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Elevation data are critical for assessments of sea-level rise (SLR) and coastal flooding
exposure. Previous research has demonstrated that the quality of data used in elevation-
based assessments must be well understood and applied to properly model potential
impacts. The cumulative vertical uncertainty of the input elevation data substantially
controls the minimum increments of SLR and the minimum planning horizons that can
be effectively used in assessments. For regional, continental, or global assessments,
several digital elevation models (DEMs) are available for the required topographic
information to project potential impacts of increased coastal water levels, whether a
simple inundation model is used or a more complex process-based or probabilistic
model is employed. When properly characterized, the vertical accuracy of the DEM can
be used to report assessment results with the uncertainty stated in terms of a specific
confidence level or likelihood category. An accuracy evaluation has been conducted of
global DEMs to quantify their inherent vertical uncertainty to demonstrate how accuracy
information should be considered when planning and implementing a SLR or coastal
flooding assessment. The evaluation approach includes comparison of the DEMs with
high-accuracy geodetic control points as the independent reference data over a variety
of coastal relief settings. The global DEMs evaluated include SRTM, ASTER GDEM,
ALOS World 3D, TanDEM-X, NASADEM, and MERIT. High-resolution, high-accuracy
DEM sources, such as airborne lidar and stereo imagery, are also included to give
context to the results from the global DEMs. The accuracy characterization results show
that current global DEMs are not adequate for high confidence mapping of exposure to
fine increments (<1 m) of SLR or with shorter planning horizons (<100 years) and thus
they should not be used for such mapping, but they are suitable for general delineation
of low elevation coastal zones. In addition to the best practice of rigorous accounting
for vertical uncertainty, other recommended procedures are presented for delineation
of different types of impact areas (marine and groundwater inundation) and use of
regional relative SLR scenarios. The requirement remains for a freely available, high-
accuracy, high-resolution global elevation model that supports quantitative SLR and
coastal inundation assessments at high confidence levels.
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INTRODUCTION

The effects of sea-level rise (SLR) and other sources of increased
water levels along the world’s coastlines are pervasive and varied
(Williams, 2013). Because of the low-lying nature of many coastal
lands, the topography, or elevation in relation to sea level, largely
controls their exposure to adverse effects of increased water levels,
both chronic conditions (SLR) and episodic events (storm surge
inundation or king tide flooding). Elevation data, often in the
form of digital elevation models (DEMs), are therefore critical
for assessments of exposure, and corresponding vulnerability and
risk, to permanent or temporary flooding and other effects of
increased water levels along the coast.

For nearly four decades, elevation data, most often in the
form of DEMs, have been used to identify low-lying coastal
lands over broad areas to conduct assessments of the effects of
rising sea levels (Schneider and Chen, 1980; Titus et al., 1991;
Titus and Richman, 2001; Small and Nicholls, 2003; Ericson
et al., 2006; Rowley et al., 2007; Dasgupta et al., 2008, 2010;
Weiss et al., 2011; Haer et al., 2013; Blankespoor et al., 2014;
Neumann et al., 2015; Hardy and Nuse, 2016; Kulp and Strauss,
2017; Small et al., 2018; Wolff et al., 2018). Over this period, the
quality of DEMs available for use in assessments has improved,
especially in terms of spatial resolution and vertical accuracy.
For large-area assessments (regional, continental, global), several
choices are available for DEMs for the required topographic
information to project potential impacts of increased coastal
water levels, whether a simple inundation model is used or a
more complex process-based or probabilistic model is employed.
Previous research has demonstrated that the quality of data, and
associated transformations, used for elevation-based assessments
must be well understood and applied to properly model potential
impacts (Gesch, 2009; Coveney and Fotheringham, 2011; Cooper
and Chen, 2013; Cooper et al., 2013, 2015; Gesch, 2013; Schmid
et al., 2014; Dahl et al., 2017; Jones et al., 2017; West et al., 2018).

Uncertainty in climate change and coastal hazard assessments
has been addressed in numerous studies. Le Cozannet et al.
(2015, 2017) and Stephens et al. (2017) discuss the importance
of considering uncertainties from all sources in assessments of
sea-level change, but they do not specifically mention vertical
uncertainty of topographic data used to map potential impact
zones on the land surface. A number of studies address the
effects of input elevation data uncertainty (Gesch, 2009; Kettle,
2012; Bell et al., 2014; Hinkel et al., 2014; Valentine, 2014) and
conclude that higher resolution data with better vertical accuracy
significantly improve assessment results. The choice of elevation
model for an assessment study can also have a substantial effect
on results owing to combined uncertainties of input datasets,
especially elevation and population distribution (Lichter et al.,
2011; Mondal and Tatem, 2012; Wolff et al., 2016). The result of
many SLR assessments is a set of maps that spatially show the
areas exposed to inundation or other adverse effects of specific
scenarios of sea-level change, and such maps are enhanced by
including a description of mapping uncertainty (Kostelnick et al.,
2013; Retchless, 2018), often expressed as a confidence level.

Recently, within the coastal hazard modeling community
there has been continued recognition that vertical uncertainty

should be accounted for quantitatively to improve impact
mapping and assessment. National Oceanic and Atmospheric
Administration [NOAA] (2010) and Doyle et al. (2015) recognize
that DEM vertical accuracy is a critical element in SLR impact
assessments and that the uncertainties contributed by elevation
data and its associated transformations should be explicitly
addressed. Fortunately, there is a rich heritage of technical work
on assessing vertical uncertainty (DEM error), its consequences
and implications, and its use in improving applications (Hunter
and Goodchild, 1995; Fisher and Tate, 2006; Wechsler and Kroll,
2006; Maune et al., 2007; Wechsler, 2007; Höhle and Höhle,
2009), and this body of work can be relied upon as a basis
for approaches to rigorous handling of uncertainty in coastal
inundation assessments.

The importance of the quality (spatial resolution and vertical
accuracy) of the input elevation information in inundation
assessments has been well recognized in some studies (Bales and
Wagner, 2009; Coveney and Fotheringham, 2011; Zhang, 2011;
Fraile-Jurado and Ojeda-Zújar, 2012; Sampson et al., 2016; Wolff
et al., 2016; Mogensen and Rogers, 2018; Paprotny et al., 2018;
Vousdoukas et al., 2018); however, numerous other studies make
no mention of the uncertainty of the critical input elevation layer
and the implications for the reliability of the results. There is
a variety of DEMs with global or near global coverage mostly
derived from remote sensing (Gesch, 2012b; Sampson et al.,
2016) available for use in inundation modeling and assessment,
yet better data are needed (Simpson et al., 2015). Therefore,
it is critical that producers of such assessments understand,
characterize, and describe the cumulative uncertainties from
the underlying elevation data and associated transformations
that propagate to the assessment results (maps and estimates
of impacted area and resources). The purpose of this paper
is to document the best practices in properly accounting for
the vertical uncertainty inherent in all elevation-based SLR and
coastal flooding assessments. Additionally, other best practices
for such assessments extracted from the scientific record of
successful studies are listed and described. Establishment of
best practices, or standardized methodology, is recognized as an
important advance in improving the usefulness of climate change
vulnerability mapping at various scales and for multiple classes of
stakeholders and end users (Preston et al., 2011).

