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Background: Microbiome studies need to analyze massive sequencing data, which
requires the use of sophisticated bioinformatics pipelines. Up to date, several tools are
available, although the literature is scarce on studies that compare the performance of
different bioinformatics pipelines on rumen microbiota when 16S rRNA amplicons are
analyzed. The impact of the pipeline on the outcome of the results is also unknown,
mainly in terms of the output from studies using these tools as an intermediate
phenotype (pseudophenotypes). This study compares two commonly used software
(Quantitative Insights Into Microbial Ecology) (QIIME) and mothur, and two microbial gene
data bases (GreenGenes and SILVA) for 16S rRNA gene analysis, using metagenome
read data collected from rumen content of a cohort of dairy cows.

Results: We compared the relative abundance (RA) of the identified OTUs at the
genus level. Both tools presented a high degree of agreement at identifying the
most abundant genera: Bifidobacterium, Butyrivibrio, Methanobrevibacter, Prevotella,
and Succiniclasticum (RA > 1%), regardless the database. There were no statistical
differences between mothur and QIIME (P > 0.05) at estimating the overall RA of
the most abundant (RA > 10%) genera, either using SILVA or GreenGenes. However,
differences were found at RA < 10% (P < 0.05) when using GreenGenes as database,
with mothur assigning OTUs to a larger number of genera and in larger RA for these
less frequent microorganisms. With this database mothur resulted in larger richness
(P < 0.05), more favorable rarefaction curves and a larger analytic sensitivity. These
differences caused significant and relevant differences between tools at identifying the
dissimilarity of microbiotas between pairs of animals. However, these differences were
attenuated, but not erased, when SILVA was used as the reference database.

Conclusion: The findings showed that the SILVA database seemed a preferred
reference dataset for classifying OTUs from rumen microbiota. If this database was used,
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both QIIME and mothur produced comparable richness and diversity, and also in the
RA of most common rumen microbes. However, important differences were found for
less common microorganisms which impacted on the beta diversity calculated between
pipelines. This may have relevant implications at studying global rumen microbiota.

Keywords: mothur, QIIME, 16S rRNA, rumen microbiota, bovine

INTRODUCTION

Research on ruminal microbiota is becoming increasingly
important in dairy cattle as the microbial communities and
their genome expression are related to important traits as
health condition (Zilber-Rosenberg and Rosenberg, 2008), feed
enteric fermentation (Zhou et al., 2009, 2010), or methane
emissions (Wallace et al., 2015; Kamke et al., 2016; Roehe et al.,
2016). The differences in the microbiota composition have also
been proposed as a predictor or proxy of the differences in
complex traits and environmental phenotypes (Ross et al., 2013;
Kamke et al., 2016). Improving these traits is relevant for farm
profitability and sustainability (Basarab et al., 2013; Bell et al.,
2013; González-Recio et al., 2014a). Further, there is increasing
interest on inferring the host genetic influence on the microbiota
composition (Goodrich et al., 2016; Roehe et al., 2016). Tools
that accurately estimate the microbial composition are essential
to associate microbiota to phenotype variability.

Advances in sequencing technologies allow for obtaining
genomic information in a fast and affordable manner. Whole
metagenome and rRNA amplicons sequencing provide useful
information to characterize the microbial composition in a given
environment. Metagenomic information from hypervariable
regions in the 16S and 18S ribosomal RNA amplicons are so
far preferred in microbiome research due to their lower cost
and reasonable accuracy. The results of these kind of studies
rely on computational tools that provide accurate characteristics
from large data sets of DNA sequences from the community
under investigation (Lindgreen et al., 2016). Several authors
have reviewed the specifications of different bioinformatics
tools to analyze 16S rRNA gene sequences (Lozupone et al.,
2005; Nilakanta et al., 2014; Oulas et al., 2015). Among these
tools, mothur (Schloss et al., 2009; Kozich et al., 2013) and
Quantitative Insights Into Microbial Ecology (QIIME) (Caporaso
et al., 2010) are currently two of the most used suits of
tools to analyze sequencing information from rRNA amplicons.
However, comparisons between these tools on real data sets
are scarce. For instance, other authors performed a benchmark
study in order to investigate the performance of several tools
in terms of microbial taxonomy and function (Lindgreen et al.,
2016). These authors applied the methods on synthetic whole
sequence metagenomes, which aim to represent the complexities
encountered in a non-specific environment. In that study, QIIME
resulting on a high specificity at determining the genus level
but low sensitivity, whereas mothur was not tested. A recent
study evaluated QIIME and mothur in fecal samples collected
from preterm infants, showing slight differences in terms of
the effective number of genera, richness and relative abundance
(RA) detected (Plummer and Twin, 2015). Up to the best of

our knowledge, the performance of these tools has not been
yet evaluated in aligning rumen metagenome samples to public
amplicons databases. Rumen microbiota poses the difficulty that
most species have not been yet isolated, and therefore gene data
bases may lack of many of the species in the rumen.

