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Tools for genomic island prediction use strategies for genomic comparison analysis

and sequence composition analysis. The goal of comparative analysis is to identify

unique regions in the genomes of related organisms, whereas sequence composition

analysis evaluates and relates the composition of specific regions with other regions

in the genome. The goal of this study was to qualitatively and quantitatively evaluate

extant genomic island predictors. We chose tools reported to produce significant results

using sequence composition prediction, comparative genomics, and hybrid genomics

methods. To maintain diversity, the tools were applied to eight complete genomes of

organisms with distinct characteristics and belonging to different families. Escherichia

coli CFT073 was used as a control and considered as the gold standard because its

islands were previously curated in vitro. The results of predictions with the gold standard

were manually curated, and the content and characteristics of each predicted island

were analyzed. For other organisms, we created GenBank (GBK) files using Artemis

software for each predicted island. We copied only the amino acid sequences from

the coding sequence and constructed a multi-FASTA file for each predictor. We used

BLASTp to compare all results and generate hits to evaluate similarities and differences

among the predictions. Comparison of the results with the gold standard revealed that

GIPSy produced the best results, covering ∼91% of the composition and regions of the

islands, followed by Alien Hunter (81%), IslandViewer (47.8%), Predict Bias (31%), GI

Hunter (17%), and Zisland Explorer (16%). The tools with the best results in the analyzes

of the set of organisms were the same ones that presented better performance in the

tests with the gold standard.

Keywords: genomic islands, pathogenic islands, mobility genes, genomic signature, virulence factors, horizontal

gene transfer

INTRODUCTION

Bacterial genomes have evolved and adapted over time through a variety of processes such as
mutation, gene rearrangement, and horizontal gene transfer (HGT). This evolutionary pattern can
be observed as increases in specific parts of sequenced genomes. In addition to genes encoding
effectors of essential functions, other genes in bacterial genomes are present in many organisms,
such as accessory genes acquired by HGT. The HGT process provides advantages to bacteria,
enabling them to adapt to the environment (Schmidt and Hensel, 2004).
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Numerous accessory genes were derived from HGT and
are atypical regions known as genomic islands (GIs), which
have appeared in the genomes of many bacteria. GIs play an
important role in the evolution, adaptation, and diversification
of bacterial genomes, carrying genes that encode proteins with
diverse functions (Juhas et al., 2009). GIs were first described
by Hacker et al. (1990). These researchers analyzed the genetic
basis of virulence in strains of uropathogenic Escherichia coli.
They identified gene sets containing virulence factors which were
absent from commensal strains of E. coli. This group of genes was
named as pathogenicity islands (PAI) (Hacker et al., 1990). Other
studies revealed that different classes of GIs can be established
depending on the biological functions of the genes within the
islands. The GIs classes are: metabolic islands (MIs), which
contain genes for proteins associated with metabolic properties,
resistance islands (RIs), containing genes that encode proteins
associated with antibiotic resistance; and symbiotic islands (SIs).
This last class has various effects that depend on both the genes
present and the environment. The same island can perform
different functions in different environments (Hacker et al., 1997;
Schmidt and Hensel, 2004).

Regardless of the class, most GIs have similar characteristics,
such as sizes of 10–200 kb. GIs below 10 kb are known as genomic
islets (Hacker and Kaper, 2000). The sequence compositions of
GIs differ from that of the rest of the genome, with the specific
GC% content and dinucleotide frequency the strongest indicators
of their presence in the organism (Juhas et al., 2009). tRNA
genes are generally found near GIs, are upstream of direct repeats
(DR) sequences, and can act as target sites for enzymatic excision
(Schmidt and Hensel, 2004). GIs may contain genes encoding
integrins, factors involved in conjugation, and genes from phages
that facilitate island transfer between organisms (Juhas et al.,
2009). An insertion element (IS), integrases, and transposons
related to the mobilization and deletion of genetic material may
be present (Buchrieser et al., 1998; Gal-Mor and Finlay, 2006).
Figure 1 shows the main characteristics of GIs and the possible
functions of these sequences.

Considering the distinct properties of GIs and that they
allow bacterial organisms to evolve and adapt to different
environments, it is possible to understand why they spread
rapidly (Juhas et al., 2007). This adaptation process is among the
most important factors in generating diversity and facilitating
the propagation of genes in bacteria, as the organism receives
an already prepared and improved set of genes, increasing its
chances of adaptation (Wilson, 2012).

The genes present in GIs are typically grouped to perform
specific and advantageous functions in the bacteria. PAIs, for
example, can cause major changes in the bacterial phenotype.
Thus, they are the most studied GIs (Hacker and Carniel, 2001).

The ability of bacteria to transmit pathogenicity factors and
antibiotic resistance factors is one of the most widely studied
topics associated with GIs. The high prevalence of antibiotic
resistance is an important problem facing the health care system,
as it jeopardizes the success of treating infectious diseases.
Changes in bacterial populations, which have increased their
resistance level to various antibiotics within a few decades, show
that bacteria adapt and evolve rapidly. GIs are associated with

an increased distribution of virulence and antibiotic resistance
factors, indicating their importance in the evolution of bacterial
genomes (Juhas et al., 2009).

The large number of sequenced genomes and analyses of
genetic sequences have revealed that GIs are mosaics of genes
formed by HGT. Several methods for GI prediction and genomic
data analysis have been developed. The main methods used
by prediction tools are separated into two groups: comparative
genomic analysis, whose objective is to identify variable regions
in relatively close organisms (multiple genomes), and analysis of
sequence composition in the organism (single genome) (Lu and
Leong, 2016b).

Although numerous prediction tools are available, the
accuracy of the results is insufficient. The use of only one method
may not give satisfactory results; the combination of various
techniques may be a better strategy for bridging the gaps in
genomic island prediction (Lu and Leong, 2016b).