MATERIALS AND METHODS

When an elevation-based SLR or coastal flooding assessment
is conducted, especially over broad areas, a simple inundation
method known as the “bathtub” model is often used, an
approach that has also been referred to as the “single-value
surface” (National Oceanic and Atmospheric Administration
[NOAA], 2010), “equilibrium” (Gallien et al., 2011), “planar”
(Bates and De Roo, 2000), “hydrostatic” (Habel et al., 2017),
and “static inundation” (Paprotny et al., 2018) method. To
delineate the inundation zone with the bathtub method, the
water level is simply raised on a coastal DEM by selecting
all areas that are below the specified new water level height.
The approach is improved by enforcing hydrologic connectivity
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(Poulter and Halpin, 2007; Poulter et al., 2008), ensuring that
flooded areas have a direct hydrologic connection to the ocean,
which is recommended as a best practice for coastal assessments.
Limitations of the bathtub modeling approach have been
identified (Passeri et al., 2015; Boyd et al., 2016), including failure
of the DEM to represent the detailed hydraulic connections
and barriers needed for accurate spatially explicit flood mapping
(Gallien et al., 2011, 2013). Bathtub modeling can overpredict
flood extent compared to hydraulic and hydrodynamic modeling
approaches (Gallien et al., 2011, 2014; Seenath et al., 2016),
especially at local scales, yet the simple approach realizes savings
in input data and computation requirements (Kovanen et al.,
2018) and under certain conditions can perform nearly as well
as more complex models (Bates and De Roo, 2000). Another
important consideration in using simple inundation models
to assess potential impacts of raised coastal water levels is to
recognize that not all areas will respond to increased water
levels by simply becoming inundated (Gesch et al., 2009; Passeri
et al., 2015; Lentz et al., 2016). Instead, some areas will adapt by
responding dynamically. In these cases, maps of potential impact
zones derived from simple bathtub models will indicate areas that
may be affected by sea-level change, but not necessarily transition
to permanent open water.

Notwithstanding the known limitations of bathtub modeling,
the approach remains widely employed for coastal impact
assessments, likely due to its ease of application, especially for
initial screening and inventory across large areas. Thus, the
analysis and discussion below on properly accounting for vertical
uncertainty is directly relevant to simple inundation modeling.
However, it is also applicable to more complex physical process-
based and probabilistic models because they too invariably need
to measure increased water levels, and elevation data are required
to do so; therefore, vertical uncertainty must be considered.

Accounting for Uncertainty in Exposure
Assessments
The importance of considering uncertainty in general in climate
change assessments, and more specifically vertical uncertainty
in SLR and coastal flooding studies of interest here, is well
established in the previously cited literature. There is a long
record of research on uncertainty in geospatial data, with much
of it focused on DEMs and other forms of elevation data
(Hunter and Goodchild, 1995; Fisher, 1998; Fisher and Tate, 2006;
Wechsler and Kroll, 2006; Wechsler, 2007; Höhle and Höhle,
2009). The approaches to handling vertical uncertainty can be
categorized into three methods: (1) ignore it; (2) apply a global
error estimate; (3) model the error distribution and then perform
spatial error propagation through simulation. Each of these
categories is described more fully below. Hunter and Goodchild
(1995) use the same construct of three general approaches, and
they illustrate by use of an elevation contour example.

Most elevation-based SLR assessments mention the DEM
used, but many stop there and ignore the inherent vertical
uncertainty or the common description of such, the vertical
accuracy (or error). The user of such an assessment is left to guess
about the quality of the results, and in the case of a user with

little familiarity with elevation data, the implications of vertical
error are completely unrepresented and thus cannot be factored
into decision making. Some studies at least mention the vertical
error in the underlying elevation data, and perhaps generally
discuss its implications, but make no attempt to quantify spatially
how the uncertainty reflected in that vertical error affects the
results (Mcleod et al., 2010; Emrich and Cutter, 2011; Kuhn et al.,
2011; Weiss et al., 2011; Haer et al., 2013, 2018; Maloney and
Preston, 2014). The assessments that fall into this first category
do not explicitly consider uncertainty, and they are labeled as
“deterministic” as the delineation of the impact zone has no
indication of the quality of that mapping, nor is there any
expression of confidence that is associated with the results. The
location and extent of the inundation zone is determined simply
by where the chosen elevation of the raised water level falls on the
landscape.

The second category of approaches to handling vertical
uncertainty includes assessments that apply a global error metric,
such as the widely used root mean square error (RMSE) or a
related measure such as “linear error at 95% confidence” (LE95)
(Maune et al., 2007). This method equally applies the full global
error estimate everywhere, which assumes that all areas are
subject to the full range of vertical error. Thus, this approach
can be thought of as a worst-case scenario, and the results reflect
a range incorporating the minimum and maximum extremes of
error. In practice, the full error is applied both above and below
a specified elevation (usually representing a raised water level) by
adding and subtracting it to the elevation, respectively, and then
using those two new elevations in bathtub modeling to delineate
the maximum and minimum impact zones (Gesch, 2013). In
essence, each delineation is still a deterministic mapping, thus
this approach is called here the “modified deterministic” method.
It has the advantage over the straight deterministic method in
that it addresses uncertainty by bounding the error range and
assigning a label of quantified confidence based on the portion
of the full error probability distribution represented by the error
metric applied, for instance 68% confidence in the case of RMSE
or 95% confidence in the case of LE95 (for an unbiased normal
distribution of errors). For users of such assessment results, the
stated confidence level indicates how confident the user can
be that the true extent of the impact zone is contained within
the given range (between the minimum and maximum areas).
Examples of the successful use of the modified deterministic
approach are found in Gilmer and Ferdaña (2012), Gesch (2013),
Nielsen and Dudley (2013), and Enwright et al. (2015).

The third category of approaches to accounting for vertical
uncertainty includes methods that model the elevation error
distribution and then propagate that error spatially through
Monte Carlo simulation (Temme et al., 2009). The result of such
an operation is a map containing the spatial distribution of the
probable errors, which can be used to indicate the likelihood,
or probability, of any location falling above or below a specified
elevation, thus this approach is called the “probabilistic” method.
There is a long history of treating elevation error probabilistically
(Hunter and Goodchild, 1995; Fisher, 1998; Zerger et al., 2002;
Wechsler and Kroll, 2006), and the approach has been applied
successfully in several recent SLR and flooding assessments
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(Cooper and Chen, 2013; Leon et al., 2014; Cooper et al., 2015;
Enwright et al., 2017; Fereshtehpour and Karamouz, 2018). In
using the probabilistic approach, random error fields that match
the error distribution characteristics derived from DEM accuracy
assessment are generated and applied spatially. The assumption is
that the elevation error is random, but elevation exhibits spatial
autocorrelation, thus the error also has spatial autocorrelation
(Wechsler and Kroll, 2006). Two techniques have been used
to account for spatially autocorrelated errors in propagation
through simulation: increasing the spatial autocorrelation in the
random error fields by spatial filtering before they are applied
to the DEM (Torio and Chmura, 2013; Enwright et al., 2017),
and error modeling through sequential Gaussian simulation
(Leon et al., 2014; Fereshtehpour and Karamouz, 2018). Other
implementations of the probabilistic approach to handling
vertical uncertainty in SLR assessments do not explicitly account
for spatially autocorrelated elevation error (Cooper and Chen,
2013; Cooper et al., 2015; West et al., 2018), so they could be
thought of as a type of worst-case scenario where the error is
completely random without any spatial dependence on elevation.
For users of assessments following the probabilistic approach,
the stated probability indicates the likelihood, or chance, that the
delineated area will be impacted or flooded at the specified water
level, for example a 95% chance (or at least 95 times out of 100)
that the area will be inundated.

