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Abstract
The inhibitor of apoptosis proteins (IAPs) are a family of proteins that were
chiefly known for their ability to inhibit apoptosis by blocking caspase
activation or activity. Recent research has shown that cellular IAP1 (cIAP1),
cIAP2, and X-linked IAP (XIAP) also regulate signaling by receptors of the
innate immune system by ubiquitylating their substrates. These IAPs
thereby act at the intersection of pathways leading to cell death and
inflammation. Mutation of IAP genes can impair tissue homeostasis and is
linked to several human diseases. Small-molecule IAP antagonists have
been developed to treat certain malignant, infectious, and inflammatory
diseases. Here, we will discuss recent advances in our understanding of
the functions of cIAP1, cIAP2, and XIAP; the consequences of their
mutation or dysregulation; and the therapeutic potential of IAP antagonist
drugs.
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Introduction
The inhibitor of apoptosis proteins (IAPs) are a family of pro-
teins that were first identified in insect baculoviruses1,2. These 
viral IAPs were found to block defensive apoptosis in order to 
facilitate viral replication1,2. Subsequently, cellular homologs 
have been identified in both invertebrates and vertebrates. Like 
viral IAPs, some cellular IAPs can inhibit apoptosis. Cellular and  
viral IAPs are characterized by the presence of baculoviral 
repeat domain (BIR) repeats. This review will focus on the most  
intensively studied mammalian IAPs, which are cellular IAP1 
(cIAP1), cIAP2, and X-linked IAP (XIAP).

Mammalian IAPs were initially thought to inhibit cell death only 
by directly binding to caspases. However, only XIAP is able to 
bind caspase-3 and -93,4. Upon apoptotic stimuli, IAP inhibi-
tors, including Smac/Diablo and HtrA2/Omi, are released from 
the mitochondria and bind to XIAP’s BIR domains, releasing 
active caspases into the cytosol5. Unlike XIAP, cIAP1 and 2 are  
poor direct caspase inhibitors6. Instead, they bind to tumor necro-
sis factor (TNF) receptor-associated factors (TRAFs) via their 
BIR1 domains7 to block cell death induced by TNF receptor 1 
(TNFR1) by promoting the activation of signaling pathways that  
induce the expression of pro-survival proteins.

Recent advances in understanding of IAP function from genet-
ics, biochemistry, structural biology, and medicinal chemistry 
have shown that IAPs have roles beyond inhibiting cell death. 
All three IAPs have a carboxy-terminal RING (really interest-
ing new gene) domain that allows them to act as ubiquitin E3 
ligases that can ubiquitylate associated proteins as well as them-
selves. IAPs can regulate innate immune responses by limiting  
non-canonical nuclear factor kappa B (NFκB) signaling, pro-
moting canonical NFκB and mitogen-activated protein kinase 
(MAPK) signaling, and inhibiting both caspase-dependent and 
-independent cell death. Drugs that antagonize IAPs, termed 
“Smac-mimetics”, have been developed to promote the death  
of cancer cells and those bearing intracellular infections. Use of 
these drugs in pre-clinical models has revealed additional roles 
of IAPs that might be exploited to treat certain inflammatory  
conditions and to enhance anti-tumor immunity.

IAP and TNF signaling
TNF-induced survival
Despite its name, TNF does not induce cell death in the major-
ity of cell types. However, cell death can occur when canoni-
cal NFκB activation is delayed or blocked. Binding of TNF to 
TNFR1 induces the recruitment of TRADD, RIPK1, TRAF2, and 
cIAP1 and 2 to form complex I at the plasma membrane. cIAP1 
binds to TRAF2 through both its BIR1 and its UBA domains8–11.  
Within complex I, cIAP1 and 2 conjugate K11-, K48-, and  
K63-linked ubiquitin chains to themselves and other complex I 
components such as RIPK112–16. cIAP-mediated ubiquitylation of 
components of complex I leads to the recruitment of the linear 
ubiquitin chain assembly complex (LUBAC), which in turn linearly 
ubiquitylates several components of the complex I, includ-
ing TNFR1, TRADD, RIPK1, or NEMO17–22. Both K63-linked 
and linear ubiquitin chains serve as docking sites for TAB2/3/
TAK1 and the IKK subunit NEMO23–27. Subsequently, TAK1  

phosphorylates IKK2 and MAPK kinases28, leading to the tran-
scription of NFκB-dependent and MAPK-dependent genes that  
induce inflammation, proliferation, and cell survival (Figure 1).

According to this model, ubiquitylation of RIPK1 mediated by 
cIAP1 and 2 and LUBAC serves as a scaffold to activate NFκB 
and MAPK, providing inflammatory and survival outcomes 
(Figure 1). However, several reports have questioned parts 
of this model. For instance, in Jurkat T cells lacking RIPK1,  
there was no activation of NFκB in response to TNF, suggest-
ing a requirement for RIPK1 so that TNF could activate NFκB. 
In contrast, in primary fibroblasts and T cells, TNF was able 
to activate NFκB in the absence of TRADD or RIPK124,29–32.  
Similarly, the deletion of cIAP1/2 genes markedly delayed, but did 
not prevent, TNF-induced activation of NFκB in mouse embry-
onic fibroblasts (MEFs)11,33. Observations such as these have 
led to a proposal that TNF induces two waves of IKK activation 
occurring a few minutes apart34. The first is dependent on RIPK1 
ubiquitylation and the second on LUBAC recruitment, which  
allows further recruitment of IKKs34. It is therefore plausible 
that the first early wave has at times been missed and this could 
explain why in some cell types RIPK1 has been found to be dis-
pensable for canonical NFκB activation34. It also might account for 
why the loss of LUBAC components reduces or delays the acti-
vation of NFκB by TNF18–21,35–39. However, because both waves  
depend on TRAF2 and cIAP1, this does not explain how canoni-
cal NFκB is activated in the absence of cIAP1 and 2. Perhaps, 
in some cell types, in the absence of cIAP1 and 2, there are 
backup signaling mechanisms to ensure the transcription of  
survival and inflammatory genes. In other cell types, the absence  
of backup signaling would terminate the inflammatory response.

