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Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the

most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in

the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress

to secondary generalized seizures. Morphological alterations in hippocampal sclerosis

are well defined. Among them, hippocampal sclerosis is characterized by prominent cell

loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into

the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber

sprouting in seizure generation and hippocampal excitability and discuss the response

of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures

in models of TLE (temporal lobe epilepsy).
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INTRODUCTION

Epilepsy is one of the most frequent neurological disorders, affecting more than 60 million people
worldwide (1). It is a complex and disabling disease, with no cure and often without effective
treatment (2). Current drug therapies are still not able to stop the disease or inhibit its development,
but merely control convulsive seizures (3). The clinical hallmark of epilepsy is the occurrence of
spontaneous recurrent seizures. It is estimated that up to 50% of all cases are triggered by “initial
precipitating injuries,” such as status epilepticus (SE), stroke, and traumatic brain injury (TBI) (4, 5).
Despite the huge number of preclinical and clinical studies, there is still a limited understanding of
the basic mechanisms underlying epilepsy development or “epileptogenesis” (3).

Current epilepsy therapies rely on symptomatic strategies, either pharmacological or surgical,
both aiming to suppress seizures, but do not target epileptogenesis (6). As the disease progresses,
up to 30% of patients with epilepsy, particularly those with mesial temporal lobe epilepsy (MTLE)
caused by hippocampal sclerosis, become pharmacoresistant, exhibiting medically intractable
recurrent seizures (2). These patients are often amenable to surgical removal of the sclerotic
structures (7). With this in mind, the rationale for the development of new antiepileptogenesis
strategies, involving epilepsy prevention and seizure reduction (8, 9) might start with a better
understanding of the pathophysiological mechanisms underlying epileptogenesis. In this review,
(1) we describe the main histopathological findings of hippocampal sclerosis and their effect on
the process of epileptogenesis, (2) we focus and explore the contribution of mossy fiber sprouting
(MFS) to seizure generation and, (3) we discuss the possible role of MFS as a therapeutic target in
MTLE.
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MTLE AND HISTOPATHOLOGICAL
FEATURES IN HIPPOCAMPUS

Three major phases are involved in MTLE (9, 10): (i) acute
injury (e.g., Status epilepticus, prolonged and complex febrile
seizure, or traumatic brain injury); (ii) a latent phase; and
(iii) a chronic phase, characterized by spontaneous recurrent
seizures. The development of an epileptic condition and/or
the progression of epilepsy is called epileptogenesis (11, 12).
The hippocampal formation is highly susceptible to epileptic
activity (13, 14) and is the site of seizure initiation in
patients with MTLE (15–17). Clinical and experimental evidence
demonstrated that the hippocampus plays a significant role in
the pathogenesis of MTLE. In rodents (18–20) and non-human
primate (21) models of temporal lobe epilepsy, status epilepticus
(SE) induction results in hippocampal sclerosis, characterized
by selective neuronal loss (22–26), astrogliosis (27–29), and
inflammation (30–32). Within hours to days after the initial
injury, hippocampal histopathological features include apoptosis
(24, 33–36), dentate gyrus neurogenesis (37–42), the production
of ectopic granule cells (43–47), and basal dendrites (48–51).
Synaptic reorganization (52–54) and granule cell dispersion (55–
58) are late features and their appearance may coincide with the
onset of spontaneous seizures (59).

In humans, mortality associated with SE may be as high as
30% due to widespread neuronal damage (4) which is sparse
after a spontaneous seizure (60). Similarly, in various animal
models of TLE, cell death/damage or apoptosis markers were
described along the different time lines of disease progression
suggesting that, at least in SE models, the precipitating injury
causes massive cell loss, while a spontaneous seizure leads to
a variable level of injury (22, 36, 61, 62). However, whether
hippocampal neuronal cell loss is the cause or consequence of a
seizure, is a topic of discussion in epilepsy research [for review,
see (63)]. Despite the reported controversies, a major challenge
is to understand how the precipitating injury can produce long-
lasting changes in neuronal circuitry and excitability. Different
types of injuries may lead to epileptogenesis, sharing underlying
mechanisms. Thus, the identification of common components
may prevent the abnormal reorganization that transforms a
normal brain into an epileptic brain. The search for such
epileptogenesis pathways may provide the foundation for the
development of novel antiepileptogenic and perhaps, preventive
therapies.