Recently, Bertelli et al. (2018) evaluated 20 GI predictors
using a GI data set from 104 genomes (Langille et al., 2008;
Dhillon et al., 2015; Bertelli et al., 2017). Analysis of the methods
applied in each tool provided a broad view of the applicability
of each software, revealing which predictors are better for the
data set. Based on the results, (Soares et al., 2016b) and our
group (Silva-Filho, 2017) have selected some previously evaluated
tools according to their performance and applicability, as well
as other criteria established in our lab. We investigated several
predictors and selected Alien Hunter (Vernikos and Parkhill,
2006), GI Hunter (Che et al., 2014b), GIPSy (Soares et al., 2016a),
IslandViewer4 (Bertelli et al., 2017), Zisland Explorer (Wei et al.,
2016), and Predict Bias (Pundhir et al., 2008) for analyses. Our
objective was to qualitatively and quantitatively evaluate these
prediction tools against manually curated GIs. We used a set of
diverse organisms and known islands curated in vitro to evaluate
the prediction methods, island behavior in different organisms,
and processes of adaptation and genomic evolution.

MATERIALS AND METHODS

Criteria for Choosing the Prediction Tools
The predictors were chosen based on: (1) the type of analysis
and method used—predictors using sequence composition,
comparative, or hybrid genomics; (2) similarity/equality in
pipeline construction—predictors using the same data set for
tool development (such as a dataset of positive and negative
GIs); predictors that integrate other tools that were previously
developed and are used for the same purpose (such as
GC% content and identification of tRNAs, integrases, and
transposases) and predictors that determine related functions
of genes present in the islands (pathogenicity, metabolism,
and resistance); and (3) relevance—based on the analysis of
performance and applicability in previous studies (Soares et al.,
2016b; Bertelli et al., 2018) and our previous results (Silva-Filho,
2017).

Methodology of Analysis of GI Predictors
We chose the following predictors that use sequence
composition: Alien Hunter (Vernikos and Parkhill, 2006),
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FIGURE 1 | Main characteristics of genomic islands and possible functions.

Predict Bias (Pundhir et al., 2008), GI Hunter (Che et al.,
2014b), and Zisland Explorer (Wei et al., 2016); and the
following predictors that use comparative or hybrid genomics:
GIPSy (Soares et al., 2016a) and IslandViewer4 (Bertelli et al.,
2017).

Construction of the Predictor Pipeline

Common data set
GI Hunter used the same dataset as IslandPick (Langille
et al., 2008), developed with positive and negative
GIs to create a decision tree model of the tool. GI
Hunter integrates Alien Hunter into its pipeline, while
IslandViewer4 integrates the IslandPick method into its
predictions.

Integration of tools with the same purpose (GC% content)
GIPSy performs analysis using the methods incorporated in
the Artemis genome visualization tool (Rutherford et al., 2000),
Zisland Explorer uses GC-Profile, (Zhang et al., 2005), and
Predict Bias uses the Karlin method (Karlin, 2001).

Integration of other tools
IslandViewer4 integrates the Islander curated database to
identify tRNAs (Hudson et al., 2015) and reveals genes
with characteristics of virulence, resistance, pathogenicity,
and their homologous factors. GIPSy uses the HMMER3
tool (Eddy, 2011) to search the tRNAdb database (Jühling
et al., 2009), identifies transposase genes using the PFAM
database (Finn et al., 2010), and determines the functions
of GI candidates as islands of pathogenicity, resistance,
metabolism, and symbiosis. Predict Bias uses GenBank
files to identify tRNAs, transposases, and integrases and
determines the relationship between island function and
pathogenicity.

The various methods and integrated tools used by the chosen
predictors to identify the main characteristics of the GIs provides
a broad view of the results for analyzing and comparing the
same dataset to determine which tools give the best results.
Table 1 describes the chosen tools and their main characteristics.
A complete description of the prediction tools is shown in
Supplementary Table 1. To evaluate these characteristics, we
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TABLE 1 | Comparative characteristics of the tools.

Predictors Method Seq. comp. biasa F. of gisb Y. of pub.c

Alien Hunter Seq. Comp.d IVOM, k-mers No 2006

GI Hunter Seq. Comp. IVOM, k-mers No 2014

Predict Bias Seq. Comp. G+C%, codon

usage,

dinucleotides

Yese 2008

Zisland Explorer Seq. Comp. G+C%, codon

usage

No 2016

GIPSy Hybrid G+C%, codon

usage

Yesf 2016

IslandViewer4 Hybrid Codon usage,

dinucleotides

R. G. onlyg 2009–2017

a(Sequence composition bias), b(Genomic Islands Function), c(Year of publication),
d (Sequence composition), e(Only Pathogenicity Island), f (Classifies GIs with functions of

pathogenicity, resistance, metabolism, and symbiosis), g(Related genes only).

searched the literature for in vitro curated GIs that are already
well-defined.

Criteria for Exclusion of Prediction Tools
The predictors were excluded based on (1) low performance
according to a previous study (Bertelli et al., 2018) and tools
integrated by more recent versions; (2) inviable/difficulty to
obtain results, such as tools with web databases but their
results are offline; and (3) unsuitable installation/complex
dependencies/requirements for downloading a complete external
database of a very large size. The tools evaluated and excluded are
shown in Supplementary Table 2.

Criteria for Choosing the Organisms
The organisms chosen as the test set for this study were selected
from those used in previous studies describing the tools; all
chosen organism-genomes had been tested by at least two other
tools. We tested only full genomes because not all organisms have
additional information available, such as plasmids and viruses.
We selected bacteria from different families to ensure diversity in
our analysis. Of these bacteria, three were gram-positive and five
were gram-negative (Table 2).

Gold Standard Data Set
Using GIs previously analyzed and used as in vitro as reference
data enabled us to evaluate the sensitivity and accuracy of the
tools. The authors (Lloyd et al., 2007, 2009; Vejborg et al.,
2011) identified 16 GIs in E. coli strain CFT073, supporting
the use of this organism as the gold standard, which was used
to perform manual curation of the results. Additionally, the
biological composition of the GIs described and identified in
vitro was consistent with several analytical features present in the
chosen predictors.

Analysis of the Gold Standard Data Set in
the Reference Database
Several GIs of the gold standard have well-defined tRNA and PAI
functions, enabling comparative analysis of the predictor results
with curated databases for these specific characteristics.