TNF-induced cell death
While there remains uncertainty about whether cIAP1 and 2 are 
absolutely necessary for activation of the canonical NFκB path-
way, there is general agreement that IAPs prevent TNF-induced 
cell death. Internalization of complex I leads to the recruit-
ment of FADD, caspase-8, and RIPK3, forming a cytosolic 
cell death-promoting platform referred to as complex II40,41.  
Signaling from complex I stimulates transcription of the CFLAR 
gene encoding cFLIP, a structural homolog of caspase-8 that 
lacks caspase activity. Binding of cFLIP to caspase-8 limits  
caspase-8 activity so that a restricted number of substrates, such as 
RIPK1, are cleaved whereas others, such as pro-caspase-3 or Bid,  
are not42–45 (Figure 1).

Cleavage of RIPK1 is believed to allow the dissociation of  
complex II and also prevents RIPK1 from oligomerizing with 
RIPK3 (another substrate of the cFLIP/caspase-8 heterodimer). 
Accordingly, if caspase-8 activity is compromised, uncleaved 
RIPK1 and 3 oligomerize to form a complex called the necro-
some, in which RIPK3 is auto-phosphorylated and in turn  
phosphorylates MLKL, which causes a form of cell death known 
as necroptosis41,46,47. Consistent with the role for cIAP1 and 2 
as ubiquitin ligases for RIPK1, the absence of, a decrease in, or  
mutation of the BIR or UBA domains of cIAP1 and 2 allows RIPK1 
to remain or become deubiquitylated, so that complex I more  
rapidly transitions into complex II, promoting cell death11,15,48. 
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This would have an immediate effect in addition to the slower 
effect of reduced activation of NFκB leading to less production  
of cFLIP (Figure 1).

In some circumstances, the absence of just XIAP can also allow 
TNF to induce cell death, but less is known about how this 
occurs, compared with induction of cell death in the absence of 

cIAP1 and 249,50. It has been speculated that XIAP blocks RIPK1  
ubiquitylation within complex II in a RIPK3-dependent manner50.  
Consistent with this, ubiquitylated RIPK1 species are present 
in complex II or the necrosome when all IAPs are inhibited51.  
Perhaps cIAP1 and 2 ubiquitylate RIPK1 in complex I, thus  
limiting RIPK1’s entry into complex II, whereas XIAP limits 
RIPK1’s ubiquitylation within complex II to block its activation.

Figure 1. Regulation of innate receptor signaling pathways by inhibitor of apoptosis proteins (IAPs). Tumor necrosis factor (TNF) 
binding to TNF receptor 1 (TNFR1) triggers complex I formation, in which cIAP1 and 2 ubiquitylate RIPK1. This leads to the induction of 
canonical (canon.) nuclear factor kappa B (NFκB)- and mitogen-activated protein kinase (MAPK)-dependent genes, including cFlar encoding 
cFLIP. Subsequently, cytosolic complex II containing FADD, caspase-8, RIPK1, RIPK3, and cFLIP is formed. In this complex, cFLIP inhibits 
caspase-8 activation to block apoptosis and necroptosis. Inhibition of cIAP1 and 2 by Smac-mimetic drugs impairs canonical NFκB activation 
and accelerates the formation of complex II, which leads to apoptosis. When caspase-8 activation is blocked within complex II, RIPK1 and 
3 are not cleaved and necroptosis is activated. Stimulation of nucleotide-binding oligomerization domain 1/2 (NOD1/2) receptors induces 
RIPK2 ubiquitylation by XIAP and activates the transcription of NFκB- and MAPK-dependent cytokines such as TNF, which amplifies the 
inflammatory signal. Binding of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to Toll-
like receptors (TLRs) leads to the recruitment of the Myd88/TRAF3/6/cIAP1/2 complex. Within this complex, cIAP1 and 2 ubiquitylate TRAF3, 
inducing its degradation and increasing the expression of cytokines and chemokines. The other TLR adaptor, TRIF, recruits RIPK1 via its RIP 
homotypic interaction motif (RHIM) domain (yellow). Upon TLR activation, inhibition of IAPs by Smac-mimetics promotes the formation of the 
ripoptosome, which has a composition similar to that of complex II. TLR-induced expression of TNF and TNFR2 triggers cIAP1/2 degradation 
and a subsequent accumulation of NFκB-inducing kinase (NIK), which activates non-canonical (non canon.) NFκB-dependent genes. In the 
context of XIAP deficiency, the degradation of cIAP1 and 2 by TNFR2 leads to the formation of complex II. Activation of complex II or the 
ripoptosome can activate pyroptosis after TLR priming. TRAF, tumor necrosis factor receptor-associated factor.
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It is important to note that, in some cells, inhibition of cIAP1 
and 2 can allow spontaneous formation of a RIPK1/FADD/cas-
pase-8/FLIP complex called the “ripoptosome” independently of 
the addition of TNF or other death ligands such as TRAIL and 
FasL52,53. Formation and activation of this complex are further 
enhanced in the absence of XIAP52–54 (Figure 1). Whereas the  
role of cIAP1 and 2 in limiting ripoptosome formation is likely 
to be due to decreased RIPK1 ubiquitylation, the exact role of  
XIAP in inhibiting ripoptosome formation is not known.