There are two types of TLE: one that involves the mesial
or internal structures of the temporal lobe; and one called
neocortical temporal lobe epilepsy, which involves the outer
portion of the temporal lobe. The most common is mesial
temporal lobe epilepsy (MTLE), characterized on a pathological
level by hippocampal sclerosis (HS) (7). HS is present in 30–
45% of all epilepsy syndromes, while it is present in 56%
of MTLE [for review, see (64)]. Several schemes have been
proposed to classify subtypes of HS, mainly based on the subfield
distribution, as well as the extent of hippocampal neuronal loss
and gliosis, but a recent consensus classification system, validated
by the neuropathology taskforce of the International League
Against Epilepsy (ILAE), incorporated aspects of all previous

schemes (65). This recent classification does not incorporate
other frequent alterations as MFS and interneuron changes.
ILAE type 1 HS (moderate to extensive neuronal loss and
gliosis in CA1 > CA4, CA3 with sparing of CA2) has the
highest seizure-free rate (70–85%) post-resective surgery at 2
years and is commonly associated with febrile seizures (50–
76%) (64). About 30–40% of TLE patients present normal
appearing hippocampi on magnetic resonance imaging (MRI)
studies, with no or only mild neuronal loss on histological
examination (66). Patients with no neuronal loss and no gliosis
have a poorer postsurgical seizure-free outcome (42–58%) (64).
With or without hippocampal sclerosis, patients investigated with
MRI have shown that structural damage is not limited to the
temporal lobe, with extension of damage to regions such as
in the entorhinal cortex, parahippocampal, and fusiform gyrus,
thalamus, basal ganglia, amygdala, and frontal and parietal lobe
(66–68).

Hippocampal Sclerosis
Hippocampal sclerosis is characterized by intensive gliosis
combined with a selective loss of neurons in the hippocampal
formation. In the dentate gyrus, the loss of hilar inhibitory
interneurons that project to the distal dendrites of granule cells,
was hypothesized to produce a direct disinhibitory effect on
granule cells (69–71). The loss of excitatory hilar mossy cells
was also hypothesized to cause granule cell hyperexcitability (72).
This would be indirectly related to the decreased excitation of
surviving inhibitory basket cells, which are normally excited by
mossy cells. Recently, these hypotheses were re-evaluated by
using a transgenic mouse line with toxin-mediated mossy cell
ablation. Using thesemutant animals, investigators demonstrated
that extensive ablation of mossy cells caused granule cell
hyperexcitability, although the lack of mossy cells per se appeared
insufficient to cause clinical epilepsy (73). Neuronal cell loss and
gliosis affect other components of the hippocampus such as CA1
and CA3 pyramidal cells, in particular the loss of GABAergic
interneurons (62), as well as of the limbic system, the amygdala,
entorhinal, or perirhinal cortices (23, 61, 74). This phenomenon
is also thought to contribute to the increased excitability of the
epileptic hippocampus, possibly resulting in additional cell loss.
Although multiple factors might be implicated in the genesis of
hippocampal sclerosis, it is still not clear why some individuals
are more likely to develop hippocampal sclerosis than others (7).

Astrogliosis
Astrogliosis is another prominent feature of epileptic foci evident
in up to 90% of surgically resected epileptic hippocampi (75,
76). As shown in the kindling model, it may play a causal
role in the development of seizures and the persistence of
seizure disorders (28). Experimental evidence shows that reactive
astrocytes are able to secrete molecules with pro-synaptogenic
effects [for review, see (77)] that may support the observed neo-
synaptogenesis during the latent period in models of epilepsy
(78, 79). The expression of the astroglial-derived synaptogenic
molecule thrombospondin 1 (TSP-1) is augmented in astrocytes
following brain injury and seizures (80). While TSP-1 has
the ability to induce excitatory synapses (81), gabapentin, an
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antagonist of TSP-1 receptor α2δ1, reduces the incidence of
epileptiform discharge, and has neuroprotective effects probably
achieved by suppressing the formation of excitatory synapses
after trauma (77, 82).

