chemotherapy did not improve survival (61). Phase I/II
trials with Romidepsin, with Panobinostat and anti-VEGF,
or with Vorinostat and the proteasome inhibitor Bortezomib
were either ineffective or toxic and were discontinued (62–64).
Panobinostat however, is now being tested as a radiosensitizing
molecule with promising results (65). Along this line phase II
studies demonstrated that the addition of valproic acid to the
standard radio/chemotherapy or to radiotherapy alone improved

survival (66, 67). Randomized trials are necessary to confirm this
finding.

Histone Methylation
Histone methylation was discovered along with histone
acetylation (58) but its function remained obscure for many
years because methylation does not change the DNA/protein
interactions and it seemed an irreversible modification.
With the discovery of LSD1 (KDM1), the first histone
demethylase, it became clear that histone methylation
is a reversible process (68) mediated by approximately
30 enzymes subdivided into distinct classes, and linked
to a variety of physiological and pathological conditions
including cancer, cardiovascular diseases, abnormal immune
response and neurological disorders (51, 69). Histone
methylation involves certain lysine and arginine of H3
and H4 and can either activate or repress transcription
(Supplementary Figure 2).

In glioblastoma, histone methylation has distinct implications
in pediatric and adult patients. Histone variant H3.3 (H3F3A)
marks active chromatin domains and in pediatric tumors
can be mutated at two sites: lysine 27 (K27M) and glycine
34 (G34R/V) (70, 71) (Figure 2, N. 5 and 6). In pediatric
glioma the K27M mutation is restricted mostly to midline
tumors whereas G34R/V is prevalent in hemispheric gliomas.
K27M decreases methylation at K27 leading to transcriptional
activation. G34R/V is associated with the redistribution
of the activation mark H3K36 methylation and results
in the upregulation of the oncogene MYCN (72) whose
exogenous overexpression initiates glioma formation during
development (73). H3F3A-K27M also inhibits the PRC2-
EZH2 axis (2, 74), that acts as a histone methyltransferase,
leading to the generalized loss of H3K27 methylation and
to the CpG hypomethylator phenotype (CHOP) whose
consequence is the aberrant activation of gene expression
(75).

The methylation of H3K27 is regulated by PRC2-
EZH2 methylases and by the UTX (KDM6A) and KDM6B
demethylases; the effect of the K27M mutation could be reversed
by inhibiting H3K27 demethylation. In an experimental model
of diffuse intrinsic pontine glioma (DPIG), the small molecule
GSK J4 was utilized to inhibit the activity of KDM6B (76). It was
found that GSK J4 passes the Blood Brain Barrier and prolongs
survival of mice xenografted with H3K27 tumors but not that
of mice carrying WT H3.3 or G34R/V tumors. Although GSK
J4 has proven to be effective in in vivo tumor models as single
agent or synergically with HDACi (76–78), as of June 2018,
clinical trials employing this or similar molecules have not been
launched yet.

Targeting EZH2 is another mechanism to modulate histone
methylation and to reverse tumor growth (79). Several FDA-
approved EZH2 inhibitors are available (Tazemetostat, CPI-
1205, GSK2816126) and others are in advanced pre-clinical
testing. More than 20 trials that include EZH2 inhibition
are reported in the Clinical Trial database mostly aimed at
hematological disorders. As of June 2018, most studies are still
ongoing and recruiting. However, studies with Tazemetostat
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(NCT03213665; NCT03217253) were suspended because of
adverse events and one study with GSK2816126 (NCT02082977),
was interrupted because of insufficient evidences of clinical
response.

Mutations of H3.3-H3FA are uncommon in adult GBMwhere
H3.3 can be functionally inactivated by the MLL5 gene that is
overexpressed in GBM stem cultures (80). Finally, it was found
that GSK J4, like in pediatric GBM, has strong suppressive effects
on cell viability and self-renewal properties (80, 81).

Several histone demethylases are constitutively or transiently
overexpressed in adult GBM. LSD1 (KDM1) is FAD-monoamine
oxidase that demethylates several lysine of H3 (K4, K9, K27,
and K36). KDM1 interacts with non-histone substrates and
inhibits p53 activity by demethylating K370me1 and by inhibiting
the interaction with the coactivator 53BP1 (82). Inhibitors of
KDM1 derive mainly from MAO inhibitors utilized in the
clinical practice and are strong suppressors of tumor cell
proliferation in vitro and in animal models (83). Most KDMi
are non-selective for KDM1 and have additional irreversible
activity on MAO. As of June 2018, three molecules were
approved by FDA for clinical utilization (GSK2879552, IMG-
7289 and INCB059872) in addition to the antidepressants
Tranylcypromine and Phenelzine whose antitumor activity is
being explored in phase I trials. Some of these trials were
prematurely concluded because of toxicity and low efficacy while
others are still ongoing.

In GBM, recurrence occurs from residual cells at the margin
of resection that rapidly acquire radio- and chemo-resistance
during treatment and cannot be efficiently counteracted by other
drugs.