IAPs and microbial sensors
Toll-like receptors and inflammasomes
Toll-like receptors (TLRs) recognize pathogen-associated and 
damage-associated molecular patterns known as PAMPs and 
DAMPs, respectively. TLRs transduce signals through the adap-
tor proteins MyD88 and TRIF55. When PAMPs and DAMPs 
bind TLRs, those dependent on MyD88 recruit TRAF6, and the 
TRIF-dependent TLRs recruit both TRAF6 and TRAF3. TRAF6  
activates NFκB and MAPK, whereas TRAF3 is believed to 
decrease activity of the MAPK signaling pathway and mediate 
IRF3-dependent production of type 1 interferon (IFN)55. It has been 
proposed that, in the MyD88 complex, TRAF6 K63 ubiquitylates 
cIAP1 and 256,57. By K48 ubiquitylating TRAF3, cIAP1/2 cause  
its degradation and limit MAPK-dependent production of 
cytokines and chemokines without affecting the production of type  
I IFN56 (Figure 1). Another study suggested that cIAP1 and 2 
function in concert with TRAF2/3 to mediate the degradation of 
c-Rel and IRF5, limiting the production of pro-inflammatory  
cytokines58.

Although there are only a few reports on the role of IAPs in regu-
lating TLR-induced production of cytokines, there is a substan-
tial body of work showing that IAPs block cell death induced by 
TLRs. IAPs prevent TLR-dependent ripoptosome formation and a 
TLR-dependent, inflammasome-induced form of cell death termed  
“pyroptosis”. TRIF is the adaptor that links TLRs to the 
ripoptosome, mediated by its RIP homotypic interaction 
motif (RHIM) domain that binds to the RHIM domains of  
RIPK1/359. Upon TLR stimulation, formation and activation of 
the ripoptosome are limited by IAPs52,60. Accordingly, inhibi-
tion of IAPs by Smac-mimetics sensitizes cells to TLR-induced  
apoptosis and necroptosis54,59–63 (Figure 1).

IAPs also play key roles in limiting pyroptosis, but there are 
conflicting views on how they do so. The nucleotide-binding  
oligomerization domain (NOD)-like receptor (NLR) family  
constitutes some of the sensors that trigger the formation of  
inflammasomes when they are bound by PAMPs or DAMPs in 
the cytoplasm. Their oligomerization results in (a) caspase-1 acti-
vation leading to pyroptosis to clear stressed cells and pathogens  
and (b) cleavage of interleukin-1 beta (IL-1β) to alert the 
immune system. Whereas Labbé et al.64 found that cIAP1 and 2  
are obligatory for IL-1β processing, other groups failed to find a 
role for cIAP1 and 2 in IL-1β maturation but instead showed that 
XIAP together with cIAP1 and 2 acted in the opposite way by  
preventing the cleavage of IL-1β50,54,63–66. Labbé et al. showed 
that in macrophages cIAP1 and 2 K63 ubiquitylate caspase-1 to 
enhance NLRP3 and NLRC4 inflammasome activity64. In contrast, 
other groups found that all three IAPs limit caspase-8-dependent 
activation of IL-1β processing50,54,63,65,66.

In macrophages, dendritic cells, and neutrophils bearing XIAP-
null or -RING mutations, TLR ligation was sufficient to drive 
IL-1β maturation and NLRP3 activation50,54,63,65,66. TLR stimula-
tion promoted the expression of both TNF and TNFR263. Bind-
ing of TNF to TNFR2 caused cIAP degradation63,67. Thus, in the 
absence of XIAP, TNFR2-induced cIAP degradation allows the 
formation of TNFR1-dependent complex II as well as the TRIF-
dependent ripoptosome50,54,63,65,66. In these complexes, activated 
caspase-8 leads to IL-1β processing by both NLRP3-dependent 
and -independent mechanisms50,54,63,65,66 (Figure 1). Accord-
ingly, combined depletion of XIAP and cIAP1 and 2 profoundly 
enhanced IL-1β cleavage50,54,63,65,66. Importantly, RIPK3 was also  
required for IL-1β processing when IAPs were inhibited50,54,65,66. 
Upon IAP inhibition, RIPK3 seems to enhance caspase-8  
activity and the consequent processing of IL-1β63,65.

The differences in these observations could be due to the dif-
ferent genetic backgrounds of the knockout mice. Labbé et al. 
used cIAP1/2 knockout mice generated in a 129/sv background. 
129/sv strains also carry a passenger mutation that inactivates 
caspase-11. cIAP1 and caspase-11 genes are too close in the 
genome to be segregated by recombination, even after extensive  
backcrossing68. Therefore, all cIAP1 (and potentially cIAP2) 
knockout mice generated in a 129/sv background are likely to be 
mutant for caspase-1168. Because caspase-11 can cleave IL-1β 
in the NLRP3 non-canonical inflammasome, the effect seen in  
129/Sv cIAP1 (and potentially cIAP2) knockouts might be due to 
non-functional caspase-1169.