Mossy Fiber Sprouting
In addition to hippocampal sclerosis and astrogliosis, the
aberrant sprouting of granule cell axons, known as mossy fiber
sprouting (MFS), is a frequent histopathological finding in TLE
(83–85). Formation of MFS occurs in two phases: (1) the injury
per se induces neuronal activity and the release of growth
factors (86–88), and (2) the growth and extension of the granule
cell axon (89–91). Morphologically, the hippocampal dentate
gyrus contains three layers: molecular layer, granule cell layer,
and polymorphic layer, also known as the hilus. This well-
characterized pattern is conserved across mammalian species.
The molecular layer is considered cell-free, as it contains the
apical dendrites of granule cells and the excitatory terminals
that convey information from either the entorhinal cortex (to
the outer molecular layer) or from the commissural projections
(to the inner molecular layer). The granule cell layer is densely
packed with small diameter cell bodies (granule cells). The
granule cell axons (also named mossy fibers) extend to the hilus
and project to the excitatory interneurons (mossy cells) and to
inhibitory interneurons before running through a narrow area
called the stratum lucidum, to synapse onto CA3 pyramidal
neurons (Figure 1A). Rarely, mossy fibers synapse onto other
granule cells (92). The mossy cell axons project to contralateral
granule cell dendrites in the inner molecular layer (associational
pathway of the dentate gyrus or the commissural pathway in
rodents) as well as to inhibitory basket cells, located within
the granule cell layer. Thus, an excitatory input generated in
the entorhinal cortex reaches the granule cells and extends to
mossy cells, which in turn inhibit the granule cells. For a detailed
description of hippocampal circuitry see Amaral et al. (93).

While mossy fibers are hardly seen in the molecular layer of
human non-MTLE resected hippocampal tissue, a robust density
of mossy fibers containing zinc-rich terminals can be visualized
with neo-Timm staining in MTLE specimen (94). Originally
described inMTLE patients (94), the mossy fiber sprouting refers
to an abnormal and extensive innervation of mossy fibers to the
dentate inner molecular layer of the hippocampus (Figure 1B).
Similar findings were soon demonstrated after kainate-induced
seizures (95), and widely replicated in other animal models
[for review, see (96)]. While the neo-Timm staining protocol
is considered the gold standard to identify the aberrant zinc
terminals in the inner molecular layer, in many animal models of
TLE (red dots in the Figure 1B), recent imaging data has revealed
that MFS can be tracked in vivo in longitudinal studies, by means
of the manganese-enhanced signal in T1-weigthed images (97–
100), allowing many possible correlational studies (Figure 2).

The aberrant MFS initiates with the formation of new sprouts
from mossy fibers within the dentate hilus, which is likely
triggered by an injury-related increase in neuronal activity and
the upregulation of brain-derived neurotrophic factor (86–88).
Two distinctive mechanisms were proposed to contribute to the
extension of mossy fiber sprouts to the inner molecular layer: the
vacancy of synaptic sites (101) in granule cell proximal dendrites,
caused by hilar cell loss after injury (70) and the downregulation
of chemorepellents, such as Sema3A (102). Sema3A, normally
secreted by entorhinal axons projecting to the dentate molecular
layer, interacts via a receptor complex composed of neuropinlin-
1 and plexinA present in dendrites of adult granular, hilar and
pyramidal cells, suggesting that this signaling pathway is active
in the hippocampal formation [for review see (103)], but is lost
after status epilepticus. This suggests that the downregulation
of chemorepellents, such as Sema3A, may act as a molecular
element that facilitates the formation of recurrent projections of
mossy fibers into the inner dentate molecular layer after status.