The modified deterministic and probabilistic methods of
accounting for vertical uncertainty are preferred as best practices
over the simple deterministic method that ignores the effects of
elevation error. With the preferred modified deterministic and
probabilistic methods, maps of impact areas, and the associated
inventory of population and resources located within impact
zones, have increased value because of attached statements
of confidence level or probability. The probabilistic approach
is an excellent choice for a study that has ready access to
sufficient compute resources required for error propagation
through simulation, especially if the study area is large and
the input data have high spatial resolution. Alternatively, the
modified deterministic approach is suitable and is recommended.
The results of the probabilistic method allow selection of different
probabilities with which to present maps or statistics of areas
exposed to inundation, while the modified deterministic method
is less flexible in that it presents results within a bounded range
at a specific confidence level. For the probabilistic method, if the
full reference dataset used for accuracy assessment of the DEM is
available, then a measure of spatial autocorrelation of the errors
can be made and subsequent sequential Gaussian simulation can
be performed. However, if only a global measure of the DEM
vertical accuracy is available, for instance RMSE, then a good
choice is to perform spatial filtering of the random error fields
to account for autocorrelation as part of the simulation process
for error propagation.

In recognition of the importance of considering vertical
uncertainty in assessments of SLR and flooding exposure,
there is a critical choice of parameters that must be made at
the outset of a study: the increment of water level increase
to be modeled, and the planning horizon (timeframe of
projection into the future). The next three subsections (Minimum

Sea-Level Rise Increment, Cumulative Vertical Uncertainty, and
Minimum Planning Timeline) describe how the selection of
these parameters needs to consider the vertical quality of the
input elevation data (and associated datum transformations) and
how the choices affect the reliability, or confidence level, of the
assessment results.

Minimum Sea-Level Rise Increment
Any elevation-based SLR or coastal flooding assessment that uses
a DEM, whether a simple bathtub model or a more complex
hydraulic model is employed, raises the water level on a geospatial
dataset that represents the topography of the study area. Such a
process is essentially an elevation contouring process whereby a
line of constant elevation (at the selected water level increase)
is derived from the spatial arrangement of individual elevation
values at discrete locations (usually in a regular grid in the case
of a raster DEM). It is easy to define such an elevation contour,
especially in a digital geographic information system (GIS), and
the vertical increment between adjacent contours, referred to as
the contour interval, is a parameter that must be specified in the
procedure. A small interval can be applied to any DEM, but doing
so does not imply that the derived contours automatically meet
published accuracy standards. The interval must not be so small
that it falls within the bounds of vertical error of the DEM, as such
an operation would place the measurement (elevation increment)
“in the noise” of the underlying elevation data. In the case of SLR
or flooding assessments, the amount of water level increase from
its current elevation to a future projected elevation is analogous
to the contour interval, and that increment of increase must
be larger than the inherent vertical error of the DEM for the
projected future level to have a high level of confidence.

Based on the concept of elevation contour line accuracy, a
method has been developed (Gesch, 2012a, 2013) to determine
the minimum contour interval, or in the present case, the
minimum increment of water level increase that can be used to
meet a specified confidence level. Using the minimum increment
in an assessment ensures that the chosen study parameter
(amount of SLR or flooding level) is truly supported by the
DEM and is not too small given the inherent vertical uncertainty.
In the U.S., legacy national map accuracy standards applied to
topographic contour maps specify that 90% of tested elevations
should fall within one-half of the map contour interval (Maune
et al., 2007), and this has been called the vertical map accuracy
standard (VMAS) with a 90% confidence level, or alternatively
“linear error at 90% confidence” (LE90). From the map user
perspective, elevations determined from the map on 9 out of 10
points will have true elevations that are within one-half of the
contour interval (CI). The contour accuracy standard is expressed
in the following equation:

VMAS = LE90 =
CI
2

Rearranging this simple equation as
CI = LE90 × 2

allows the contour interval to be expressed as a factor of
the elevation data accuracy. Additional accuracy standards
developed more recently for digital geospatial data rather than
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hardcopy maps, such as the National Standard for Spatial
Data Accuracy (Maune et al., 2007) and the American Society
for Photogrammetry and Remote Sensing (ASPRS) Positional
Accuracy Standards for Digital Geospatial Data (ASPRS, 2015),
provide procedures for direct conversion among DEM accuracy
metrics and equivalent contour intervals. For instance, much of
the coastal and floodplain light detection and ranging (lidar)
data in the U.S. was collected to a product specification by the
Federal Emergency Management Agency (FEMA) for DEMs with
an RMSE of 0.185 m, which was calculated to provide elevation
data that would support topographic mapping at a 2-foot (0.61 m)
contour interval accuracy (Maune et al., 2007).

In the present case of SLR or coastal flooding, the increment of
water level increase is analogous to the contour interval because
raising the water level on an elevation dataset is equivalent to a
contouring operation, especially when multiple successive water
levels are mapped. Thus, the minimum water level increment
for modeling can be stated directly as a factor of the elevation
data accuracy, expressed as a common vertical error metric (LE90
in the preceding example). Two of the most commonly used
DEM error metrics are RMSE and LE95, and direct translations
among RMSE, LE90, and LE95 are available (Maune et al., 2007),
assuming the errors are from an unbiased normal distribution.
Because the error metrics represent a portion of the cumulative
probability distribution of errors, a confidence level can be
stated for the minimum increment, for example 68% confidence
for RMSE (equivalent to the “one sigma” error, or standard
deviation of the errors for an unbiased normal distribution),
90% confidence for LE90, and 95% confidence for LE95. Zhang
et al. (2011) recognize that the modeled increments of SLR
should be tied to the inherent vertical error, and they did so by
selecting increments that matched the RMSE of their input DEM,
whereas the approach described here has the added advantage of
providing a direct method to calculate the proper increments as
a function of the DEM accuracy at a specific confidence level.
This approach, rooted in contour interval accuracy standards,
provides the quantitative basis for the “guideline” (Gesch et al.,
2009) and “rule of thumb” (National Oceanic and Atmospheric
Administration [NOAA], 2010) that the increment of SLR
modeled should be at least twice the vertical accuracy of the
elevation data.