Although the main activator of IL-1β is caspase-1, a role for cas-
pase-8 in IL-1β maturation has been supported by several stud-
ies. Caspase-8 can mediate cleavage and secretion of IL-1β 
downstream of TLR and Fas signaling pathways, in the context 
of bacterial or fungal infections, during endoplasmic reticulum  
stress, or upon chemotherapeutic drugs70–77. None of these reports 
showed that IAPs had to be absent for caspase-8 to process  
IL-1β. However, it is worth keeping in mind that TLR signal-
ing drives the expression of TNFR2, which in turn induces the  
degradation of cIAP1 and 263. Therefore, it is plausible that  
bacteria or fungi that trigger TLRs reduce cIAP1/2 levels, lead-
ing to activation of complex II and the ripoptosome. In addi-
tion, some pathogens, such as Shigella, can both directly and 
indirectly inhibit cIAP1/2 functions, leading to activation of the 
inflammasome78,79. Similarly, it has been shown that chemothera-
peutic drugs, such as etoposide, decrease IAP levels and trigger 
ripoptosome formation53. A role for RIPK3 in promoting IL-1β  
processing has also been reported by others73,80. The exact molec-
ular mechanism by which RIPK3 regulates IL-1β processing 
is still under investigation, but there is evidence that, in the 
absence of IAPs, RIPK3 favors ubiquitylation of RIPK1 and 
caspase-8, which presumably facilitates their activation within  
complex II or the ripoptosome50,51,63,65,81. All together, these 
studies indicate that IAPs not only restrict RIPK1’s cytotoxic  
function but also prevent RIPK3 from enhancing IL-1β secretion.

NOD signaling
NOD1 and NOD2 are intracellular members of the NLR fam-
ily that recognize bacterial peptidoglycan derivatives. Their 
ligation leads to NFκB- and MAPK-dependent production of 
inflammatory mediators. IAPs regulate the NOD1/2 signaling 
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pathway, and XIAP is the key player. Just as TNFR1 triggers  
cIAP1/2-mediated ubiquitylation of RIPK1 in complex I, 
NOD2 stimulation induces XIAP-mediated RIPK2 polyubiq-
uitylation, which serves as a platform to recruit TAK1 and the  
IKKs82–84. XIAP interacts via its BIR2 with the kinase domain 
of RIPK2 to ubiquitylate RIPK2, presumably on lysines 209, 
410, and 53884–88. RIPK2 ubiquitylation by XIAP recruits  
LUBAC, which in turn linearly ubiquitylates RIPK2, increas-
ing the recruitment of IKK subunits89 (Figure 1). Accordingly, 
deficiency of XIAP in mice completely abrogates NOD1/2  
signaling and reduces responses to Listeria and Chlamydophila 
pneumoniae infections49,89,90. Importantly, several studies have  
demonstrated that the ortholog of XIAP in Drosophila, DIAP2, 
is essential to resist Gram-negative bacterial infection91–95. These  
studies in flies demonstrated an evolutionarily conserved function 
of XIAP in regulating innate immunity.

It has been reported that, in addition to XIAP, cIAP1 and 2 
can mediate the ubiquitylation of RIPK2; however, the exact 
role of this ubiquitylation in NOD2 signaling is still under  
debate86,89,96–98. Although there is general agreement that cIAP1 
regulates NOD1/2 signaling, the mechanisms proposed differ. 
Bertrand et al. proposed that cIAP1/2-mediated ubiquitylation 
of RIPK2 favors activation of NFκB and MAPK induced by  
NOD296. In contrast, although several studies showed that 
loss of cIAP1 and 2 affects RIPK2 ubiquitylation86,89,96, two 
groups did not find evidence that cIAP1 and 2 directly regulate 
NOD2-induced NFκB and MAPK activation86,98. Instead, it has 
been proposed that cIAP1 increases NOD2-induced cytokine  
production through a TNFR1 signaling pathway98 (Figure 1).  
Consistent with this, TNFR1 knockout mice have a blunted  
response to NOD2 stimulation98. As with the discordant views 
of how cIAP1 and 2 regulate the inflammasome, these discrep-
ancies might be due to the use of cIAP knockouts generated in  
different genetic backgrounds (129/sv versus C57BL/6J) and the 
use of different methods to stimulate NOD signaling (DOTAP  
versus IFNγ priming)96,98.

Conversely, there is no doubt that XIAP plays an essential role 
in NOD signaling. Its importance is reflected by the existence 
of XIAP mutations contributing to human diseases in which 
defects in NOD signaling play a role in the pathogenesis86,99–101.  
XIAP deficiency in humans causes a rare immunodeficiency 
syndrome characterized by high susceptibility to viruses such as 
Epstein–Barr virus (EBV), cytomegalovirus (CMV), or herpes-
virus 6102. This syndrome is frequently referred to as X-linked 
lymphoproliferative disease 2 (XLP2) because the first reported 
XLP2 patients showed a susceptibility to EBV infections like 
that in XPL1 patients103. However, this classification is currently 
under debate because so far no reported XIAP-deficient/XLP2 
patient has developed lymphomas104–107. XIAP-deficient patients 
are affected with a range of immunological defects that can occur 
independently of each other. These include hemophagocytic  
lymphohistiocytosis, recurrent splenomegaly, and inflamma-
tory bowel disease (IBD) resembling Crohn’s disease102. Given 
that NOD2 mutations are the strongest genetic factor associated 
with Crohn’s disease108,109, the pathological mechanism under-
lying IBD in XIAP deficiency is likely to be due to impaired 

NOD signaling. Accordingly, like those from NOD2-associated  
Crohn’s patients, cells from XIAP-deficient patients have reduced 
responses to NOD2 activation86,99–101. On the other hand, it has  
been shown that NOD signaling can sense viral products110,111. 
Thus, the impaired response to NOD signaling in XIAP-deficient  
patients might contribute to their susceptibility to viral infections.