Originally described as a functional recurrent excitatory
projection to dentate granule cells (95), caused by the loss of

FIGURE 1 | Hippocampal formation in the normal and epileptic brain. The dentate gyrus granule cell layer is densely packed with small diameter cell bodies named

granule cells. Just above the granule cell layer is the molecular layer (ml) that is considered cell-free, as it contains the apical dendrites of granule cells. The outer

molecular layer receives entorhinal cortex information via a performant pathway (PP). Granule cell axons, named mossy fibers, extend to the hilus with projection to

the mossy cells and CA3 pyramidal neurons. The mossy cell axons project to contralateral granule cell dendrites in the inner molecular layer (A). In the epileptic

hippocampus, with the loss of mossy fibers target in the hilus, the granule cell axons sprout and extensively innervate the dentate inner molecular layer of the

hippocampus, a phenomenon called mossy fiber sprouting, illustrated in red (B).
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FIGURE 2 | MEMRI and neo-Timm analyses for MFS positive and MFS negative animals. T1-weighted Manganese-enhanced MRI (MEMRI) (A–C) and neo-Timm

staining (D–F) in Pilocarpine-treated animals. The protein synthesis inhibitor cycloheximide administered before SE onset was able to reduce the mossy fiber sprouting

(A) at control levels (B) when compared with the Pilocarpine group (C). Differences were identified between MFS positive and MFS negative (#P < 0.05) and MFS

positive and control animals (*P < 0.05) (G–H). Neo-Timm densitometry and MEMRI signal is strongly correlated (r = 0.81; P < 0,001) in the dispersion graph (I). s:

supragranular mossy fiber sprouting (white arrows in F). Scale bars = 50µm. Modified from our previous study (99).

mossy fiber target cells in CA4 and CA3, the origin (104) and
the role of MFS in MTLE has been disputed (105, 106). Hilar
cell loss is an early finding in experimental models of TLE (107).
However, there is no clear evidence that it is the specific loss
of mossy cells and not the loss of other hilar interneurons, that
triggers the MFS (108). Nowadays the topic of whether MFS is
“epileptogenic” or “restorative” remains controversial. Although
intrahippocampal circuit reorganization may be a cause of
hippocampal epileptiform activity, recent studies indicate that
sprouting is not necessarily associated with the occurrence of

spontaneous seizures (109). The supportive evidence for both
hypotheses is discussed below.

MOSSY FIBER SPROUTING: EXCITATORY
OR INHIBITORY ROLE IN HIPPOCAMPAL
CIRCUITRY?

The evidence for a pro-epileptogenic role of MFS includes
its presence in about 60% of patients with mesial temporal
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lobe epilepsy (94, 110) and animal models of hippocampal
epilepsy (59, 111, 112). Re-assessed in the 1990’s (113), the
“mossy fiber sprouting hypothesis” holds that the increased
excitability of dentate granule cells is the consequence of a
pathological rearrangement of neuronal circuitry on which
the excitatory granule cells innervate themselves, building up
recurrent excitatory circuits. This hypothesis was supported
by several lines of evidence, some described below. Electron
microscopic studies show that sprouted mossy fiber terminals
form asymmetric (excitatory) contacts with dendritic spines of
granule cells (83). Electrophysiological evidence was obtained
with perforant pathway stimulation (PPS). A single PPS in
hippocampal slices of normal rats was able to produce an
excitatory postsynaptic potential (EPSP) and a population action
potential in the granule cells. If a second PPS is triggered 40ms
later, it evoked the EPSP but not the population action potential,
possibly due to an inhibitory recurrent activation—defining the
concept of a “gate” role for dentate granule cell layer. When the
same experimental setup was performed in hippocampal slices
of kainate-treated rats, the second stimulation evoked multiple
populations of action potentials, indicating that granule cells
became disinhibited and thus, hyperexcitable. These results were
correlated with the presence of robust MFS in these slices, as
revealed by Timm staining (95), suggesting that the aberrant
sprouting of mossy fibers into the molecular layer could be
associated with the loss of the dentate “gate.” Similar results
were obtained in slices from kainate-treated animals, when
antidromic stimulation of granule cells provoked seizure-like
bursts of action potentials (111, 112). Important evidence of the
pro- epileptogenic role of MFS was demonstrated in the kindling
model, in which the density of sprouting increases with the
number of induced seizures (114).