As an example to illustrate, consider a DEM with an RMSE of
0.15 m derived from airborne lidar data. Assuming the errors are
unbiased and normally distributed, the RMSE can be converted
to LE95 by the following formula (Maune et al., 2007):

LE95 = RMSE × 1.96

resulting in an LE95 of 0.294 m. Applying the procedure
described above, the minimum SLR increment, abbreviated here
and referred to hereafter as SLRImin, is 0.588 m at the 95%
confidence level, and 0.30 m at the 68% confidence level. In
equation form, SLRImin at 95% confidence is

SLRImin95 = (RMSE × 1.96) × 2

and SLRImin at 68% confidence is

SLRImin68 = RMSE× 2

The SLRImin metric can be interpreted as follows: it expresses the
confidence in how well the “contour” line delineating areas with
elevations at or below the raised water level is placed vertically.
To follow through with the example illustration, there is a 68%
chance that a DEM-derived line delineating the inundated area
will be placed vertically within ±0.15 m of where the true line
is, and likewise, there is a 95% chance that the line will be
placed within ±0.294 m vertically of its true location. Because
the SLRImin is a direct function of the DEM accuracy, DEMs
with lower accuracy would only support much larger water level
increments. For instance, a DEM with an RMSE of 5 m would
only support a SLR or flooding level increment of 10 m at
the 68% confidence level, and using a smaller increment would
have a drastically reduced confidence level, progressing to the
point where using increments of less than 1 m would result in
confidences near 0%.

Cumulative vertical uncertainty
Digital elevation model error is the main source of vertical
uncertainty in elevation-based assessments, but there are other
contributors of error, namely the datum transformations required
to bring the DEM into a tidal datum reference framework.
It is important to include local water level information when
mapping potential impacts (Marbaix and Nicholls, 2007) by
starting at the high tide line, as the areas below this line are
already subject to periodic submersion from the normal range of
tides. Mapping impact areas upslope of the normal high water
line is recommended here as a best practice. Many DEMs are
referenced to an orthometric (mean sea level referenced) datum,
and thus require transformation to a tidal datum, often mean
higher high water (MHHW), before analysis, and these vertical
transformations add more vertical uncertainty. In the U.S., a
tool called VDatum (Parker et al., 2003) is widely used for such
processing, and it has published uncertainties for the various
transformations1. Several SLR assessment studies have combined
the DEM error and vertical datum transformation error with
a root sum of squares (or summing in quadrature) approach
to calculate the cumulative vertical uncertainty (Mitsova et al.,
2012; Cooper et al., 2013, 2015; Gesch, 2013; Schmid et al.,
2014; Enwright et al., 2015), and such a procedure is recognized
here as a best practice for elevation-based SLR assessments.
The preceding section (Minimum Sea-Level Rise Increment) on
minimum SLR increment used the DEM vertical accuracy to
calculate the critical assessment parameter, but in practice the
cumulative vertical uncertainty, if known, should be used, as
demonstrated in Gesch (2013).

Minimum Planning Timeline
Another critical assessment parameter is the planning horizon,
or the timeframe over which projected increased water levels
are mapped to delineate potential impact zones. Like SLRImin,
the minimum planning timeline, designated here and referred to
hereafter as TLmin, is directly related to the vertical uncertainty of
the input DEM, and it incorporates the rate of SLR projected over
the time scale of interest. For illustration, assume a linear rate of

1https://vdatum.noaa.gov/docs/est_uncertainties.html
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SLR, and then TLmin can be calculated as

TLmin = SLRImin ÷ annual SLR rate

For example, consider the minimum and maximum from the
range of likely global SLR scenarios from the Fifth Assessment
Report (AR5) by the Intergovernmental Panel on Climate Change
(IPCC), 0.28 – 0.98 m by the year 2100 (Church et al., 2013).
To simplify the illustration, assume the numbers represent the
cumulative SLR over 100 years (2000–2100), so the annual
increment for the minimum and maximum are 2.8 mm/year and
9.8 mm/year, respectively. Given a lidar-derived DEM with an
RMSE of 0.15 m, TLmin for the minimum scenario is 107 years,
and TLmin for the maximum scenario is 31 years. For the
minimum scenario, mapping a potential impact zone for any
year before 2107 would be unreliable as the cumulative water
level increase will not have reached the minimum SLR increment
afforded by the elevation data at the specified confidence level.
For the maximum scenario, delineating a potential inundation
zone would be acceptable for any timeframe after 2031. This
simple example uses linear SLR rates, but TLmin can be based on
non-linear scenarios as well.

As with SLRImin, a confidence level is associated with TLmin
because the input DEM error metric carries a confidence level
with it, in this case 68% confidence as RMSE was used, so the
result can be noted as TLmin68. Likewise, if SLRImin95 is used to
calculate the minimum planning timeline, the result is noted as
TLmin95 and the confidence level is 95%.

Overall, SLRImin and TLmin are useful to determine what
parameters can be effectively used in assessments, especially from
a management perspective (Gesch, 2012a). When a specific DEM
with a stated accuracy is available, SLRImin and TLmin will be
useful for determining what increments and planning horizons
(given a SLR rate) will be allowable for high confidence results.
Alternatively, if specific targets for modeled increments and
planning horizons are known, along with SLR scenarios, then the
quality of elevation data (that is, its accuracy) to meet specific
confidence levels can be determined.

Digital Elevation Models
There are numerous global or near-global DEMs available
and they have all been used, some extensively, for SLR and
coastal flooding assessments. The availability of global DEMs
has improved over the last several years and new or refined
products continue to appear, so it is important to understand
the vertical uncertainty of these DEMs and how that affects their
effective use in applications. For this study, DEMs with a medium
to high spatial resolution (better than 100 m) and an open
data distribution policy are included. Other lower resolution
topographic products (250 m to several kilometers) are available
but are excluded here as most are derived from the higher
resolution global DEMs. The following DEMs are included for
analysis:

(1) Shuttle Radar Topography Mission (SRTM) (Farr et al.,
2007) data are available for all land areas between 60◦
north and 56◦ south latitude at 1-arc-second (30-m) and
3-arc-second (90-m) grid spacing. The SRTM product

specification for vertical accuracy is 16 m LE90, which
equates to an RMSE of 9.73 m.

(2) Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model
(GDEM) (Abrams et al., 2010) is available for all land
areas between 83 degrees north and south latitude at 1-arc-
second (30-m) grid spacing. The ASTER GDEM product
specification for vertical accuracy is 20 m LE95, which
equates to an RMSE of 10.20 m.

(3) Advanced Land Observing Satellite (ALOS) Global Digital
Surface Model (AW3D30) (Tadono et al., 2016) is available
for all land areas between 82◦ north and south latitude at
1-arc-second (30-m) grid spacing. The AW3D30 product
specification for vertical accuracy is 5.0 m RMSE.

(4) TerraSAR-X add-on for Digital Elevation Measurement
(TanDEM-X) (Zink et al., 2014) data are available for all
land areas between 84◦ north and south latitude at 0.4-arc-
second (12-m) grid spacing. An edited, higher processed
version of TanDEM-X is available as a commercial product
under the name WorldDEM. The TanDEM-X product
specification for vertical accuracy is 10.0 m LE90, which
equates to an RMSE of 6.08 m.

(5) National Aeronautics and Space Administration Digital
Elevation Model (NASADEM) (Crippen et al., 2016) is a
reprocessing and enhancement of SRTM 30-m data and a
merge with ASTER GDEM and other DEM sources. It is
targeted as a successor for SRTM.