TABLE 2 | Description of selected organisms.

Organisms Family G+C% (%) Gram +/–

Corynebacterium

diphtheriae NCTC

13129

Corynebacteriaceae 53.50 +

Streptococcus

pyogenes M1 GASa
Streptococcaceae 38.50 +

Staphylococcus aureus

subsp. aureus NCTC

8325

Staphylococcaceae 32.90 +

Escherichia coli str.

K-12 substr. MG1655

Enterobacteriaceae 50.80 –

Escherichia coli

CFT073c
Enterobacteriaceae 50.50 –

Aeromonas hydrophila

subsp. hydrophila

ATCC 7966

Aeromonadaceae 61.50 –

Pseudomonas

aeruginosa PAO1b
Pseudomonadaceae 66.60 –

Vibriocholerae O1

biovar El Tor N16961

chromosome I

Vibrionaceae 47.70 –

Vibriocholerae O1

biovar El Tor N16961

chromosome II

Vibrionaceae 46.90 –

a,b(Organisms chosen to evaluate the processing performance time of the predictors,

gram-positive and gram-negative, they represent the largest and smallest base pair

contents of the entire group). c(Organism chosen as a gold standard set).

For GIs with well-defined tRNAs, we used the Islander curated
database (Hudson et al., 2015) for verification. IslandViewer4
implemented Islander in its last update, but only the pre-
computed results are available for consultation (users uploading
their own genome cannot receive Islander results). The pre-
computed Islander data do not correspond to all GIs with well-
defined tRNAs of the gold standard.

As most GIs identified in vitro function as PAIs, we consulted
the Pathogenisity Island DataBase (PAI DB) (Yoon et al., 2007).
In this repository, only two PAIs corresponded to the gold
standard GIs.

Because of the lack of data in the reference banks when
assimilated with the data from the literature, wemanually curated
all predictors results, identifying each biological product found
by the tools and relating it to their functions and characteristics.

Table 3 shows the data from the in vitro curated islands of E.
coli CFT073 obtained from previous studies (Lloyd et al., 2007,
2009; Vejborg et al., 2011).

Criteria for Determining the Start and Final
Position of GIs Between the Gold Standard
and Tools Prediction
The gold standard GIs are represented by the first locus tag of
the region and last locus tag of the region in the genome (see
Table 3). We performed locus tag conversion to compare the
results because the GIs predicted by the tools were identified by
the initial and final position of the candidate GIs in the genome.
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TABLE 3 | Data of GIs, PAIS, and regions with DNA of bacteriophages curated in vitro from the reference organism Escherichia coli cft073.

GIsa GI name Locus tagb CDSc tRNAd GC% contente (%)

1 GI-CFT073-leuX c5386–c5371 15 leuX 48.15

2 PAI-CFT073-pheU c5216–c5143 61 pheU 47.57

3 GI-CFT073-selC c4581–c4491 70 selC 47.04

4 PAI-CFT073-pheV c3698–c3556 124 pheV 47.08

5 PAI-CFT073-metV c3410–c3385 25 metV 53.37

6 φ-CFT073-smpB c3206–c3143 49 49.32

7 GI-CFT073-cobU c2528–c2482 37 49.68

8 GI-CFT073-asnW c2475–c2449 26 asnW 53.12

9 PAI-CFT073-asnT c2436–c2418 15 asnT 58.27

10 PAI-CFT073-serU c2416–c2392 19 serU 37.65

11 PAI-CFT073-icdA c1601–c1518 74 50.23

12 φ-CFT073-ycfD c1507–c1481 14 49.78

13 φ-CFT073-potB c1475–c1400 51 50.97

14 PAI-CFT073-serX c1293–c1165 102 serX 48.76

15 φ-CFT073-b0847 c0979–c0932 42 50.45

16 PAI-CFT073-aspV c0368–c0253 83 aspV 47.43

a(Genomic islands), b(Identifiers applied to each gene), c(Number of coding sequences), d (Transfer RNA), e(Percentage of guanine and cytosine content in the region). GI, Genomic

islands; PAI, Pathogenic islands; φ, Islands containing predominantly bacteriophage DNA.

Because the tools used different methods, the positions of the
predicted islands may not be exact compared to the positions
of the standard GIs, both for the beginning and end of the
island. To determine if a tool identified the gold standard island,
we established a minimum of 75% coverage of the coding
sequence (CDS) present in the gold standard islands. Curation
was performed manually using the results from each tool.

Criteria for Evaluating Predictor Results
Between the Set of Organisms
From the results of candidate islands predicted by the different
tools, we generated. GBK files for each island from Artemis
software. For these files, we copied the amino acid sequence
of each CDS and elaborated a multi-FASTA file separated by
organism for each tool.

We used BLASTp to compared all predictor results using
default parameters. From these results, we developed a set of
“common islands” and “unique islands.” Because of the size
variation of the predicted regions, an island may intersect two
or more regions predicted by another method; in these cases, we
considered the number of “Hits” between different islands.

We used BLASTp to align all sequences using standard
parameters. Common GIs were identified by more than one
predictor and showed a query coverage of 50–100%, E-value =
0.0, and identity = 100%. Unique GIs were identified by only
one predictor. The flowchart in Figure 2 shows the steps used
for dataset construction. The results of all BLASTp runs for the
analyzed organisms are shown in Supplementary Table 3.

Intersections Plot and Venn Diagram
The Intersection Plot Graph was developed using the UpSet tool
(Lex et al., 2014), which enables investigation of data based on
sets and was developed in R-language. The Venn diagrams were
examined in detail using the web tool InteractiVenn (Heberle

et al., 2015). The results of the Intersection Plot Graph and Venn
diagram are the data sets of common and unique GIs by organism
and the total data sets compared to all predictors against each
other to identify similarity hits between them.

RESULTS

Qualitative Analysis of GI Predictors
We analyzed the following predictive tools: Alien Hunter
(Vernikos and Parkhill, 2006), GI Hunter (Che et al., 2014b),
GIPSy (Soares et al., 2016a), IslandViewer4 (Bertelli et al., 2017),
Zisland Explorer (Wei et al., 2016), and Predict Bias (Pundhir
et al., 2008). Table 4 shows the main features of each tool and
Table 5 shows the complementary information.