Aberrant MFS positively correlates with mossy cell loss in
MTLE patients (115) and animal models (45, 116) but is it
necessary and sufficient to generate seizures? Arguing against that
view, evidence shows that MFS can be induced experimentally
without seizures, after long-term potentiation (117), lesion of
the perforant pathway (118, 119), or genetic mutation (120).
Similarly, after electrical stimulation of the amygdala, some
animals develop seizures but not MFS (106). In the prolonged
febrile seizures model, MFS is well-developed 3 months after
the initial injury, despite the absence of significant cell loss or
increased dentate neurogenesis (121). In both the pilocarpine
and kainate models, the presence and the intensity of MFS
are positively correlated with higher T2 relaxation time values,
number of spontaneous seizures, and the degree of cell loss in
the granule cell layer, CA1 and CA3 pyramidal cell layer, but
not in the hilus (116). This data is consistent with previous
reports (122, 123) and indicates that although important, MFS
may develop independently of mossy fiber target loss (124), it
is present in animals with spontaneous seizures but its presence
is not necessarily associated with the occurrence of spontaneous
seizures (106).

Some data indicate that MFS is an active phenomenon,
possibly a normal adaptive mechanism that becomes pathogenic
(125, 126). Evidence that favors the idea that MFS is an active
phenomenon came from studies using the mTOR pathway

inhibitor, rapamycin. Rapamycin is an Akt (protein kinase B)-
mTOR inhibitor, which is related to various neuronal functions,
including synaptic plasticity, neurogenesis, and dendritic and
axonal plasticity (127, 128). Treatment of epileptic animals with
rapamycin for 2 months after SE onset reduced MFS by half.
Later evaluations indicated that once the rapamycin treatment
ended 2 months after SE, MFS resumed and became fully
developed 6 months after SE (126–128). Another Akt inhibitor
called perifosine, was used prior to SE induced by kainic acid
(KA). Pretreatment with perifosine suppressed the KA-induced
neuronal death and MFS, resulting in a decrease in spontaneous
seizures (129). These data support the hypothesis that MFS, after
the epileptogenesis process, may lead to, but it is not necessary for
the formation of recurrent excitatory circuits in dentate granule
cells.

Accordingly, although more zinc-containing terminals are
seen (by using Timm staining) in animals that have more
seizures, the ultrastructural analysis of dentate molecular layer
failed to show an increased number of excitatory synapses,
favoring the idea that MFS is related to replacement or
restoration of lost contacts rather than to increased excitability
(125, 130). Other evidence against the excitatory role of MFS has
also been suggested in electrophysiological studies. Even though
commissural fibers are excitatory and might be predicted to
excite granule cells, the activation of this pathway in vivo has a
predominantly inhibitory effect on granule cells. This is likely
because the mossy cell-derived commissural pathway, directly
excites inhibitory basket cells (131–133). MFS may re-innervate
both basket cells and granule cells, which were found to be
disinhibited and hyperexcitable immediately after hilar neuron
loss, prior to MFS (84, 134). Another proposed mechanism
is dependent on Neuropeptide Y (NPY) which is highly
expressed in mossy fibers of pilocarpine-treated rats. When
spontaneously released from the recurrent mossy fiber terminals,
NPY reduces glutamate release by presynaptic activation of Y2

receptors, depressing the epileptiform activity of granule cells
dependent on the recurrent innervation (135, 136). Thus, the
imbalance between excitatory/inhibitory inputs is believed to
be the underlying mechanism of the MFS action. Accordingly,
optogenetic approaches have been used to induce excitation of
GABAergic interneurons and thus, seizure suppression (137–
139). However, recent evidence argues for a possible “excitatory”
role of GABAergic cells, depending on the context in epileptic
circuitry. The dual roles of GABAergic interneurons was recently
addressed, demonstrating that these neurons can (1) excite
postsynaptic neurons due to the elevated reversal potential of Cl−

in the postsynaptic cells; (2) be GABA-depleted with continuous
activity; (3) synchronize network activity during seizures; and
(4) inhibit other interneurons, causing disinhibition of principal
neurons and network excitability (140).