(6) Multi-Error-Removed Improved-Terrain (MERIT) DEM
(Yamazaki et al., 2017) is available for all land areas between
90◦ north and 60◦ south latitude at 3-arc-second (90-m)
grid spacing. It is a merge of enhanced 90-m SRTM data
and AW3D30.

Also included in some of the comparisons are high-resolution,
high-accuracy DEMs derived from airborne lidar and stereo
imagery to provide context for the global DEM results. These
DEMs include the U.S. Geological Survey (USGS) National
Elevation Dataset (NED) (Gesch et al., 2002; Gesch, 2007) and 3D
Elevation Program (3DEP) (Sugarbaker et al., 2014) lidar DEMs
(Heidemann, 2012) for the U.S. An unmanned aerial system
(UAS) derived DEM generated with structure from motion (SfM)
techniques for Majuro Atoll in the central Pacific island nation
of Republic of the Marshall Islands (RMI) (Palaseanu-Lovejoy
et al., 2018) is included as an example of newer technologies
that are increasingly being used to generate high-resolution,
high-accuracy elevation data at local scales.

Accuracy Assessment
To obtain the required DEM accuracy metrics that characterize
vertical uncertainty, an accuracy assessment was conducted for
each of the DEMs. In this case, the value of interest for each DEM
is the absolute vertical accuracy, which is calculated from the
statistics of a set of reference (or truth) points compared to the
DEM. In each case, the elevation value at every reference point
is compared to the corresponding DEM elevation (extracted
via bilinear interpolation at the exact point location) and the
difference in elevations is recorded. The difference represents
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the DEM error at that point. The differencing operation is done
by subtracting the reference point elevation from the DEM
elevation. In this manner, the difference statistics from the full set
of point comparisons are easy to interpret; that is, a positive mean
error indicates that on average the DEM is too high (the DEM has
a positive bias). Conversely, a negative mean error indicates that
on average the DEM is too low (a negative bias). This differencing
approach is recommended as a best practice for absolute vertical
accuracy assessments that use ground truth point data to assess
raster DEM datasets.

Prior to comparison of the DEM and the reference data,
both datasets must be in the same vertical reference frame
so the difference statistics do not contain any artificial biases.
The DEMs and reference data used here are a mix of
different vertical reference systems: SRTM, ASTER GDEM,
AW3D30, NASADEM, and MERIT DEM are referenced to the
Earth Gravitational Model 1996 (EGM96) geoid; TanDEM-X is
referenced to the World Geodetic System 1984 (WGS84)-G1150
ellipsoid; NED and the U.S. ground truth points are referenced
to the North American Vertical Datum of 1988 (NAVD 88)
orthometric datum; the Majuro UAS-SfM DEM and ground
truth points are both referenced to the International Terrestrial
Reference Frame 2008 (ITRF2008) ellipsoid. The ground truth
points and each DEM were brought into the same vertical
reference frame with a procedure similar to that described in
Grohmann (2018), and the VDatum software tool was used in
the process.

Elevation reference data
The reference data for the conterminous United States (CONUS)
is an extensive set of high-accuracy geodetic control points
produced by the U.S. National Geodetic Survey (NGS) and
known as “GPS on Bench Marks”2. These points are NGS’s best
control points, with millimeter- to centimeter-level accuracies, so
they are an excellent reference dataset for comparing with DEMs
for accuracy assessment purposes. The points have been used
extensively for such analyses (Gesch, 2007; Gesch et al., 2014,
2016; Wessel et al., 2018). For the Majuro DEM, the reference
data are an extensive set of real-time kinematic (RTK) GPS points
collected with survey-grade equipment during the UAS flights
(Palaseanu-Lovejoy et al., 2018).

Test areas
The DEM accuracy assessments and comparisons were
conducted across CONUS and in selected coastal locations.
Because not all DEMs were available for the full U.S. coastal
zone, a set of 17 one-degree by one-degree tiles served as a subset
test area where direct comparisons of all DEMs could be made.
Figure 1 shows the GPS on Bench Marks reference data for all
of CONUS (23,115 points), the subset of points (3,480) in the
low elevation coastal zone (LECZ; defined here as areas less than
or equal to 10 m in elevation), and the 17 test tiles. The number
of test tiles is due to a limited amount of data available from the
TanDEM-X data provider, and these locations are places where
USGS scientists have ongoing coastal DEM development and
applications activities. Even though the analysis areas are limited

2https://www.ngs.noaa.gov/GEOID/GEOID12B/GPSonBM12B.shtml

FIGURE 1 | (A): GPS on Bench Marks reference data for CONUS (23,115
points); (B): Subset of reference data in the low elevation coastal zone (3,480
points); (C): Test area of 17 one-degree by one-degree tiles for direct DEM
comparisons.

to the U.S. coastal zone, the coverage is extensive enough that the
results are deemed applicable for guiding the use of global DEMs
in other areas.

RESULTS

The initial accuracy assessment was conducted on the DEMs
for which coverage was available for all of CONUS: SRTM,
ASTER GDEM (version 3), NED, and NED derived from lidar
DEM source data (Gesch et al., 2014). Table 1 shows the
accuracy assessment results for the full range of elevations
across CONUS included in the reference data, as well as the
results for only areas in the LECZ. The LECZ is defined as
elevations less than or equal to 10 m above sea level, which is
a commonly used elevation threshold to delimit coastal zones
(McGranahan et al., 2007; Lichter et al., 2011; Neumann et al.,
2015). For SRTM and ASTER GDEM, the elevation accuracy
in the LECZ is degraded compared to the accuracy for all
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TABLE 1 | Accuracy assessment results for DEMs over CONUS.

DEM RMSE (all
elevations)

RMSE in
LECZ (≤10 m)

Reference

SRTM 4.15 m 5.57 m Gesch et al., 2016

ASTER GDEM v3 8.52 m 9.47 m Gesch et al., 2016

NED 1.55 m 1.20 m Gesch et al., 2014

NED – lidar source 0.87 m 0.72 m Gesch et al., 2014

of CONUS, while for NED and NED with lidar source data,
the accuracy is slightly improved in the LECZ. Because the
primary interest for coastal assessments is in the low-lying areas
subject to inundation and other adverse effects of increased
water levels, the remainder of the results presented are for
the LECZ. This approach follows the recommendation in other
studies that emphasize accuracy testing with reference data
representative of the area of interest to guard against overly
optimistic results (Bolkas et al., 2016). Thus, limiting accuracy
assessment to coastal areas (Du et al., 2015) is appropriate for this
study.

Vertical Accuracy and Inundation
Assessment Parameters
Table 2 displays the accuracy information for DEMs over the
CONUS LECZ. In addition to the four DEMs in Table 1,
the specification for 3DEP lidar is added for comparison,
as it represents high-resolution, high-accuracy elevation data
being collected over broad areas in the U.S. 3DEP is an
ongoing program of the U.S. Government to coordinate and
collect enhanced elevation data for CONUS in an 8-year cycle
(Sugarbaker et al., 2014). Most of the data are being collected
to a specification for “quality level 2” (QL2), which requires
a vertical RMSE of 0.10 m (Heidemann, 2012). The DEM
accuracy metrics included in the table are RMSE, mean error,
and mean absolute error (MAE). As noted above, mean error
can be indicative of overall positive or negative bias in a
DEM and, if a bias is present, can reflect a departure from
a normal distribution of the errors (Maune et al., 2007). In
these cases, the MAE can be a useful metric to help describe
the error characteristics (Chai and Draxler, 2014). The positive
mean errors for SRTM and ASTER GDEM do indicate that
on average the DEMs are too high relative to the ground (as
represented in the reference data point elevations) and the
error distribution is not an unbiased normal distribution. The
performance of SRTM and ASTER GDEM generally having a
positive bias has been noted in previous published accuracy
evaluations of these DEMs (Carabajal and Harding, 2006; Gesch
et al., 2016).