Features of Each Tool

Alien hunter
Developed by researchers at the Sanger Institute in the UK.
This software is based on Interpolated Variable Order Motifs
(IVOMs), which attempt to detect atypical regions in the genome
of using sequence composition analyzes such as variation of G+

C content, presence of dinucleotides, and codon frequency. The
predictions can be optimized using two-state Hidden Markov
Models (HMM) to identify the entry point in the atypical and
non-atypical regions of the genome (Vernikos and Parkhill,
2006). When the identification of these regions occurs, IVOM
score is obtained, which is equivalent to how much this portion
of the genome differs from the rest. Longer sequences have higher
scores and more accurate predictions, whereas smaller sequences
with few information have a lower score and a questionable
result (Che et al., 2014a). Threshold is also established with
a score, resulting from the comparison with the average of
the total genome related to its similarity. Genes or genomic
regions with a score below or above the threshold are possibly
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FIGURE 2 | Steps in dataset creation.

TABLE 4 | Main features of each tool.

Predictors Platform Input Output G. W. Aa G. Rb G. D/Cc

Alien Hunter S.Od Linux (Console) .FASTAe .TXTf/.EMBLg/.SCOh Yes No No

GI Hunter S.O Linux (Console) .FNAi/.PTTj/.RNTk .TXT/ PLOTl No No No

GIPSy S.O Linux/Win (GUI)m .GBKn/.EMBL .TXT No Yes No

IslandViewer4 Web .GBK/.EMBL .GBK/.FASTA/.PLOT No No Yes

Predict Bias Web .GBK .TXT/.PLOT/HTMLo No No No

Zisland Explorer S.O Linux/Win/Web/Mac(GUI) .FNA/.PTT .TXT/.PLOT No No No

a(Genome without annotation), b(Reference genome), c(Incomplete genomes drafts/contigs), d (Operating system), e(Base sequences), f (Text file), g(Molecular Biology Laboratory),
h(Score of prediction results), i (Nucleotide sequences), j (Location and attributes of proteins), k (Location and attributes of transport ribonucleic acids), l (graphical user interface),
m(graphical user interface), n(GenBank genomic sequence format), o (Hypertext Markup Language).

TABLE 5 | Additional information of each tool.

Predictors Integrated programs Integrated database

Alien Hunter No No

GI Hunter IVOMa No

GIPSy SIGI-HMMb/

HMMER3c/BLASTPd
PFAMe/MVIRDBf/ARDBg/CARDh/

COGi/NODMUTDBj/tRNADBk

IslandViewer4 SIGI-HMM/MAUVEl VFDBm/PATRICn/VICTORSo/CARD

Predict Bias No VFDB

Zisland Explorer GC-Profile No

a(Interpolated variable order motifs), b (Genomic data statistical analysis tool), c(Sequence

lookup tool), d (Tool to compare sequence information in amino acids), e(Protein family

database), f (Microbial database of protein, toxins, virulence factors, and antibiotic

resistance genes for bio-defense applications), g(Antibiotic resistance genes database),
h(Comprehensive antibiotic resistance database), i (Clusters of orthologous groups

of proteins), j (database for genes and mutants involved in symbiosis), k (Transfer

RNA database), l (Genome sequence alignment tool), m(Virulence factors database),
n(Bacterial bioinformatics database and analysis resource), o(Pathogen-host interaction

data integration and analysis system database).

atypical, subsequent genes or even these atypical regions are
linked to obtain candidates GIs (Lu and Leong, 2016b). Alien
Hunter is able to make predictions without requiring a pre-
existing annotation. Therefore, it can be used in newly sequenced
genomes (Che et al., 2014a).

GI hunter
Developed in East Stroudsburg by the Bioinformatics Laboratory
of the University of Pennsylvania. It is able to identify GIs in
both bacterial and archaea genomes. It is based on analyzes of
sequence composition, tRNA genes and highly expressed genes,
intergenic distance, information on phages, and mobile genes
(integrase and transposases), as well as the implementation of the
Interpolated Variable Order Motif (IVOM)methodology that the
Alien tool Hunter uses it to perform analyzes (Che et al., 2014b).
In order to predict the GIs, a decision tree based prediction
method with a training set was also developed. The attributes of
the highly expressed genes and the intergenic distances were not
explored in other tools (Che et al., 2014b).

GIPSy
GIPSy is an update of the Pathogenicity Island Prediction
Software (PIPS), (Soares et al., 2012), developed to identify
athogenic GIs in bacterial genomes. After improving, GIPSy is
able to identify other candidate regions, as well as classify them
according to the genes present in the GIs in relation to their
biological functions (Mls, Rls, Sls). To perform the analyzes a
reference genome is required. The predictions is based on the
deviation of the G+ C content, genomic codons, tRNA, mobility
genes such as transposase, virulence factors, metabolism,
symbiosis, resistance antibiotics (Soares et al., 2016a).
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Islandviewer4
Developed at Simon Fraser University, by Brinkman Lab in
Canada. It is also a database of GIs containing bacterial
and archaea organisms. IslandViewer4 use three integrated
methodologies: IslandPick, which uses genomic comparison,
SIGI-HMM for sequence composition research and IslandPath-
DIMOB, searching for atypical sequences and mobility-related
genes. The interactive genome graph is provide in the web
page, which gives the user a broad view of all predicted GIs
with their products and features; indicates the genes related to
virulence factors, pathogenicity, and antibiotic resistance. This
tool does not allow the user to choose the reference genome for
the IslandPick method before making the prediction. Only after
receiving the results can the user choose another related genome
for comparison (Bertelli et al., 2017).

Predict Bias
Developed in the Bioinformatics laboratory of Devi Ahila
University, Indore, India. This predictor identifies genomic and
pathogenic islands in prokaryotic organisms from the evaluation
of sequence composition, presence of insertion elements and
genes related to virulence factors. In order to predict the genes
with these characteristics, an internal database was created,
VFPD (A profile database of virulence factors), with the objective
of searching the presence of these genes in the genome through
the execution of the RPS-BLAST (Reversed Position Specific—
Basic Local Alignment Search Tool) in the regions of interest. For
predictions of tRNA and mobility genes such as integrases and
transposases, Predict Bias use annotations of the input file GBK
(Pundhir et al., 2008).