Nevertheless, defects in NOD signaling do not account for all 
of the signs and symptoms seen in XIAP deficiency. The role 
for XIAP in regulating apoptosis and the inflammasome also 
appears in other clinical manifestations. For instance, adaptive 
and innate-like T lymphocytes from XIAP patients are more sensi-
tive to cell death induced by death receptors in vitro103,104,106. This 
propensity to apoptosis might compromise immune responses  
during viral infections. In addition, it is important to note that, 
although there is no direct proof of a role in aberrant inflamma-
some activation, some XIAP patients had high levels of IL-18 in 
their bloodstream112. Like IL-1β, IL-18 is cleaved and released 
upon inflammasome activation. Given that loss of XIAP in 
mice can activate the inflammasome, it is plausible that loss 
of XIAP function in these patients drives the secretion of IL-18  
and the consequent associated inflammatory phenotypes.

IAPs and tissue homeostasis
Gene deletion
Different genetic knockouts and mutants of murine genes 
for XIAP, cIAP1, and cIAP2 have revealed that they work in  
overlapping and partially redundant ways to ensure proper  
embryonic development and tissue homeostasis. Mice lacking 
cIAP1 or 2 or XIAP are viable with no overt phenotype48,113,114. 
However, unlike the co-deletion of Xiap/Birc4 and Ciap2/Birc3, 
which leads to viable mice, co-deletion of Ciap1/Birc2 and 
Ciap2/Birc3, or co-deletion of Ciap1/Birc2 and Xiap/Birc4, 
results in early embryonic lethality on a pure C57BL/6  
background48. This suggests that cIAP1 alone is enough to  
achieve all essential IAP functions and also that XIAP can  
co-operate with cIAP2 to accomplish cIAP1’s functions. The 
lethality of mice lacking both XIAP and cIAP1 was neverthe-
less surprising. Because of the close linkage of cIAP1 and 2 
genes (~15 kb), it has been assumed that they were the result of 
gene duplication and therefore might have redundant functions.  
Consistent with this idea, mice lacking XIAP and cIAP1 in a 
129/Sv background are viable115. These opposite results might be 
due to the different genetic background of the mice. Thus, it is  
plausible that passenger mutations such as the mutation on  
caspase-11 account for 129/Sv Xiap−/−Ciap1−/− viability. Con-
versely, Heard et al. found that the level of cIAP2 in the 
C57BL/6J Xiap−/−Ciap1−/− MEFs was greatly reduced, which 
could explain why C57BL/6J Xiap−/−Ciap1−/− mice were not 
viable115. The reason for the difference in cIAP2 levels between 
these two sets of Xiap−/−Ciap1−/− MEFs is still unclear. The use 
of CRISP/Cas9 technology might help to determine whether  
cIAP2 can compensate cIAP1 when XIAP is absent115,116.

The lethality of Ciap1−/−Ciap2−/− and Xiap−/−Ciap1−/− mice (on 
a pure C57BL/6J background) occurs at E10.5 and is caused by 
hemorrhages and cardiovascular failure48. Similar lethal defects 
arose in Fadd−/−, Cflar−/−, Casp8−/−, Hoip−/−, and Hoil−/− mutant 
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mice35,38,48,117–119. Importantly, loss of Casp8 or Hoip just in the 
endothelia phenocopied the E10 lethality, demonstrating that the  
cardiac defect and hemorrhages were due to an endothelial 
defect35,120. Because IAPs, FADD, FLIP, caspase-8, and HOIP/
HOIL all participate in the regulation of cell death induced by 
TNFR1, a common mechanism dependent on TNFR1 might 
account for the lethality in all of these knockouts. Accordingly, 
loss of Tnfr1 delayed Fadd−/−, Casp8−/−, Hoil−/−, Hoip−/−,  
and Ciap1−/−Ciap2−/− lethality, suggesting that the TNFR1- 
mediated endothelial cell death is responsible for some defects  
during embryogenesis in all of these knockouts35,38,48,120,121. It 
is important to note that deletion of cIAP1 in zebrafish leads  
to endothelial cell death, implying an evolutionary conservation  
of the functions of IAPs122.

Since cIAP1 and 2 ubiquitylate RIPK1, it seemed likely that 
lethality in IAP knockouts was due to aberrant TNFR1-medi-
ated RIPK1 activation. Surprisingly, Ripk1 loss rescued Ciap1−/

−Ciap2−/− mice only to E12. Several subsequent reports helped 
explain why Ripk1 loss did not prevent the defects seen in cIAP1/2 
double mutants. Within complex II, cleavage of RIPK1 by the cas-
pase-8/cFLIP heterodimers prevents RIPK1 from triggering full  
processing and activation of caspase-844. Furthermore, binding 
of RIPK1 to RIPK3 via their RHIM domains prevents RIPK3  
activation by other RHIM domain-containing proteins such TRIF  
or DAI123,124. This implies that the Ciap1−/−Ciap2−/−Ripk1−/− 
mice might die because of overwhelming caspase-8-dependent  
apoptosis and RIPK3-dependent necroptosis. Consistent with 
this idea, mutants lacking the other RIPK1 E3 ligases, Hoil and 
Hoip, which die at E10 from a cardiac defect similar to that 
in the Ciap1−/−Ciap2−/− mice, are rescued by co-deletion of 
genes for RIPK1, RIPK3, and caspase-838. Whether the com-
bined absence of RIPK1, RIPK3, and caspase-8 would rescue  
Ciap1−/−Ciap2−/− double mutants needs to be determined but 
would show whether cIAP1 and 2 act at the same level as  
HOIL/HOIP.