In these cases of a biased error distribution, an alternative
error metric to the RMSE (or its calculated equivalents like
LE95) is a sample quantile of the cumulative error distribution
(Höhle and Höhle, 2009), which has been widely implemented
and used as the “95th percentile” error approach for describing
the vertical accuracy (at the 95% confidence level) of DEMs
with non-normal error distributions (Maune et al., 2007; ASPRS,
2015). Other sample quantiles can be used, for instance 68 TA
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or 90% (Wessel et al., 2018), for the percentile error metric.
Table 2 includes both the 68th percentile and 95th percentile
errors for each of the DEMs tested, along with the derived
SLRImin measure, calculated from both the RMSE and percentile
error metrics. For the percentile error metrics, the corresponding
SLRImin measure is simply two times the percentile error. If
a DEM accuracy validation is done for a specific area, then
there is more flexibility in using the various error metrics
to derive SLR assessment parameters (minimum increment
and planning timeline), with the ability to deal with factors
such as a biased non-normal error distribution with large
outliers. In practice, most coastal assessments do not include
DEM accuracy testing and characterization, but instead must
rely upon DEMs with published accuracy figures, and RMSE
is the only metric available with which to determine the
proper increment and time horizon parameters. For this reason,
comparisons of SLRImin and TLmin presented and discussed
below are derived from the RMSE for the DEMs analyzed in this
study.

Table 3 presents the results for the direct comparison of all
the tested global DEMs within the 17 coastal test tile locations
(Figure 1C). All the global DEMs exhibit accuracies that are
better than their product specifications, as is often the case
when these DEMs have been evaluated over broad areas. Refer
to the tables in the Supplementary Material for a record of
the numerous accuracy tests for SRTM (and its derivatives)
(Supplementary Table S1), ASTER GDEM (Supplementary
Table S2), AW3D30 (Supplementary Table S3), and TanDEM-X
(Supplementary Table S4). Also included in the Supplementary
Material are a summary of evaluations of NED (Supplementary
Table S5), as an example of higher resolution DEMs with regional
to national coverage, and a summary of example accuracies
from technologies that produce very high-resolution and very
high-accuracy elevation data that have been used in coastal
assessments (Supplementary Table S6). The results in these
tables provide context to the capabilities of global DEMs for
coastal assessments and demonstrate the possibilities for very
high-accuracy mapping when requirements call for detailed
spatially explicit information.

Table 4 and Figure 2 show the evaluated DEMs ranked in
order of increasing vertical uncertainty. The derived parameters
of SLRImin and TLmin needed for coastal assessments have
been calculated from the vertical accuracy for each DEM (as
stated in the RMSE) and are presented at the 68 and 95%
confidence levels. Included in the list of DEMs is terrestrial
lidar, which is another example of a high-accuracy source of
elevation data that can be used in detailed assessments. In
this case, the vertical accuracy (RMSE = 0.05 m) comes from
an example coastal DEM used for a flooding assessment on
Kwajalein Atoll, RMI (Storlazzi, 2017). The results in Table 4 and
Figure 2 indicate that only the high-resolution, high-accuracy
DEM sources allow a SLRImin of less than 1 m and a TLmin
of less than 100 years at high confidence levels, while the
national scale or global DEMs do not adequately support such
parameters.

Figure 3 shows how for a given DEM (and its associated
vertical accuracy) the confidence level attached to SLRImin TA
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FIGURE 2 | Ranking of elevation data sources (left to right in order of increasing SLRImin). The 1-m sea-level rise (or inundation level) is marked, which indicates that
only the high-accuracy DEM sources are suitable for modeling sub-meter increments at high confidence levels.

FIGURE 3 | Confidence level for SLRImin for various DEMs and sea-level rise increments. Increments of 0.28 and 0.98 m are included because they represent the
minimum and maximum scenarios, respectively, for global sea-level rise by the year 2100 as described in IPCC AR5 (Church et al., 2013). An increment of 0.3048 m
is included because it is the equivalent of 1 foot, an increment that is commonly used in local and regional inundation assessments in the U.S.

increases as the increment used for modeling increases. Note that
when global DEMs and sub-meter increments of SLR (0.5 m or
less) are used, the confidence is very low (in the 0–10% range).

A simple formula for calculating the confidence level for SLRImin
given the RMSE of the DEM and the modeled increment is
described in the Supplementary Material.
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TABLE 5 | The confidence level for delineating the 10-m LECZ and the 20-m
coastal zone (CZ) using each global DEM.

DEM RMSE (m) % confidence for
10-m LECZ

% confidence for
20-m CZ

TanDEM-X 1.69 100% 100%

CoastalDEM 3.10 89% 100%

NASADEM 3.10 89% 100%

AW3D30 3.12 89% 100%

MERIT 3.14 89% 100%

SRTM 5.57 63% 93%

ASTER GDEM v3 9.47 40% 71%

Delineation of Low Elevation Coastal
Zone
In addition to developing spatially explicit flooding or inundation
impact zone maps, DEMs are also used to outline general LECZ
delineations (McGranahan et al., 2007; Lichter et al., 2011;
Neumann et al., 2015). Given the accuracy of global DEMs, and
the corresponding SLRImin for each, the confidence levels for
delineating the 10 m or less LECZ (that is, the 10-m elevation
contour) and the 20 m or less coastal zone (CZ) (the 20-m
contour) can be calculated (Table 5). The global DEMs suitable
for delineating the LECZ (≤10 m elevation) at 68% confidence
are TanDEM-X, CoastalDEM (an SRTM derivative) (Kulp and
Strauss, 2018), NASADEM, AW3D30, and MERIT. At the 95%
confidence level, only TanDEM-X is suitable for delineating the
LECZ. All the global DEMs are acceptable for delineating the CZ
(≤20 m elevation) at 68% confidence, while at the 95% confidence
level SRTM and ASTER GDEM are no longer suitable, but the
others are.