The aim of this study was to compare the rumen microbiota
composition resulted from two different software: mothur and
QIIME, when aligned against GreenGenes (GG) or SILVA
databases. The null hypothesis is that the software and data
base used to determine the ruminal microbial composition do
not impact the results and conclusion from rumen microbiota
studies.

RESULTS

This study used sequence data from the hypervariable region
V4 of the 16S amplicon from ruminal content in 18 dairy
cows. The libraries were generated by means of Nextera kit.
The 250 bp paired-end sequencing reactions were performed
on a MiSeq platform (Illumina, San Diego, CA, United States).
The sequences were processed using the two softwares: QIIME
package version 1.9.1 (Caporaso et al., 2010) and mothur version
1.39.5 (Kozich et al., 2013). The RA of 16S rRNA gene reads
for each sample and bioinformatics tool was used to infer the
taxonomical composition of the samples, taking into account
the copy number of 16S genes calculated from each tool. Two
reference panels were considered for this purpose: GreenGenes
(GG) database (May 2013 version) and SILVA (release 132). The
detailed pipeline from each software is shown in Figure 1.

After filtering and chimera removal, both tools used a similar
number of sequences to cluster (P > 0.05), regardless the database
used. In average, QIIME left 54,544 reads (SD = 9,041) per
animal, whereas mothur worked with 53,790 reads per sample
(SD = 7,709). However, mothur clustered these sequences in a
larger number of OTUs regardless the database (Figure 2). Using
QIIME with GG as reference database kept the lowest number of
OTUs for classification.

Taxonomical Richness
The performance of each tool was evaluated by looking at
the assignment of individual OTUs and the number of genera
classified. The RA of genera in each sample was calculated after
excluding those genera that appeared at RA < 0.1% across all
samples.

Figure 3 shows the rarefaction curves from each tool. Mothur
detected a larger number of OTUs (Figures 3A,B) and also of
microbial taxa at the genus level (Figures 3C,D) (P < 0.01) in
the samples than QIIME using both GG and SILVA databases.
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FIGURE 1 | Overview of the workflows used in this study on QIIME and mothur for 16S rRNA amplicons analysis.

FIGURE 2 | Number of OTUs per sample left for taxonomic classification within reference database (above) or within software (below).

Frontiers in Microbiology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 3010

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-03010 December 12, 2018 Time: 15:39 # 4

López-García et al. Mothur vs. QIIME Ruminal 16S Analysis

FIGURE 3 | Rarefaction curves on OTUs (A,B) or classified genera (C,D) for the samples analyzed with each tool prior to filtering by relative abundance <0.1%.
(A,C) represent curves from GreenGenes as the reference database, whereas (B,D) are obtained from SILVA database.

Opposite, QIIME classified a larger number of genera after
filtering by RA > 0.1% (Table 1). Most of the additional genera
encountered by mothur were in very low abundance.

Classification
GreenGenes
On average, mothur clustered a significantly (P < 0.001)
higher number of OTUs per sample than QIIME. In average
per sample, QIIME could not assign 61% (SD = 2.7) of
clustered OTUs to a known genus, considering known every
genus not named as “unclassified,” “uncultured,” “ambiguous,”
“unidentified,” “unknown,” or null, whereas mothur could not
assign a larger proportion (67%, SD = 2.5) of OTUs. QIIME
was less restrictive at assigning OTU to genus level (P < 0.001),
which might be related with the higher initial number of OTUs
clustered by mothur, as we mentioned before. With this database,
mothur identified a total of 29 different genera appearing in more
than one sample, whereas QIIME assigned 24. Twenty three of
these genera were common to both pipelines. The former aligned
sequence data to six additional known genera, although most
of them appeared in an average RA lower than 0.5%. Three
out of these six genera had low representativeness, appearing
in less than four out of 18 samples. On the other hand, the
only QIIME-exclusive genus, Bacillus, had a low average RA and
low representativeness, appearing only in three samples. Table 1
shows the average RA of genera assigned by one or both tools,
highlighting that reads that were assigned to a known genus by

only one of the tools appeared in very low RA. Both tools were
capable of assigning around 99% of reads to any known taxonomy
rank belonging to either bacteria or archaea kingdoms.