Zisland explorer
Developed at Tianjin University, Bioinformatics Center, in
China, Zisland Explorer uses different strategies for predicting
GIs. It is a non-supervised and algorithm-dependent annotation
tool for automated targeting. Implements the GC + Profile
software (Zhang et al., 2014), to divide the entire genome
sequence into several fragments for further analysis. This
approach combines homogeneity of sequences within each island
and heterogeneity of sequence compositions). Zisland Explorer
presents a static plot showing G + C content throughout the
genome, highlighting GI candidate regions, and reporting the
size and number of genes present in the candidate GIs (Wei et al.,
2016).

Performance Analysis of Island Predictors
Figure 3 shows the performance of the evaluated predictors with
respect to the processing time.

The processing time of Predict Bias was not influenced by
the genome size. Because this tool uses a set of databases, we
hypothesized that some annotations had been preprocessed. The
processing time of Zisland Explorer was slightly influenced by the
size of the analyzed genomes. GI Hunter integrated Alien Hunter
andmanaged to decrease the processing time difference to 25min
(70% of the time for an organism with the smallest genome)
and 30min, (65% of the time for an organism with the largest
genome) compared to Alien Hunter.

Alien Hunter showed a difference in performance of 30min
(65% of the time) between the organism with the largest genome
and that with the smallest genome.We did not analyze unmarked
genomes. Therefore, we cannot infer an estimated time for these
type of predictions. GIPSy delivered its results in 90min (75%
of the time of other genome analyses). However, this software
uses two genomes for analysis (study and reference), and thus its
runtime may vary.

The broadband does not appear to directly influence the time
required for IslandViewer4 to perform the analyses. However,
this information is not included in the published articles or on the
tool page. This tool showed the highest difference in execution
time, with ∼120min between the organism with the largest
genome and that with the smallest genome (65% of the time).
The tool uses several processes in its analyses. The time may be
influenced by the number of queries being processed at a specific
time in relation to queries from other organisms previously sent
by other users.

In conclusion, all tools showed a relatively fast runtime, and
none presented errors during execution.

Results of Predictors Compared to the
Gold Standard
We evaluated which tool most closely predicted the 16 GIs
curated in vitro (Lloyd et al., 2007, 2009; Vejborg et al., 2011).
Figure 4 shows the positions of the 16 in vitro curated GIs
on the genome plotted by Artemis and the predictors used for
identification.

No predictors matched the 16 GIs previously reported for the
gold standard, but each island was predicted by one or more
tools. Alien Hunter (P1), GIPSy (P3), and IslandViewer4 (P4)
predicted the largest number of GIs, 13; GI Hunter (P2) and
Zisland Explorer (P5) predicted the smallest number of GIs,
three; Predict Bias (P6) identified six GIs.

Only one island was identified by all tools (GI 16). Table 6
shows a summary of the GI 16 content. This region is
characterized as a PAI, containing five genes related to virulence
factors: fpbABC, cdiA, picU, tosCBDA, and vat (Vejborg et al.,
2011). This PAI does not contain an integrase, and 43% of
the island is composed of hypothetical and non-characterized
proteins.

Features of Each Predicted Island With Manual

Curation
Islands 3 and 4 were predicted by Alien Hunter (P1), GI
Hunter (P2), GIPSy (P3), IslandViewer4 (P4), and Zisland
Explorer (P5). The third GI had a GC% content of 47.04%,
associated with the tRNA selC, and contains 2 integrases and 10
transposases. Among the five tools identified this region, GIPSy,
Alien Hunter, and IslandViewer4 showed better results. GIPSy
presented a GC% content of 47.29% and predicted associations
with tRNA genes, integrases, and transposases. Alien Hunter
and IslandViewer4 revealed a GC% content of 47.20% and
associations with the tRNA and mobility genes.

The fourth island is a PAI with a GC% content of 47.08%
and was associated with tRNA pheV, three integrases, and 20
transposases. Again, GIPSy, Alien Hunter, and IslandViewer4
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FIGURE 3 | Organism with the larger genome, Pseudomonas aeruginosa PAO1 (6,264,404 base pairs) was compared to that with a smaller genome, Streptococcus

pyogenes M1 GAS (1,852,433 base pairs).

showed the best results. GIPSy identified the region with a
GC% content of 47.18%, along with all mobility genes. Alien
Hunter and IslandViewer4 revealed GC% contents of 47.00 and
46.98%, respectively, but failed to predict the tRNA gene and one
integrase.

The islands 2, 6, 8, 11, and 14 were predicted by Alien Hunter
(P1), GIPSy (P3), IslandViewer4 (P4), Zisland Explorer (P5), and
Predict Bias (P6). The second GI is a PAI with a GC% content of
47.57%, is associated with tRNA pheU, and has three integrases
and 11 transposases. GIPSy and Alien Hunter showed the best
results. GIPSy presented a GC% content of 47.44% and predicted
an association with the tRNA gene, integrins, and transposases.
Alien Hunter identified a GC% content of 47.58%, an association
with the tRNA gene, and mobility genes.

The sixth GI is an island with a high content of bacteriophage
DNA and GC% content of 49.32%. It is not associated with tRNA
genes, and has one integrase and one transposase. Alien Hunter
and IslandViewer4 showed the best predictions. Alien Hunter
revealed a GC% content of 48.99% and IslandViewer4 showed
49.15%. Both tools identified the mobility genes present on the
island.

The eighth GI has a GC% content of 53.12%, is associated with
the tRNA asnW, and has one integrase and two transposases.
GIPSy and IslandViewer4 showed the best results. GIPSy showed
a GC% content of 53.03%, and IslandViewer4 gave 53.38%. Only
GIPSy identified the associated tRNA and all mobility genes.
IslandViewer4 failed to identify tRNAs or integrase present in the
island.