Although MFS is a common finding in MTLE, not all
patients with spontaneous seizures develop MFS (141, 142), a
finding that is corroborated in some animal models (99, 143,
144). As a result, MFS would not be necessary for triggering
or maintaining hippocampal hyperexcitability. Favoring this
idea, cycloheximide, a protein synthesis inhibitor, when used
at SE onset did not interfere with induced and spontaneous
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seizures, but suppressed MFS in the pilocarpine and KA models
(101, 143–145), as confirmed by electron microscopy (130).
The mechanisms underlying such suppression remain unclear,
but may be associated with a neuroprotection of hilar cells
(38). Although complete suppression of MFS by cycloheximide
treatment was not confirmed by other laboratories, their results
indeed demonstrated a reduction of MFS (146). Regardless of
whether MFS is suppressed or reduced after cycloheximide,
these studies demonstrate that MFS can be modulated and does
not directly interfere with the occurrence of spontaneous and
recurrent seizures.

Thus, MFS is neither pro- nor anti-epileptic and has also
been suggested to be an epiphenomenon (147). Adult-born
granule cells robustly contribute to MFS and form functional
recurrent synapses (148) as do the neonatally born neurons (40,
149). Considering the increased neurogenesis rate after seizures,
it is likely that continued neurogenesis results in increased
MFS, which is further reinforced by subsequent spontaneous
seizures and results in increased dentate excitability. However,
it was recently demonstrated that despite the presence of
robust morphological MFS from granule cells born after status
epilepticus, these synapses were not functionally active, unable to
drive recurrent excitation (148).

ALTERNATIVE EPILEPSY TREATMENTS
WITH OR WITHOUT EFFECT ON MOSSY
FIBER SPROUTING

MTLE is one of the most prevalent forms of refractory
symptomatic epilepsy. Despite the effectiveness of
pharmacological therapy in controlling seizures in more
than two thirds of cases, some patients develop unacceptable
pharmacological side effects (150), which makes continuing the
search for better treatment options of utmost importance.
Although MFS’s role in epileptogenesis is not entirely
understood, the close association between aberrant MFS
and epileptogenesis indicates that therapeutic strategies capable
of suppressing MFS into the inner molecular layer, may have
potential clinical significance. Thus, MFS may be an important
therapeutic target for treatments designed to interfere with, or
modulate the axonal guidance system.

When conventional antiepileptic drugs (AEDs) fail to achieve
their desired effects and the surgical resection of the focus is
not an option, alternative methods are usually explored. Some of
these methods include a ketogenic diet (151, 152), vagus nerve
stimulation (VNS) (153, 154), deep brain stimulation (DBS)
(155–157), cell therapy (158), or new experimental compounds
(159, 160). When tested in animal models, the ketogenic diet
produced contradictory effects (161, 162), while VNS (163,
164), and DBS (165, 166) led to a reduction in hippocampal
excitability and/or spontaneous seizures (165, 166). VNS and
DBS are surgical alternative procedures for patients who are not
responsive to conventional AEDs and are not candidates for
surgical resections (e.g., due to multiple seizure foci or foci in
eloquent regions).

Vagus Nerve Stimulation
One possible underlying mechanism for the effects of VNS,
is the increase of extracellular norepinephrine concentrations
(167) in the hippocampus (168), amygdala (169), and cortex
(168). VNS could inhibit seizure activity in PTZ-kindled rats
(170) and delayed the development of seizures in cats after KA
treatment (171). Recently it was demonstrated that intermittent
VNS is able to increase the expression of the fibroblast growth
factor (FGF) and the brain-derived neurotrophic factor (BDNF)
in the hippocampus and cortex of rats (172, 173); to increase
proliferation in the dentate gyrus (174). There is however, no
evidence that VNS affects the MFS.