A scatter plot of the RA estimated by each tool for each
genus within sample are shown in Figure 4. A strong Pearson
correlation (0.996; P < 0.001) was found between RA obtained
from each tool. Although some small variability can be seen
for some samples, there were not statistical differences in the
overall RA between tools (P > 0.05). However, this disagreement
was more evident for microorganisms at RA < 10%, for which
significant differences were found between both tools (P < 0.05),
and these differences were even higher at RA < 1% (P < 0.01),
and the regression coefficient of RA from QIIME on RA from
mothur differed from one, becoming even lower when subsetting
the RA dataset (Table 2).

SILVA
Mothur also clustered a significantly higher number of OTUs
in known taxa than QIIME (P < 0.001) when SILVA was the
reference database even though mothur filtered out a larger
number of reads, but the differences were more attenuated than
using GG. These OTUs from mothur were nonetheless classified
into a lower number of known taxa than using QIIME (Table 1).
Both tools identified a total of 52 known genera. Mothur aligned
sequence data to three additional exclusive known genera that
appeared in more than 1 sample, and QIIME identified 13 genera
that did not appeared in mothur. With SILVA as database, mothur
could not assign an average of 36.1% per sample (SD = 1.37)
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TABLE 1 | Total of genera (N) and its average relative abundance (standard deviation within brackets) assigned by each tool (only by QIIME, only by mothur or by both).

Reference database Total genera assigned Relative abundance

QIIME Mothur Mothur and QIIME QIIME Mothur Mothur and QIIME

GreenGenes 1 6 23 0.19 (-)1 2.89 (9.67) 2.60 (8.30)

SILVA 13 3 52 0.28 (0.13) 1.90 (6.51) 1.79 (5.67)

Results from each reference data set are presented separately. 1No standard deviation calculated with n = 1.

FIGURE 4 | Relative abundance of the different microorganisms (by genera) detected by QIIME and mothur within the 18 samples using GreenGenes as reference
data set. The subset shows the correlation between data with QIIME RA < 1%. Points represent individual RA within each sample.

of clustered OTUs to a known genus, but with QIIME only
9.1% (SD = 1.36) of OTUs were not assigned to known genera.
Thus, mothur appeared to be much more restrictive (P < 0.001)
at assigning OTUs to genus level when SILVA was used as the
reference database.

Figure 5 shows a scatter plot of the RA estimated by each
tool. As in the previous case for GG, a strong correlation
(0.996; P < 0.001) was found between RA obtained from each
tool. However, the regression coefficient of RA from QIIME
on RA from mothur deviated from 1 at RAs < 10%, although
smaller differences were observed compared to GG (Table 2).
This suggests that mothur detects larger RA of microbes that are
present in lower proportion in the rumen.

In summary, both tools were able to classify microorganism
from the following genus: Prevotella, Butyrivibrio, Succinic-
lasticum, Methanobrevibacter, Treponema, Bifidobacterium,
Pseudobutyrivibrio, Ruminococcus, Mogibacterium, Lachnospira,
Acetobacter, Methanosphaera and Desulfovibrio, regardless the
database. In addition, other microbes were not identified

to genus level, but as members of Lachnospiraceae and
Ruminococcaceae families, regardless the database. The OTUs
unable to be classified by QIIME at the genus level were
from the Paraprevotellaceae, Coriobacteriaceae, Prevotellaceae,
and Succinivibrionaceae families when GG was used as the
reference database and from the Christensenellaceae family
when SILVA was used as the reference dataset. The OTUs
that were not assigned to a genus level by mothur belonged to
Enterobacteriaceae and Spirochaetaceae families using GG, and to
Bacillaceae, Enterobacteriaceae, Erysipelotrichaceae, Family_XIII,
Prevotellaceae, and Spirochaetaceae families using SILVA. Also,
members from Bacteroidetes, Firmicutes, and Proteobacteria
phyla were not assigned to family level when using mothur,
regardless the database.

The genera that were identified exclusively by either mothur
or QIIME are shown in Table 3. This table includes the reference
database they were detected with, and previous studies reporting
these microbes in rumen microbiota. Other genera were classified
by both tools, but not for both databases. Among those with
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TABLE 2 | Regression (slope and regression coefficient estimates) of the relative
abundance from QIIME on the relative abundance from mothur using GreenGenes
or SILVA as reference data set.