The 11th island is a PAI with a GC% content of 50.23%, it is
not associated with tRNA genes, but contains two integrases and
four transposases. GIPSy and IslandViewer4 were the best tools.
GIPSy showed a GC% content of 50.02% and IslandViewer4 gave
48.97%. GIPSy identified all mobility genes, and IslandViewer4
was associated one integrase and two transposases.

The 14th island is a PAI with a GC% content of 48.76%,
is associated with tRNA serX, and contains three integrases,
and 12 transposases. GIPSy, Alien Hunter, and IslandViewer4
showed the best results. The GC% content of the island
predicted by GIPSy was 48.73%, by Alien Hunter 48.43% and by
IslandViewer4 was 48.45%. Only GIPSy identified all associated
genes, Alien Hunter and IslandViewer4 failed to identify the
tRNA gene and one transposase.

Islands 5 and 7 were predicted by the tools Alien Hunter (P1),
GIPSy (P3), and IslandViewer4 (P4). The fifth island is a PAI with
a GC% content of 53.37%, is associated with tRNA pheV, and
lacks integrases or transposases. GIPSy and Alien Hunter showed
the best results. GIPSy presented a GC% content of 52.89% and
is associated the pheV tRNA gene and two downstream tRNAs.
Alien Hunter calculated a GC% content of 53.48% but failed to
identify the tRNA gene.

The seventh island is a GI with a GC% content of 49.68%, no
tRNA genes, and one integrase and seven transposases. GIPSy
showed the best results. Its GC% content was 49.42%, and all
genes of interest were identified.

Islands 1, 13, and 15 were predicted by the tools Alien Hunter
(P1), GIPSy (P3), and IslandViewer4 (P4). The first GI has a GC%
content of 48.15%, is associated with the tRNA leuX, and contains
an integrase. The GIPSy tool revealed a GC% content of 46.07%
and identified the tRNA gene and integrase, but its GC% content
considers CDS outside the gold standard island. IslandViewer4
showed a GC% content of 48.77%, but failed to identify the tRNA,
and thus the GC% content was calculated without this gene.

GI 13 contains large amounts of bacteriophage DNA and a
GC% content of 50.97%. According to in vitro curation, this
island lacks a tRNA (Lloyd et al., 2007, 2009; Vejborg et al., 2011),
but in our analyses, we identified 3 tRNAs in this GI, together
with 1 integrase and 1 transposase. GIPSy and Alien Hunter
showed the best identification of this region. GIPSy obtained
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FIGURE 4 | Circular genome was plotted from the Artemis tool using DNA Plotter, along with the positions of each predicted island highlighted in red, GC% content in

yellow (above) and purple (below), and GC% content Skew in green (below) and blue (above). The description of each GC% content of the islands predicted together

with the results of each predictor was examined. The symbol φ represents islands containing predominantly bacteriophage DNA.

a GC% content of 51.66% and Alien Hunter showed 52.19%.
Both tools identified the three tRNA genes together with the
transposase but failed to identify the integrase.

The 15th GI is an island with a high content of bacteriophage
DNA with GC% content of 50.45%; it has an integrase, but
no tRNA genes or transposases. Two tools showed satisfactory
results in this region, GIPSy and Alien Hunter. The GC% content
of GIPSy was 50.28% and that of Alien Hunter was 50.47%. Both
tools identified the integrase gene present on the island.

Of the 16 islands described in the gold standard, three
islands (19%) were identified by only one tool: PAI 9 was
identified by Alien Hunter (P1); and PAI 10 and GI 12 were
identified by IslandViewer4 (P4). PAI 9 contains the fyuA gene
encoding a yersiniabactin receptor, a siderophore found in
pathogenic bacteria. FyuA is important for biofilm formation
in disadvantageous environments with high contents of iron,
such as in human urine (Hancock et al., 2008). This island

has 14 CDS in total and is flanked by the tRNA gene asnT
followed by an integrase. A transposase lies in the middle
of the island and fyuA is at the end. Alien Hunter did
not identify the tRNA gene but identified the fyuA gene. A
threshold was used for identifying atypical regions in the genome;
for this prediction, the threshold was 11.44 with a score of
18.24.

PAI 10 and GI 12 were only predicted by IslandViewer4
(P4). PAI 10 contains the tcpC gene, which is responsible for
interfering with the innate immune response of the host (Erjavec
et al., 2010). This PAI contains 26 CDS, flanked by the tRNA gene
serU, and an integrase at its other end. The tcpC gene is found in
the middle of the island. However, in the GBK annotation, this
gene was marked as a hypothetical protein. According to The The
UniProt Consortium (2017), BLAST for the tcpC gene revealed
100% identity with a Query Length of 207 and a Match Length
of 307. GI 12 predominantly contains bacteriophage DNA. This
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TABLE 6 | Features of gold standard gi 16 vs. predictors.

G. standarda/Predictors tRNAb Transposase GC% contentc(%) Vir.genesd Hyp.prot.e Unch. prot.f Total CDSg

PAI−16 aspV 12 47.43 5 38 5 100

IslandViewer4 Present 12 47.43 5 38 5 100

GIPSy Present 12 47.38 5 38 5 99

Alien Hunter Absent 8 46.97 4 33 5 84

Zisland Explorer Absent 8 46.35 4 35 4 81

GI Hunter Absent 8 46.34 3 32 4 79

Predict Bias Absent 7 46.30 3 31 4 77

In bold, the 16th island of the gold standard Escherichia coli CFT073. a(Gold Standard), b(Transfer RNA), c(Percentage of guanine and cytosine content in the region), d (Virulence genes),
e(Hypothetical proteins), f (Uncharacterized proteins), g(Coding sequences).

island has no tRNA genes and only one integrase. IslandViewer4
identified the entire region and its CDS.

Table 7 shows the relevant products of the 16 GIs of the gold
standard according to Lloyd et al. (2007, 2009) and Vejborg et al.
(2011).