DISCUSSION

When the inherent vertical uncertainty is considered, it is clear
that global DEMs are not adequate for modeling fine increments
of SLR (<1 m) over short planning horizons (<100 years) at
high confidence levels (Table 4). SLRImin and TLmin are easily
calculated metrics based on the stated DEM accuracy (usually
expressed as an RMSE) and are useful to quantify elevation-based
coastal assessment parameters and their associated confidence
levels. Numerous studies have used global DEMs for SLR and
coastal flooding assessments without any regard for vertical
uncertainty (elevation error), leading to large uncertainties in
the assessment results with low confidence levels. There is ample
evidence that SRTM and ASTER GDEM are severely limited
for use in coastal assessments (Gesch, 2009; Gesch et al., 2009;
van de Sande et al., 2012; Doyle et al., 2015; Griffin et al.,
2015; Yan et al., 2015; Kulp and Strauss, 2016; Walczak et al.,
2016; Yunus et al., 2016; Santillan and Makinano-Santillan, 2017;
Smith et al., 2018). Both SRTM and ASTER GDEM are DSMs
that generally overestimate elevations (especially in vegetated
and built-up areas), so their use in coastal assessments leads
to underestimating areas exposed to a given inundation level
(van de Sande et al., 2012; Griffin et al., 2015; Kulp and Strauss,

2016; Smith et al., 2018). The results from the DEM accuracy
assessment in this study (Table 3) do indicate the overestimation
of elevation (positive bias) by SRTM and ASTER GDEM as
reflected in the positive mean error for each. A bias (that is, a
larger negative or positive mean error) is often an indicator that
the error distribution is non-normal; therefore, applying linear
scaling factors to the RMSE to derive LE90 or LE95 is not valid,
so percentile error methods should be used (Maune et al., 2007;
ASPRS, 2015). In the analysis presented here, the RMSE was used
to derive SLRImin even when the DEMs had a positive bias, as
often only the RMSE is known and the individual error values
are not available for percentile error calculations. As shown in
Table 3, however, SLRImin68 and SLRImin95 calculated based on
the 68th percentile and 95th percentile errors, respectively, are
not much different than those calculated based on the RMSE, so
the finding that none of the global DEMs support an increment
of 1 m is not changed.

There have been some recent improvements to SRTM
(O’Loughlin et al., 2016; Kulp and Strauss, 2018; Moudrý et al.,
2018) and ASTER GDEM (Arefi and Reinartz, 2011; Yang et al.,
2018) by removing vegetation and other elevated features that
caused the positive bias in the original datasets, often with
the correction implemented by integrating Ice, Cloud and land
Elevation Satellite (ICESat) spaceborne lidar data,. Merges of
SRTM and ASTER GDEM (Satgé et al., 2015; Crippen et al., 2016;
Yamazaki et al., 2017) have resulted in improved data as well.
However, none of these improvements bring the DEMs to the
level where they will support high confidence, quantitative coastal
assessments with sub-meter water level change increments and
planning horizons within the current century. The improvements
to SRTM, namely CoastalDEM, NASADEM, and MERIT, all still
have an RMSE of about 3 m, which equates to a minimum
increment of more than 6 m at 68% confidence (Table 4 and
Supplementary Table S1). AW3D30 is in this same class, with
an RMSE of slightly more than 3 m (Table 4 and Supplementary
Table S3). TanDEM-X does offer an improvement over SRTM,
ASTER GDEM, and AW3D30 (Grohmann, 2018) and exhibits
very little positive bias (Wessel et al., 2018), although its vertical
error does result in a SLRImin of several meters (Table 4 and
Supplementary Table S4).

Despite ample evidence of the significant limitations of global
DEMs, especially SRTM, for coastal assessments, they have been
used extensively for mapping and describing potential impacts
of SLR and coastal flooding, often with assessment parameters
(small water level increments and short planning horizons) that
fall well within the error bounds of the underlying elevation data
(Dasgupta et al., 2008, 2010; Hanson et al., 2010; Curtis and
Schneider, 2011; Blankespoor et al., 2014; Hardy and Nuse, 2016;
Kopp et al., 2017; Runting et al., 2017; Brown et al., 2018a,b;
Gebremichael et al., 2018; Haer et al., 2018; Jevrejeva et al.,
2018; Lincke and Hinkel, 2018; Nicholls et al., 2018; Prahl et al.,
2018; Rasmussen et al., 2018; Schuerch et al., 2018; Wolff et al.,
2018). Some of these studies used a model or database in which
the global DEM is embedded, such as the Dynamic Interactive
Vulnerability Assessment (DIVA) modeling framework (Hinkel,
2005; Vafeidis et al., 2008), so the inherent vertical uncertainty is
contained within model or database components. This serves as a
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caution that even if a DEM is not a direct input or is not processed
or analyzed directly in an inundation modeling exercise, vertical
error may be implicit in sub-model or database components, thus
modelers should be aware of an obscured source of uncertainty
in their assessment. Some assessments have used even coarser
global elevation models (1-km spatial resolution) with water
level increments in the range of 0.3–2 m (Xingong et al., 2009;
Nicholls et al., 2011; Brown et al., 2013; Neumann et al., 2015).
All these assessments present statistics about the potential impact
zones, including the areas and oftentimes the corresponding
population and economic assets that are at risk of adverse effects.
However, there is no quantitative statement about the quality
of the reported results, for instance confidence level, and no
expression of the uncertainty contributed by vertical error. In all
cases, the water level change increments used in the assessments
are not supported at high confidence levels, as the increments
are very small compared to the DEM vertical error (and the
derived minimum increment), which calls into question the
veracity of the reported results. Reporting of inundated areas (and
population and resources contained therein) at intervals of 1 m
or less implies a degree of accuracy that is not present in global
DEMs, and providing such numbers can be misleading to readers,
especially because most will not be familiar with the concepts of
vertical uncertainty of elevation models. As much as there is a
desire and need for global SLR and coastal flooding analyses with
water level increases on the order of a meter or less, current global
DEMs do not have the requisite vertical accuracy to derive results
with high confidence levels using fine increments, and thus they
should not be used for such mapping.

Even though global DEMs are not appropriate for spatially
explicit mapping of small increments of inundation with high
confidence, they can be used effectively for delineation of general
LECZs, and inventorying the population and resources contained
within. As the RMSE improves for global DEMs, the confidence
level for delineation of 10- and 20-m coastal zones increases
(Table 5). The LECZ can be the framework for entire studies
(McGranahan et al., 2007; Geisler and Currens, 2017), so a
quality delineation of such a zone at a known confidence level is
critical. For finer vertical slices, and subsequent spatially explicit
exposure maps, much higher accuracy elevation data, such as that
derived from lidar, high-resolution stereo photogrammetry, and
ground survey, are required (Gallien et al., 2013). Airborne lidar,
in particular, is an important elevation data source for coastal
assessments (Gesch, 2009; Cooper et al., 2013; Runting et al.,
2013; Zhu et al., 2015; Enwright et al., 2017), as it can meet the
requirements for modeling fine increments of water level changes
at high confidence and generally covers larger areas, even regional
to national coverage.

Proper Accounting for Vertical
Uncertainty
When vertical uncertainty is properly accounted for, value
is added to the results of coastal assessments as additional
information is available to inform users. For example, this
can take the form of confidence levels attached to the
inventory of resources within a potential impact zone or

as portrayal of the probability of inundation for a specific
location or confidence in the delineation of flooding exposure
on a map. Several studies demonstrate best practices for
handling cumulative vertical uncertainty in both the selection
of assessment parameters (modeled increments and projection
timelines) and in presentation of results (graphic and tabular)
with expressions of confidence. For implementations of these
best practices, see the following examples: Reynolds et al. (2012);
Gesch (2013); Nielsen and Dudley (2013); Leon et al. (2014);
Enwright et al. (2015, 2017); Dahl et al. (2017); Jones et al. (2017);
Santillan and Makinano-Santillan (2017); West et al. (2018).