GreenGenes SILVA

Reference population Coefficient R2 Coefficient R2

All 1.10∗∗ 0.90∗∗ 1.14∗∗ 0.98∗∗

Relative abundance < 10% 0.50∗∗ 0.31∗∗ 0.86∗∗ 0.84∗∗

Relative abundance < 1% −0.03∗∗ 0.05∗∗ 0.12∗∗ 0.14∗∗

∗∗P < 0.001.

RA > 0.5% we found YRC22 and Clostridium when GG was the
reference database, and Acetitomaculum, Saccharofermentans,
Schwartzia, Candidatus_Saccharimonas and some groups from
families Ruminococcaceae, Christensenellaceae, Rickenellaceae,
Lachnospiraceae, and Prevotellaceae when SILVA was used. Five
taxa were identified for any combination of tool and database
that have not been reported in rumen so far: Eubacterium hallii
group, Eubacterium_nodatum_group, Ruminococcaceae UCG-
011, Ruminococcus gauvreanii group, and Prevotella P9.

Diversity
Beta-diversity was calculated to investigate the dissimilarity
between rumen microbiotas within tool. Results clearly clustered
by software at taxonomical levels of genus, family and Phylum,
regardless the reference database used (Figure 6). This figure

also shows that the dissimilarities between samples were larger
between than within software at lower taxonomic levels (genus
and family), whereas distances at the phylum level were similar
between and within software.

Computation requirements were not reported here as they
greatly depend on the computational strategy applied in
terms of parallelization, available number of cores, and the
bioinformatician’s creativity to design more efficient pipelines.

DISCUSSION

The results of this study support previous research showing
differences between bioinformatics tools analyzing 16S
rRNA amplicons. The number of OTUs and the taxonomic
classification resulted thereof was compared between mothur
and QIIME.

The results herein show that the final number of taxa and
their overall RAs are not statistically different between tools
using SILVA as reference database, but beta-diversity between
samples clustered together by software used. Mothur worked
with a larger number of OTUs, and these were classified into
a larger number of genera than by QIIME when GG was
the reference database. Plummer and Twin (2015) showed
larger richness (total number of different genera) using QIIME
compared to mothur, using the same reference database for
alignment, although they used human preterm gut samples.

FIGURE 5 | Relative abundance of the different microorganisms (by genera) detected by QIIME and mothur within the 18 samples using SILVA as reference data set.
The subset shows the correlation between data with QIIME RA < 1%. Points represent individual RA within each sample.
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TABLE 3 | Genera identified exclusively by mothur or QIIME, their function or activity in the rumen (if known), the reference database it was identified from, and
information source or reference.

Genus Function/activity in rumen Reference database Tool Previous source(s)

p-75-a5 Detected in ruminal liquid fraction GreenGenes mothur Jewell et al., 2015

SHD-231 Detected in rumen. Reduced in diets
containing linseed diets

GreenGenes mothur de Carvalho et al., 2017

Lachnospira bacterium FD2005 Detected in rumen SILVA mothur Azevedo et al., 2015.

Papillibacter Detected in rumen. Cellulose- degrading
bacteria

SILVA mothur Zhang et al., 2014

Ruminococcus Cellulolytic bacteria SILVA QIIME Wallace et al., 2015.

Bacillus Amylolytic bacterium GreenGenes, SILVA QIIME Gallo et al., 2016

Eubacterium_ cellulosolvens_group Fibrolytic (Sika deer)
Detected in sheep rumen

SILVA QIIME Li et al., 2013
Azevedo et al., 2015

Eubacterium_coprosta noligenes_group Detected in rumen SILVA QIIME Tong et al., 2018
Popova et al., 2017

Eubacterium_ ruminantium_group Present in rumen with an appropriate balance
of degradable protein and carbohydrates

SILVA QIIME Abdelmegeid et al., 2018

Eubacterium_ ventriosum_group Present in forestomach (Alpacas and Sheep) SILVA QIIME Abdelmegeid et al., 2018

Lachnospiraceae_ NK4A136_group Detected in rumen SILVA QIIME Azevedo et al., 2015

Roseburia Adherent bacteria community involved in
plant degradation

SILVA QIIME Huws et al., 2016

FIGURE 6 | Two first dimensions of a non-metric multidimensional scaling for samples analyzed with mothur (red dots) or QIIME (blue dots) using either SILVA
(above) or GreenGenes (below) as the reference dataset at the genus, family, and phylum taxonomical levels.