Although XIAP deficiency causes primary immunodeficien-
cies in humans, Xiap−/− mice are healthy113. This difference might 
be due to the fact that environmental factors such as pathogens 
also play a role in the pathogenesis of human diseases. Accord-
ingly, unchallenged Xiap−/− mice housed in clean facilities 
with controlled environments had no phenotype, but when they 
were challenged with pathogens they developed syndromes  
resembling those in XIAP-deficient patients, such as splenom-
egaly and increased cytokine production49,50,90,125. The role for 
cIAP1 and 2 in the gut was recently investigated. The authors  
showed that levels of IAPs were particularly low in entero-
cytes, consistent with their susceptibility to TNF-induced cell  
death126. Whereas responses to TNF were similar in intesti-
nal epithelial cells from wild-type, Xiap−/−, and Ciap2−/− mice,  
those from Ciap1−/− mice died much more readily, highlight-
ing a critical role for cIAP1 in intestinal homeostasis during  
infection126. This implies that although an association of  
cIAP1 mutations with IBD has not been reported, low levels of  
cIAP1 might contribute to TNF-mediated enteropathies.

Insights from tissue-specific knockouts
Tissue-specific IAP knockout mice have provided insights into 
how IAPs regulate inflammation in particular tissues. For instance, 

combined deletion of genes for cIAP1 and 2 in the myeloid lin-
eage is sufficient to cause a mild inflammatory phenotype char-
acterized by splenomegaly with disrupted splenic architecture 
and arthritis63,127. Although the loss of both XIAP and cIAP1 
in mice did not cause any overt phenotype, the combined loss 
of both cIAP1/2 and XIAP severely worsened the pathology  
seen in myeloid-specific Ciap1−/−Ciap2−/− mice63,127. The  
sterile inflammation was associated with abnormally high levels  
of cytokines and chemokines in the bloodstream63,127. In vitro  
studies in macrophages revealed that the absence of IAPs leads 
to the spontaneous production of cytokines, including TNF127. 
Furthermore, this cytokine production depended on the pres-
ence of both RIPK1 and 3, which subsequently activated  
apoptosis and necroptosis63,65,127. In addition, lipopolysaccharide 
challenge of Ciap1−/−Ciap2−/− macrophages triggered IL-1β  
secretion and pyroptosis in a RIPK3-dependent manner63,65. All 
together, these findings demonstrated that all three IAPs repress 
RIPK1/3-mediated cytokine production and cell death. Many 
other studies have proposed that RIPK1 and 3 control cytokine 
production in different inflammatory settings, yet the exact  
molecular mechanisms remain enigmatic127–131.

Strikingly, the deletion of both cIAP1 and 2 in the epider-
mis induced a lethal skin inflammation that occurred in the first 
week after birth132. Although the loss of cIAP1 in the skin com-
bined with the loss of XIAP did not induce a lethality, these mice 
developed skin inflammation in adulthood132. Similarly, injection 
of a pan Smac-mimetic into the skin of adult mice led to the  
development of inflammatory skin lesions132. These findings  
highlight a vital role for these proteins in skin development 
and homeostasis, in which cIAP1 plays a major role. Interest-
ingly, the early lethality of mice lacking both cIAP1 and 2 in  
the skin phenocopied the effects observed in skin-specific knock-
out of Fadd, Casp8, Hoil, and Hoip39,133,134. All of these skin  
knockout mice developed epidermal hyperplasia accompanied 
by the death of keratinocytes and high levels of cytokines in the  
skin132–134. Remarkably, the loss of one allele of Ripk1 delayed 
the death of the Ciap1−/−Ciap2−/− epidermal knockouts to wean-
ing and completely inhibited skin inflammation caused by  
Smac-mimetic injection132. Importantly, like the loss of cFLIP in 
the skin of adult mice, depletion of all IAPs with Smac-mimetic 
in adult mice led to skin lesions resembling a human inflam-
matory skin disease called toxic epidermal necrolysis132,135. On  
one hand, an inactivating mutation on the gene encoding the 
LUBAC component SHARPIN caused a form of dermatitis with 
features seen in psoriasis and eczema136. Just as the deletion of 
one allele of Ripk1 greatly reduced the severity of the lesions 
in skin lacking cIAP1 and 2, it also significantly delayed the 
Sharpin mutant skin phenotype132. Importantly, crossing to mice  
bearing a mutation that inactivated RIPK1’s kinase activity  
provided a complete rescue of the Sharpin mutant pheno-
type137. Collectively, these findings provide the rationale to test 
RIPK1 inhibitors in inflammatory skin diseases. In this line,  
GlaxoSmithKline (Brentford, UK) has an ongoing clini-
cal trial testing RIPK1 inhibitors for the treatment of psoriasis  
(ClinicalTrials.gov Identifier: NCT02776033).

The deletion of genes for cIAP1 and 2 in B cells did not induce 
lymphocyte cell death but instead provided a survival advan-
tage138. The accumulation of B cells in vivo was thought to be 
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caused by the activation of the non-canonical NFκB pathway. 
This pathway is activated by a subset of TNFR members and relies  
on the stability of the NFκB-inducing kinase (NIK). In cells 
not exposed to cytokine, the degradation of NIK is triggered by 
its ubiquitylation by a complex of TRAF2 and 3 and cIAP1 and  
256,139–142. Consistent with this, the mutation or deletion of genes 
for TRAF2 or 3 or cIAP2 has increased levels of NIK, leading  
to spontaneous activation of non-canonical NFκB and abnormal 
accumulation of B cells138,143,144.