The induction of drug resistance is accompanied by the
overexpression of several KDM genes. Indeed it was shown that
upon treatment, a restricted population of slow-cycling cells
undergo epigenetic, thus reversible, changes that result in drug
resistance and sustained tumor growth (55, 56). A key effector of
this mechanism is the H3K4 demethylase KDM5A gene whose
exogenous expression or inactivation mimics drug resistance and
sensitivity in different tumors including GBM (55, 56, 84, 85).
Overall many pre-clinical and clinical evidences indicate that the
entire KDM5 family, as well as other KDMs are emerging targets
in cancer therapy (69, 86–89).

The pan-KDM inhibitor JIB 04 is maximally active against
KDM5A but, at lower efficacy, inactivates also other KDMs
found overexpressed in TMZ-resistant GBM cells (85) and has
a strong antitumor effect (90). JIB 04 was utilized in a model
of acquired TMZ resistance and shown to ablate TMZ-resistant
cells, to synergize with TMZ at clinically-relevant concentrations
and finally, in a pilot experiment, to have promising activity in
vivo (91). Similar effects were obtained with CPI-455, a selective
inhibitor of KDM5 (92) but at a concentration difficult to reach
in vivo (91, 92). Similarly, NSCLC cells that acquired resistance
to taxane/platinum combinations became sensitive to JIB 04 and
GSK J4 that reverted, at least in part, the transcriptional program
of resistant cells to that of drug-naïve cells and synergize with
standard chemotherapy as JIB 04 and Temozolomide (93). As of
June 2018, none of these promising molecules is being tested in
clinical trials.

Layer 3: Chromatin Remodeling
Changing chromatin conformation regulates accessibility to
transcription factors, to the DNA replication and repair
machineries. The proper chromatin conformation is determined
by histones and their modifications and by the chromatin
remodeling complexes that include the histone modifiers
described in section Layer 2: Histone Modifications and the
ATP-dependent chromatin remodeling complexes (SWI/SNF;
ISWI; CHD and INO80) (94–96). These complexes include
many components that play essential and redundant roles in
normal cells and that are variably altered in most human cancers
(97). Because of their complexity, chromatin remodelers are
very difficult targets for drug discovery and the identification
of their synthetic inhibitors is still in its infancy (94). The
tumor suppressor SWI/SNF complex was the first chromatin
remodeler discovered, is mutated in more than 20% of
the tumors (97, 98) and is involved in the maintenance
of stemness in glioma cells (99). The effects of SWI/SNF
inactivation can be counteracted by inhibitors of the TK pathway
and of NF-kB (100, 101); however, as outlined previously,
these targeted therapies were unsuccessful in GBM patients.
PARP-1 polymerase is involved in chromatin remodeling
mechanisms through histone modification and inhibition of
the ISWI complex (102). Two PARP inhibitors (Oliparib and
Veliparib) were recently licensed by the FDA for ovarian
cancer treatment and several other experimental molecules
are undergoing extensive testing in humans and in animal
models (103). For GBM, the NIH Clinical Trials Database
reports seven ongoing or completed trials with Olaparib (104,
105) (NCT01390571, NCT03212274, NCT02974621) Veliparib
(NCT02152982, NCT03581292, NCT01514201) and with BSI-
201 (NCT00687765). The results of these studies were not yet
disclosed.

Targeting of histone chaperon molecules in glioblastoma is
just beginning to be explored, however promising results in
animal models were obtained by targeting FACT, a nucleosome
reorganization protein (106) with CBL0137 in combination with
TMZ (107).

CONCLUSIONS

Despite all the progresses in medicine, the median survival of
GBM patients has not substantially improved, likely because
this tumor rapidly becomes radio- and chemo-resistant and
infiltrates the surrounding brain tissue making impossible the
complete surgical eradication. To overcome this deadlock many
experimental therapies were devised but none of them met the
expected results. Epigenetic modifications are gaining strong
relevance in glioblastoma because they can be either clinical
biomarkers for the optimal stratification and classification of
the patients and because they can be also potential drug
targets as suggested by many preclinical trials. Molecules with
epigenetic effects can potentially modulate the plasticity of
the tumor environment in glioma and may drive the changes
of the epigenomic environment restoring or rendering more
susceptible the tumor cells to standard chemotherapy rather
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than be used as a monotherapy. In this respect the timing and
the scheduling of the epigenetics and cytotoxic drugs could
be crucial for the best clinical result and should be carefully
defined on the basis of the chemical, biological and cellular effect
of these treatments (91). Certainly, the addition of proteomic
and metabolomic approaches to the extensive epigenomic and
transcriptomic studies already conducted will have the capacity
to unveil the inner mechanisms of glioma biology allowing the
design of more effective drugs.
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Supplementary Figure 1 | IDH1/2 pathways. Metabolic pathways involving IDH1

(cytoplasmic) and IDH2 (mitochondrial). IDH1/2 (wt) converts Isocitrate into

αKetoglutarate (αKG) while the mutated forms convert Isocitrate into

2-hydroxyglutarate that competitively inhibits αKG-dependent dioxygenases

including the histone demethylases JHDM1 and KDM4 and the DNA demethylase

TET2

Supplementary Figure 2 | Schematic representation of the major H3 and H4

modifications and their functional role. In green and red the activating and the

repressive modifications, respectively.

Supplementary Table 1 | Clinical trials employing FDA-approved IDH1/2

inhibitors.
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