Deep Brain Stimulation
Deep brain stimulation of the anterior thalamic nucleus (AN) has
been approved for the treatment of medically-refractory partial
epilepsy (155). In preclinical models, AN DBS was shown to
reduce the frequency of seizures (165) and increase the latency
for SE (175, 176). The anticonvulsant effects of AN stimulation
were also demonstrated prior to pilocarpine treatment, resulting
in an increased latency for seizures and SE (175, 176). In the long-
term, AN DBS during SE, results in an increased latency for the
development of chronic recurrent seizures and neuroprotection
in the dentate gyrus and CA1 regions (158). The neuroprotective
role of AN DBS during status, or in the chronic phase, may occur
due to a reduction in apoptosis and neuroinflammation (33), as
well as hippocampal excitability (166) and increases hippocampal
adenosine levels (166), suggesting that adenosine is involved with
neuroprotection, in this model. Similar results were observed
when DBS was applied to other brain targets (e.g., hippocampus)
(159). Despite its seizure-modulating actions, AN DBS does not
alter neo-Timm expression in the pilocarpine model of epilepsy
(177).

Cell Transplantation Therapy
Recent studies have focused on cell transplantation, as an attempt
to replace neuronal loss in various hippocampal subfields and/or
to explore its potential to release disease-modifying substances.
The effects of transplants on spontaneous seizure suppression,
are promising. On one hand, there was no reduction in the
percentage of rats that developed spontaneous seizures, but
transplanted rats displayed fewer spontaneous seizures than
sham-transplanted controls after KA treatment (178). Using
cell therapy, Bortolotto and colleagues reduced the number of
spontaneous seizures, but there was no difference in the kindling
susceptibility following grafting (179). In another recent study,
a long-term reduction in the number of spontaneous seizures
was found in mice after the intra hippocampal transplantation
of progenitor cells from embryonic medial eminence after
pilocarpine-induced SE (180). Endogenous cell transplantation
can be genetically manipulated to affect and modify disease
progression. Important results were found using GABAergic
progenitor cells. These grafts of GABAergic neurons were able
to suppress seizures by enhancing synaptic inhibition in a
chronic epileptic animal model of pilocarpine in mice (180–182).
Therefore, despite a few controversial studies, there is some work
showing a great therapeutic potential for the transplanted cells.
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Human fetal stem cell treatment was assessed in the
pilocarpine model of TLE to reduce seizures. This treatment
showed extensive migration of the implanted cells around
the injection site, along with differentiation (24% produced
GABA); increased glial cell-derived neurotrophic factor (GDNF)
levels, but did not reverse MFS (183). Opposing results were

recently demonstrated following the intravenous infusion of
mesenchymal stem cells from rat bone marrow, which was
associated with the neuroprotection, reduction of cognitive
deficits and suppression of MFS (184). The authors concluded
that grafts might reduce epileptogenesis through the suppression
of aberrant MFS (184). Grafts of CA3 fetal cells enriched with

TABLE 1 | Treatment effects on seizure frequency and MFS.

Study Subject/Model Treatment Main Effects

Chen et al. (186) Pilocarpine and

pentylenetetrazole kindling

model

Overexpression of repulsive guidance

molecule (RGMa) in the hippocampus

Reduced spontaneous seizures and MFS.

Heng et al. (109) Pilocarpine Rapamycin Blocked MFS but not seizures.

Buckmaster and Lew (187) Pilocarpine Rapamycin No effect on spontaneous seizures but suppressed MFS.

Buckmaster et al. (188) Pilocarpine Rapamycin Reduced MFS, which was restored after the end of the

treatment.

Zhu et al. (129) Kainic acid Perifosine Suppressed neuronal death and MFS.

Li et al. (189) Perforant path kindling Reo3Y, ligand of the p65/p95

receptor

Suppressed perforant path kindling, MFS, and hilar changes.

Longo et al. (143–145) Pilocarpine and kainic acid Cycloheximide No effect on spontaneous seizures but suppressed MFS.

Fukumura et al. (184) Pilocarpine Mesenchymal stem cells Suppressed MFS, reduced seizures and induced

neuroprotection.

Rao et al. (185) Kainic acid Grafts of CA3 fetal cells enriched with

FGF-2 and BDNF

Dramatically reduce the extent of the aberrant MFS (∼70%).

Lee et al. (183) Pilocarpine Human fetal stem cells Suppress seizures, but had no effect on MFS.

Wu et al. (190) Kainic acid Resveratrol Decreased the frequency of seizures, protect against

neuronal death, and suppress MFS.