Therapeutic interventions targeting IAPs
Targeting IAPs to treat inflammatory and infectious 
diseases
Activating mutations in NOD2 have been associated with early 
onset sarcoidosis and Blau syndrome as well as early onset 
IBD145,146. Different strategies have been proposed to target NOD2 
signaling to treat these diseases. Several groups showed that kinase 
inhibitors targeting RIPK2 can inhibit NOD signaling in vitro 
and in vivo and provide therapeutic responses in mouse models 
of multiple sclerosis and Crohn’s disease-like ileitis and also in 
Crohn’s and colitis patient samples147–152. The primary assumption  
was that these kinase inhibitors act by blocking RIPK2’s kinase 
activity. However, RIPK2 kinase-dead expressing cells had nor-
mal responses to NOD stimulation88,152. Thus, these inhibitors 
might act via an allosteric mechanism to interfere with the inter-
action of RIPK2 with IAPs148,152. These studies highlighted  
the IAP–RIPK2 interaction as a pharmacological target and 
prompted other researchers to generate XIAP antagonists to  
disrupt this interaction to block NOD signaling88. In contrast to 
pan IAP antagonists, Smac-mimetics that preferentially target  
XIAP’s BIR2 domain did not induce cell death88. Instead, 
these compounds affected XIAP–RIPK2 binding and inhibited  
NOD2 signaling88. The promiscuity of many kinase inhibi-
tors compared with the specificity with which the XIAP BIR2  
domain regulates NOD signaling153 renders XIAP antagonists par-
ticularly attractive for therapeutic intervention. However, given 
the role for XIAP in limiting IL-1β secretion (see the “Toll-like 
receptors and inflammasomes” section), it will be important 
to test the effect of targeting XIAP BIR2 on inflammasome  
activity.

Suicide of infected cells is one of the strategies that the immune 
system uses to limit pathogen dissemination and latent reser-
voirs. Recently, some studies suggested that targeting IAPs 
could be a therapeutic approach to kill human immunodefi-
ciency virus (HIV)- and hepatitis B virus (HBV)-infected cells. 
Despite the success of anti-viral therapies, HIV persists because 
of long-lived, latently infected cells that hide from the immune  
system. The “shock and kill” treatment strategy consists of re-
activating the viral replication of latent virions. The infected 
cells then would be killed either by the virus itself or by the 
patient’s immune system. It has been shown that Smac-mimetics 
can kill long-lived HIV infected CD4+ T cells or HIV-infected  
macrophages154,155. In addition, one study suggested that the  
activation of the non-canonical NFκB pathway because of  
inhibition of cIAP1 and 2 by a Smac-mimetic is able to reacti-
vate the replication of latent viruses156. Pache et al. showed that 
the non-canonical transcription factor RELB associates with the 
viral long terminal repeat to directly influence HIV transcription156. 

The combination of a Smac-mimetic and latency-reversing 
agents can synergistically reverse latency in resting CD4+ T cells,  
providing the opportunity for these cells to be attacked 
by the immune system and/or killed by Smac-mimetics  
themselves156,157. All together, these findings suggest that Smac-
mimetics might be used to eliminate latent HIV reservoirs, as  
they can simultaneously “shock” and “kill” latent infected cells.

Viral latency is also a challenge in HBV infection, as it  
predisposes to cirrhosis and hepatocellular carcinoma. TNF is 
an important cytokine promoting HBV clearance158,159. Taking  
advantage of the importance of TNF in HBV, Ebert et al. 
explored IAP inhibition to switch TNF-induced viral clearance to  
TNF-induced cell death158,160. They found that the deletion of 
IAP genes or treatment with Smac-mimetics induced early viral  
clearance158,160. IAP inhibition led to cell death of HBV-infected 
hepatocytes in a TNF-dependent manner with no collateral  
damage or liver failure. In addition, Smac-mimetics enhanced 
the efficacy of the standard drug used to treat HBV, entecavir158.  
These findings led to a phase I/IIa study of the Smac-mimetic 
birinapant for the treatment of HBV carriers (ClinicalTrials.gov  
Identifier: NCT02288208). Unfortunately, this trial had to stop 
because of temporary cranial nerve palsies observed in the first 
cohort. This adverse event has also been observed in patients with 
cancer treated with two Smac-mimetics including birinapant,  
suggesting that it might not be due to HBV infection161,162  
(ClinicalTrials.gov Identifier: NCT01188499).