Other Inundation Exposure Assessment
Best Practices
In addition to rigorous treatment of vertical uncertainty
(detailed above in Section “Accounting for Uncertainty in
Exposure Assessments” – spatial portrayal of cumulative vertical
uncertainty when mapping inundation zones, and in Sections
“Minimum Sea-Level Rise Increment” and “Minimum Planning
Timeline” – selection of assessment parameters), there are
other best practices that will help produce high quality coastal
assessments. The following practices have emerged from the
scientific record of successful studies, and they are becoming
commonplace in the most robust assessments.

(1) In addition to delineation of areas of marine inundation
(hydrologically connected to the ocean), delineate low-lying
disconnected areas below the chosen elevation threshold.
These areas have been referred to as locations with
“groundwater inundation” (Rotzoll and Fletcher, 2012),
although the inundation may not always be due solely
to raised coastal groundwater tables, but also king tides,
run-up of high waves, or some combination of these
factors. The importance of distinct mapping of low-lying
areas susceptible to flooding has been recognized in many
studies (Cooper et al., 2012, 2013, 2015; Bloetscher and
Romah, 2015; Bloetscher et al., 2017; Hummel et al., 2018;
Knott et al., 2018). These delineations of low-lying lands
should carry the same expression of confidence level of
mapping or probability of inundation resulting from proper
consideration of vertical uncertainty.

(2) Use spatially explicit regional relative SLR projections that
account for the effects of vertical land movement. In
contrast to global mean SLR scenarios, such projections
capture the geographic variation in sea levels and can
include factors such as ocean currents and changes in
gravity fields (Wuebbles et al., 2017). The importance
of using relative SLR rates is well recognized and
demonstrated in numerous studies (Spada et al., 2013; Kopp
et al., 2014; Nicholls et al., 2014; Slangen et al., 2014;
Sweet and Park, 2014; Lentz et al., 2016; Wöppelmann
and Marcos, 2016; Antonioli et al., 2017; Davis and
Vinogradova, 2017; Gebremichael et al., 2018; Shirzaei and
Bürgmann, 2018).

(3) Use dasymetric mapping if a coastal assessment includes
estimates of impacted population. Many times, coastal
assessments include an inventory of current and/or future
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population within the potential impact zone. Dasymetric
population mapping (Mennis, 2003; Holt et al., 2004) is
an effective technique for disaggregating areal population
counts to a more realistic distribution of population density
across the landscape as a continuous surface, often using
land cover or parcel data as ancillary information. The
advantages of doing so for coastal assessments have been
demonstrated (Mitsova et al., 2012; Merkens and Vafeidis,
2018), and spatially explicit population maps are available
over large areas (Mondal and Tatem, 2012; Dmowska and
Stepinski, 2017).

CONCLUSION

Vertical uncertainty is a critical factor to consider and account
for in elevation-based assessments of SLR and coastal flooding
exposure. Some studies have properly handled the vertical
uncertainty, as expressed in the combined elevation data
and transformation errors, and in doing so provide valuable
additional information to the user about confidence in the
mapping and likelihood of projected impacts. However, many
other studies ignore the vertical uncertainty stemming from the
underlying elevation data and use assessment parameters (water
level change increments and planning horizons) that are well
within the error bounds and are not appropriate for generating
high confidence results, thus leading to questionable delineations
of impact zones and inventories of the population and resources
contained therein.

The simple methods described herein for selecting coastal
assessment parameters (minimum increment of water level
change, SLRImin, and planning horizon, TLmin) that are
supported at high confidence levels by the vertical qualities of
the elevation data are useful for characterizing the capabilities
of global DEMs. Application of these methods to current global
DEMs (SRTM and its derivatives NASADEM, CoastalDEM,
and MERIT; ASTER GDEM; AW3D30; and TanDEM-X)
demonstrates that none of these DEMs support coastal
inundation or flood assessment at high confidence levels for
small water level increments (<1 m) or short planning horizons
(<100 years). High confidence assessments of scenarios with
cumulative SLR of less than 1 m or planning horizons within
the current century require elevation data with much better
vertical accuracy than that afforded by global DEMs, which points
to high-accuracy sources such as terrestrial and airborne lidar,
high-resolution photogrammetry, and ground surveys. These
technologies produce high-quality elevation data that facilitate
development of detailed spatially explicit inundation maps.

The key finding demonstrated in this study leads the list of
best practices to follow in elevation-based coastal inundation
assessments.

(1) Account for the inherent cumulative vertical uncertainty
in the elevation data by using increments of water level
increase and planning horizons that are supported at
high confidence levels, and state those confidence levels
explicitly in study documentation. The metrics SLRImin and

TLmin are direct functions of the vertical accuracy of the
DEM used in the study, and they are useful for ensuring that
the chosen assessment parameters are appropriate given the
error characteristics of the DEM.

(2) Apply probabilistic or modified deterministic methods
when producing maps of impact zones and inventories of
features and resources contained therein. These approaches
allow for a specific probability or confidence level to be
attached to the results, and ideally the maps portray that
quality using clear symbology and the inventories are
labeled with that information.

(3) Delineate impact zones above the normal high water
line, which usually implies vertical datum transformation
that should be reflected in cumulative vertical uncertainty
(calculated via summing in quadrature).

(4) Enforce hydrologic connectivity (direct connection to the
ocean) in the DEM when conducting spatially explicit
mapping of marine inundation. Map and inventory
separately the low-lying disconnected lands that are subject
to flooding at the specified water level elevation.

(5) Use relative SLR rates that account for geographic
variation and departures from global mean rates because
of differential vertical land movement, ocean currents, and
gravity.

(6) Employ dasymetric mapping techniques for better
estimates of potential impacted population.

As the use of these best practices increases, assessments
will improve and become more valuable, especially by having
quantified and published uncertainty information (confidence
levels and likelihood statements), and results will be directly
comparable across different assessments.

In the future, as elevation datasets with large-area coverage
improve, analyses utilizing the improved elevation information
and the community best practices will result in robust
assessments. Ongoing enhancements to widely used methods
will also help to improve progress, such as better incorporation
of information on physical processes, including tidal regimes
(Hanslow et al., 2018) and water level attenuation due to surface
roughness (Vafeidis et al., 2017), into bathtub modeling used
for broad area screening. However, for elevation-based coastal
assessments, the primary factor affecting quality and usefulness of
results remains the choice of the elevation model used (National
Oceanic and Atmospheric Administration [NOAA], 2010; Doyle
et al., 2015; Wolff et al., 2016; Yunus et al., 2016), and how
the DEM vertical uncertainty is characterized and accounted for
(West et al., 2018). Open-access global DEMs have been a major
advance for many Earth science and environmental modeling
applications, but the findings from the present evaluation of
currently available datasets for detailed assessments of SLR
and coastal flooding exposure add to the recent recognition
(Schumann et al., 2014; Simpson et al., 2015; Sampson et al., 2016)
that the requirement remains for a freely available, high-accuracy,
high-resolution global elevation model that supports quantitative
coastal inundation hazard assessments at high confidence levels.
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