Drion et al. (191) Electrically-induced SE Rapamycin and curcumin Suppress seizures depending on rapamycin blood levels, but

no effect on MFS. Curcumin treatment had no effect on

chronic seizures.

FIGURE 3 | Schematic representation of the main topics of this manuscript. Mesial temporal lobe epilepsy (MTLE) is clinically hallmarked by spontaneous seizures.

The main pathological findings in the surgically resected hippocampus of patients and animal models of TLE are hippocampal sclerosis, astrogliosis, and mossy fiber

sprouting (MFS), which are frequently studied to understand the mechanisms that may underlie epileptogenesis. We discussed three main different perspectives:

Does MFS have a pro- or anti-epileptogenic role or is it an epiphenomenon? We finalize our review with a series of current alternative therapeutic approaches to

reduce seizures and excitability that may affect or not the MFS.
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FGF-2 and BDNF exhibit robust integration and inhibit the
abnormal MFS in the injured hippocampus (185). CA3 cell
grafts transplanted into the injured rat hippocampus 4 or 45
days after KA, dramatically reduced the extent of aberrant MFS
(∼70%). This shows that such techniques may be promising for
partially restoring hippocampal pathology after damage and the
release of substances that could modulate and interfere with MFS
formation and axonal guidance.

Recently, a group of epilepsy resistant patients was
treated with AED supplemented with a single intravenous
administration of undifferentiated autologous mesenchymal
stem cells. These patients either achieved remission (no seizures
for 1 year and more) or became respondent to AEDs (158)
indicating that stem cell treatment may be promising for the
treatment of pharmacoresistant patients.

Other Experimental Therapies
MFSwas prevented after repetitive administration of nicardipine,
an L-type Ca++ channel blocker that also ameliorated the
cognitive deterioration but had no anticonvulsant action against
pilocarpine seizures (159). A list of a few relevant studies with
different subjects, models and treatments for MTLE is listed
in Table 1. In this table we listed studies that had success in
suppressing both the MFS and spontaneous seizures (184, 186,
189); suppressed MFS but had no effect on spontaneous seizures
(101, 109, 129, 143, 144, 187, 188) or suppressed seizures but
had no effect on MFS (183). Among these studies, systemically
infused mesenchymal stem cells (MSCs) suppressed aberrant
MFS in the hippocampus in the lithium-pilocarpine injection
model (184). However, the use of human neural stem/progenitor
cells (huNSPCs) in the pilocarpine model suppressed seizures,
but did not reverse MFS (183). Based on that, cellular therapy can
be effective in the remission of spontaneous recurrent seizures,
which could also be verified in studies with patients (158), but
is not always effective in suppressing MFS. Some therapeutic
compounds such as resveratrol treatment have the potential
for reducing the intensity of injury-chronic epilepsy (192) by
decreasing the frequency of spontaneous seizures, protecting
against kainate-induced neuronal cell death in the CA1 and CA3

hippocampus and suppressing MFS (190). However, rapamycin
and curcumin treatments did not change epileptogenesis (191).
Rapamycin, which was effective in suppressing seizures, as long
as its blood levels were sufficiently high, had no effects on MFS
in electrical post-SE model. According to the authors, curcumin’s
lack of effect was possibly because it did not reach the brain at
adequate levels (191).

CONCLUSION

In this article we reviewed MFS, as a pathological substrate
for MTLE (Figure 3). Other morphological alterations include
hippocampal sclerosis, astrogliosis, neurogenesis, cell dispersion
to name a few. The contributing role of each one of these
malformations for the development of epileptogenesis is not
clearly understood. Although MFS is a frequent finding in MTLE
it is not necessarily present. Although MFS makes recurrent
excitatory circuits, these are likely not sufficient to generate
seizures. Based on different strategies such as, protein synthesis
inhibitors, calcium channel blockers, stem cell therapy, and
rapamycin studies, we learned that MFS is an active process
that can be manipulated, but has little or inconsistent effects on
seizure suppression Thus, we conclude that MFS is related to
replacement or restoration of lost synaptic contacts, rather than
to increased excitability in hippocampal circuitry.
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