Targeting IAPs to treat cancer
The ability of IAPs to promote cell survival, and their elevated 
expression in many cancers, prompted efforts to target them 
to treat cancers163,164. Different approaches were adopted to  
inhibit IAPs. One was to develop peptidomimetics based on the 
region of Smac/Diablo that binds to XIAP’s BIR domains, so-
called “Smac-mimetics”. Although these drugs were initially 
designed to target the BIR domains of XIAP because of the 
similarity to the BIRs of other IAPs, most Smac-mimetics also  
bind to cIAP1 and 2. It was originally thought that Smac- 
mimetics would induce cell death because their binding to IAPs 
would release active caspases in the cytosol. However, their mode 
of action is mainly via their ability to induce auto-ubiquitylation  
and degradation of cIAP1 and 2, which leads to activation of 
the non-canonical NFκB pathway with reduced signals acti-
vating canonical NFκB. Although there is no clear experimen-
tal proof, it is believed that the non-canonical NFκB pathway is 
responsible for autocrine TNF secretion. In the absence of cIAP1 
and 2, binding of autocrine TNF to TNFR1 triggers the forma-
tion of complex II, which kills the cancer cells. To improve the 
efficacy of Smac-mimetics, several groups used the strategy of  
combining them with drugs that increase TNF secretion. Cytokines 
induced by some chemotherapeutic agents would be expected to 
act synergistically with Smac-mimetics. Similarly, the cytokine 
storm induced by non-pathologic oncolytic viruses increased 
Smac-mimetic killing165. In addition, our group found that p38 
inhibitors and caspase inhibitors increased TNF production in 
response to Smac-mimetics and consequently increased the  
amount of cell killing166,167. Although high levels of TNF can be 
a safety concern,these three combinations were proven to be  
well tolerated in mice165–167.
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Mice mutant for IAPs helped determine which IAP would be best 
to target to find a safe therapeutic window. Targeting all three 
IAPs is highly inflammatory because it unleashes the inflam-
matory functions of RIPK1 and 3 which leads to the secretion 
of not only TNF but also the inflammasome-related cytokines 
IL-1β and IL-1850,54,63,65,66. The inflammatory phenotypes  
observed in the different IAP mutant mice and cells suggest 
that an ideal Smac-mimetic should strongly target cIAP1 and 
less cIAP2 or XIAP or both. This has been exemplified by the  
comparison of two Smac-mimetics presenting different affinities  
to each IAP168. Indeed, the pan Smac-mimetic CompA (K

d
 

<1 nM for all IAPs) was not tolerated in mice, as it caused  
widespread severe weight loss and skin lesions132,168. In contrast, the  
Smac-mimetic birinapant, which binds strongly to cIAP1 but has 
lower affinity for cIAP2 and XIAP, was generally well tolerated  
in mice and humans168.

Another issue to consider is the malignancy of cell types that 
depend on the non-canonical NFκB pathway to survive or to pro-
liferate or both. Like the deletion of genes for cIAP1 and 2 in B 
cells that caused the proliferation of B cells, the depletion of IAPs 
by a Smac-mimetic enhanced the survival of B lymphoma cells 
because of activation of the non-canonical NFκB pathway138,169. 
Nevertheless, this survival advantage is potentially reversed  
by combining the Smac-mimetic with a proteasome inhibitor170.

It is unlikely that Smac-mimetics will be used on their own 
to treat cancer. Several combination treatments have been 
reported to enhance Smac-mimetic-induced apoptosis and  
necroptosis163,164. Necroptosis has recently emerged as a mecha-
nism to allow killing of cells in which apoptotic pathways are  
blocked. Combined inhibition of IAPs and caspases triggered 
necroptosis in leukemia, pancreatic, colorectal, and ovarian can-
cer cells166,171–174. Consistent with genetic studies, combining a 
Smac-mimetic with inhibition of caspase-8/cFLIP

L
 heterodimers 

using the clinical caspase inhibitor emricasan strongly triggered 
necroptosis in leukemic cells44,45,166. Interestingly, in some  
samples of patients with acute lymphocytic leukemia (ALL),  
Smac-mimetics alone triggered necroptosis, possibly indicating 
that some ALL cases do not efficiently activate caspase-8175. 
This suggests that Smac-mimetics might provide an alternative  
treatment for cancers that have silenced caspase-8176.

Because it is a pro-inflammatory form of cell death, necropto-
sis can help trigger the immune system to attack cancers in a 
RIPK1-dependent manner177,178. Smac-mimetics have been shown 
to play a role in anti-tumor immunity in different ways. Because 
these drugs promote RIPK1 activation, they might promote  
anti-tumor immunity in part by RIPK1-dependent cytokine produc-
tion and necroptosis. Accordingly, Smac-mimetics can increase  
the production of death ligands, IFNγ and IL-2 by immune 
cells, as well as sensitizing cancer cells to the produced death 
ligands179–182. Smac-mimetics can also enhance cytotoxic lym-
phocyte killing of tumor cells, decrease expression of the immune 
checkpoint PD1, polarize M2 macrophages into M1 macro-
phages, and reduce immunosuppressive T-cell functions181,183–186. 
In contrast, inhibition of IAPs can increase the expression of the  
immune checkpoint PDL1, affect memory T cells, and  
polarize M1 macrophages into M2 macrophages, supporting the  
invasion and metastasis of tumor cells183,187,188. All together, these 

finding suggest that Smac-mimetics can act as a double-edged 
sword in anti-tumor immunity. The challenge now is to determine  
which combinations are best applied to specific tumor types.

Conclusions
The generation of IAP mutant mice has offered further insights 
into how these proteins coordinate innate immune responses. 
A large body of work has shown that, at the molecular level, 
IAPs regulate inflammation mainly through the ubiquityla-
tion of RIPK1 and 2. Relatively little is known about other IAP 
substrates that might play important roles in inflammatory or 
other signaling pathways. Nevertheless, early findings suggest  
that IAPs regulate not only the ripoptosome, inflammasome, and 
apoptosome but also the autophagosome189,190. The pleiotropic 
roles for IAPs mean that Smac-mimetics are not simply “killer 
drugs” but also induce cytokine production that impacts on  
immune anti-tumor responses. Although several Smac-mimetics 
have entered clinical trials to treat cancer and infectious  
diseases, the identification of molecular and immune biomarkers  
of response to Smac-mimetics is still lacking.
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