Total Results of Each Predictor
To compare the total results of each predictor, a survey of
the 16 GIs in the gold standard was performed considering
the main products such as tRNAs, integrases, transposases,
hypothetical, and uncharacterized proteins, and the number
of CDS in the region. We included all protein products in
the CDS count. To account for tRNA genes, we considered
that the tool identified tRNA when it was present in the
GI region or when the region contained the last product
before the tRNA. No tool presented exact predictions of the
initial and final GI positions compared to the gold standard.
Some predictions lost CDS, while others included other genetic
components. To guarantee that the sum result did not affect
the total gene count, any island identified by the predictors
containing additional CDS or any evaluated product compared
to the gold standard was excluded from the final count. Table 8
shows the total number of relevant CDS present in the 16
GIs of the gold standard compared to the total results of the
predictors.

We found that Predictors Bias, GI Hunter, and Zisland
Explorer missed many products (625, 664, and 670 CDS,
respectively). This loss affected important and characteristics
genes in the GIs, such as integrases, transposases, and tRNAs.
IslandViewer4 and Alien Hunter identified small numbers
of tRNA genes at five and three, respectively, but their
overall predictions covered a large portion of the CDS (81
and 78%, respectively). GIPSy showed good results with
91% CDS coverage and identified the largest number of
products.

The data shown in Table 9 were derived from confusion
matrices calculated with data from the gold standard. When
the predicted islands were coincident with the 16 GIs described
for the gold standard, they were classified as true-positives. The
island regions of the gold standard not included among the
predicted regions were classified as false-negatives, and predicted
regions not present in the gold standard were classified as false-
positives. The number of false-positives should be lower. Within

the scope of this article, we consider that we did not used the
proper methods to estimate false-negatives.

Individually, no predictors successfully identified the 16
islands of the gold standard. Alien Hunter (P1), GIPSy (P3),
and IslandViewer4 (P4) showed the best performance, achieving
the same (13/16, 81%) sensitivity. In general, the tools identified
many false-positives, explaining the low precision. GIPSy and
Zisland Explorer showed the highest false-positive values of 34
and 27%, respectively. The F1-score correlates accuracy and
sensitivity; comparison of the tools by this metric revealed
that the best prediction results were those of GIPSy (0.481),
IslandViewer4 (0.277), and Alien Hunter (0.263).

Results of Total Hit Intersections Between
Predictors in All Organisms
Based on the BLASTp data, we obtained the hits in the
intersection of all results against all predictors and organisms.
Figure 5 shows the Intersection Plot Graph of the tools, while
the complementary Supplementary Figures 1–9 show the results
for each organism on a Venn diagram. In the organism
Corynebacterium diphtheriae NCTC 13129, all tools predicted
two common GIs. In other organisms, no GIs were predicted
by all tools. Additionally, more than half of the predictions
made by the two tools corresponded to unique GIs. Thus, there
was a tendency for a large number of false-positive results in
the predictions. Table 10 shows these results together with their
percentages.

Common GIs were predicted by more than one tool, and
we consider that these results were true-positives. Unique GIs
were predicted by only one tool, which we assumed were false-
positives.

DISCUSSION

Current computational methods for predicting GIs have
been developed to address issues related to genome
sequences, which are aggravated by the vast amounts
of biological data currently available. According to
Langille et al. (2008), incomplete sequences resulting from
metagenomic projects increase the problems faced by GI
prediction approaches. This scenario can be improved
by developing a tool that integrates multiple approaches,
such as machine learning (Soares et al., 2016a). However,
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TABLE 7 | Products of the 16 gold standard gis of Escherichia coli cft073 based on reference articles.

GIs Gold standarda tRNAb Transposase Integrase GC% contentc (%) Hyp. prot.d Unch. prot.e Vir. genes.f Total CDSg

1–GI leuX 0 1 48.15 6 0 0 15

2–PAI pheU 11 3 47.57 16 4 1 61

3–GI selC 10 2 47.04 23 3 1 70

4–PAI pheV 20 3 47.08 41 8 9 124

5–PAI metV 0 0 53.37 8 1 3 25

6–φ: Absent 1 1 49.32 20 5 0 49

7–GI Absent 7 1 49.68 19 1 2 37

8–GI asnW 2 1 53.12 4 0 1 26

9–PAI asnT 1 1 58.27 1 0 1 15

10–PAI serU 0 1 37.65 12 5 1 19

11–PAI absent 4 2 50.23 23 4 1 74

12–φ: Absent 0 1 49.78 9 4 0 14

13–φ: Absent 1 1 50.97 28 5 0 51

14–PAI serX 12 3 48.76 46 5 4 102

15–φ: Absent 0 1 50.45 15 1 0 42

16–PAI aspV 12 0 47.43 38 5 5 83

a(Gold standard GIs), b(Transfer RNA), c(Percentage of guanine and cytosine content in the region), d (Hypothetical proteins), e(Uncharacterized proteins), f (Virulence genes), g (Total

encoding sequences), φ: (Island containing predominant bacteriophage DNA). PAI, Pathogenicity island.

TABLE 8 | Total of relevant cds present in the 16 islands described of the gold standard compared to the results of the predictors.

G. standarda/Predictors tRNAb Integrase Transposase Hyp. prot.c Unch prot.d Total CDSe Coverage %

Escherichia coli CFT073 13 22 81 309 51 807 100

GIPSy 11 16 80 276 40 738 91

Alien Hunter 5 13 70 241 37 655 81

IslandViewer4 3 12 75 239 37 636 78

Predict Bias 1 4 26 101 17 182 22

GI Hunter 0 0 15 56 11 143 17

Zisland Explorer 0 1 13 47 9 137 16

In bold, total products present in the 16 islands of the gold standard. a(Gold standard), b(Transfer RNA), c(Hypothetical proteins), d (Uncharacterized proteins), e(Number of coding

sequences).

some predictors did not classify GIs with the expected
efficacy.

Recent studies, such as those by Soares et al. (2016b), Lu and
Leong (2016b), and Bertelli et al. (2018), evaluated various tools
and their methods, explaining their advantages, disadvantages,
and prediction limitations, but none used in vitro cured GIs
already described and well-documented in the literature. Bertelli
et al. (2018) compared the performance of several predictors
using a data set from Langille et al. (2008), and showed that
the different structures and characteristics of the GIs lead to
discrepant results when predictions are made using only one
method.

The criteria for choosing and how to use the tools may vary
according to the characteristics of each studied genome. For
example, Alien Hunter is able to perform predictions of GI
candidate regions in the genome without annotation including
a score for each of them, thus facilitating their identification
of related products. Depending on the routine of the research
laboratory, the curation of the annotation may take time

and with this feature of this tool, it is possible to annotate
and curate only the candidate region, helping the researcher
in advance.

GI Hunter presents some different characteristics when
compared to the other tools in its methodology, for example,
the attributes of the highly expressed genes and the intergenic
distances have not yet been explored in other tools.

GIPSy is the only tool that enables the researcher to choose
the reference genome to analyze along with their study organism
and determines the function of each island according to its
genomic content of the GI candidate. This possibility allows
many approaches in different organisms and species and may
present new findings and satisfactory results.

IslandViewer4 also performs a comparative genomics
approach in one of its methodologies for prediction but does
not allow the research to choose its reference genome at the
first moment, only after the results it is possible to make the
comparison with other organisms that are deposited in the
database. However, this tool is web-based and has an interactive
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TABLE 9 | Precision, recall, and f-score of 16 gold standard Gls.

Alien Hunter (P1) GI Hunter (P2) GIPSy(P3) IslandViewer4 (P4) Zisland Explorer (P5) Predict Bias (P6)

Precision 16% 17% 34% 17% 27% 8%

Recall 81% 19% 81% 81% 19% 38%

F-Score 0.263 0.176 0.481 0.277 0.222 0.130

Predictors followed by the total number of correct predictions. (P1-13), (P2-3), (P3-13), (P4-13), (P5-3), and (P6-6).

FIGURE 5 | BLASTp hits of the tool intersection. The blue bars gradually display the tool intersections. The black circles show the intersections of the tools between

them and the black bar graphs show how many times these intersections happened.

circular genome graph, saving the researcher time and not
requiring software installation requirements.

Predict Bias is also a web tool, but the output data of this tool
is presented according to the locus tag of the genome, making
it very difficult, and time-consuming to determine the beginning
and end regions of the island in the genome.

Zisland Explorer works mainly with the G + C content.
Depending on the genome characteristic and its variance of the
G + C content, the researcher can perform several approaches,
since it is one of the main characteristics of the GIs. This tool still
works via the web, making it easier to save time for research.

In this study, we investigated several tools and their
prediction characteristics to overcome some of the limitations
observed in similar research during their analyses. We used
an organism with in vitro curated GIs to verify if a
unique tool/method could identify all islands. The limitations

described by other authors during the predictions of GIs were
also observed in this study. Even when using curated GIs
described in the literature, the gap in tool predictions remained
present.

In our gold standard, only one GI of the 16 curated in
vitro was predicted by all tools. GIPSy, Alien Hunter, and
IslandViewer4 showed the best overall results. GIPSy achieved
91% coverage of all CDS, followed by Alien Hunter with 81%,
and IslandViewer4 with 78%. The Alien Hunter tool identified
an isolated PAI and IslandViewer4 a PAI and region with
dominant bacteriophage DNA. Each PAI contained virulence
genes important for understanding pathogenicity factors and
mechanisms that benefit the organism. Zisland Explorer, GI
Hunter, and Predict Bias did not achieve satisfactory results;
these tools failed to identify 84, 83, and 78%, respectively, of the
characteristic genes of islands curated in vitro.

Frontiers in Genetics | www.frontiersin.org 12 December 2018 | Volume 9 | Article 619

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


da Silva Filho et al. Evaluation of Genomic Islands Predictions Tools

TABLE 10 | Hits intersections between predictors in all organisms and total number of islands predicted.

Predictors Predict Bias Alien Hunter IslandViewer4 GIPSy GI Hunter Zisland Explorer

Total of hits 684 533 289 249 209 70

Total of predicted GIs 333 320 161 89 81 33

Common islands 108 (32%) 223 (70%) 140 (87%) 66 (74%) 40 (49%) 21 (64%)

Unique islands 225 (67%) 97 (30%) 21 (13%) 23 (26%) 41 (51%) 12 (36%)

Total of hits are the result intersections between predictors; total of predicted Gls is the total GIs predicted by the tools, common islands are the total GIs predicted by two or more

tools, unique islands are the total of GIs predicted by only one tool.

A characteristic of GIs curated in vitro is the presence
of tRNAs, integrins, and transposases. GIPSy identified the
largest number of these products using integrated tools, Alien
Hunter and IslandViewer4 showed similar results, but tRNA
identification using these two tools was low. The integration
of some methods/tools may improve these predictions. The
quality of the results in the gold standard predictions apply to
the rest of the data set. The three tools (Alien Hunter, GIPSy,
and IslandViewer4) showing the best results in in vitro curated
GIs also performed better in the other organisms analyzed.
IslandViewer4 showed the highest percentage of possible true-
positives (common GIs), followed by GIPSy, and Alien Hunter.
Zisland Explorer presented intermediate results. GI Hunter and
Predict Bias failed to predict 50% of the total results as possible
true-positives.

Considering single islands, GI Hunter and Predict Bias failed
to achieve satisfactory results, with percentages of possible false-
positives of 51–67%, respectively. Zisland Explorer presented an
intermediate result compared to the other tools. IslandViewer4
featured the lowest (13%) unique GIs, followed by GIPSy, and
Alien Hunter.

As previously mentioned, when comparing the best results
of the gold standard GIs with our dataset, we found that
the tools showed similar performance. Thus, we recommend
combining the three tools with better performance in this
study to improve the results. Alien Hunter generates an
overview of each predicted GI indicating if the regions
contain ribosomal DNA sequences; if the genome is newly

assembled, it can be analyzed without prior annotation.
IslandViewer4 provides a more interactive and dynamic search
of genes present in candidate GIs and information about
possible genes associated with pathogenicity and antibiotic
resistance. GIPSy complements the analysis because of its
various integrated methodologies and ability to identify
tRNAs and classify islands according to their possible
functions.
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