They also showed statistical differences between tools on the
comparison for diversity within samples. Our results show that
using more updated SILVA releases mitigated these differences
in terms of richness and diversity, suggesting that not only

the implemented pipeline/program strongly influences diversity
results, but database should also be considered in microbiota
analysis. Therefore, it must be pointed out that comparison
between pipelines in terms of number of OTUs must be done
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within database, and in terms of number of OTUs remaining for
classification. It is also worth to highlight that in the current study
both pipelines utilize a reference database for chimera filtering
as well as a differentiated OTU labeling, making the comparison
for raw OTUs unfeasible. Analyzing OTUs instead of taxonomical
levels might be of interest in some circumstances. The results at
the taxa level showed differences between tools and databases,
which may be extended at the more specific level of OTUs.

It must be pointed out that the objective of this study was
not to determine what tool provides a more accurate picture of
the true microbiota composition, since the latter is unknown in
cultivated rumen samples. There is no gold standard microbiota
with known composition as many of the microbes in the rumen
cannot be isolated or have not been yet cultivated. Sequencing
the 16S rRNA gene poses the limitation that closely related
microbes can be indistinguishable as they harbor almost identical
sequences at this amplicon, and the different tools handle these
drawbacks differently. A favorable pipeline should maximize
sensitivity with a minimum impair in specificity. According
our results, we infer that mothur provides higher diversity
than QIIME regardless the reference database. There were five
taxonomy groups detected in our study that have not been
reported in rumen microbiota before. The rumen microbiota is
largely underrepresented in databases and most of them have not
been cultured yet (Stewart et al., 2018). Therefore, we consider
that these groups of microorganisms might be considered as new
candidates, although it must be corroborated in future studies
through deep sequencing analysis or culture isolation. If they are
true positive, they may be potential candidates to create mock
communities to challenge bioinformatics tools. Lindgreen et al.
(2016) showed low sensitivity scores and an impaired prediction
performance with QIIME using a benchmark metagenome.
However, as noted by these authors, QIIME uses custom
databases that only contain specific marker sequences such
as 16S rRNA. Therefore, performance of QIIME in whole
metagenome analyses cannot be extrapolated to 16S or 18S
amplicons studies. In addition, mothur was not used in such a
study.

There are two main differences between mothur and QIIME:
the OTU clustering algorithm and the algorithm for taxonomic
classification. The alignment and clustering processes differ
between software, as well as the chimera detection. Mothur
handles the taxonomic classification using a naïve Bayesian
classifier using a pseudo-bootstrapping to generate a confidence
score, which must be over 80% to assign a read to a given
taxonomy (Wang et al., 2007). QIIME uses the usearch algorithm
to find the closest match in a reference data base (Edgar,
2010), which has been reported problematic at identifying the
closest reference because it is sensitive to the order of the
reference sequences as they can be identical over the region
being considered (Westcott and Schloss, 2015). Usearch shows a
high level of sensitivity to detect reference sequences, however,
the specificity of those matches was poor relative to the true
best match. High error rates have been previously reported
with GG, and could be substantially improved by randomizing
the sequences (Westcott and Schloss, 2015). Further the poorly
GreenGenes-aligned sequences artificially increases the distances

between sequences, which may also impair the accuracy of the
classification. QIIME uses a closed reference pick up strategy
in a single step, which implies some difficulties at disentangling
all dissimilarities with mothur. The way mothur is implemented
here resembles a pseudo open-reference pick up, because there
were a previous step of chimera filtering and a known reference
database was used for classification. These arguments might
explain the poorest performance of QIIME in our data set when
GG was used as the reference data set.

This is a proof of principle analysis showing how the
choice of bioinformatics pipeline and the reference data set
can impact the analysis of 16S rRNA gene sequencing data
from rumen microbiotas. Nonetheless, the bio-informatics tools
could perform differently in samples from different sites as
different body parts may host different taxonomic composition,
making the algorithms more or less efficient at detecting the true
composition.

In the light of the results obtained in this study we can
conclude that the impact of the tool is relatively small in terms
of richness as a more updated and comprehensive reference
database is used. SILVA seems to be a preferred reference data
set as a larger number of different genera were identified, and
more consistent results were obtained between tools. SILVA is
a more updated database, whereas GG has not been updated
since 2013. However, differences were detected in terms of
beta-diversity, and differences between pipelines were obtained
for microbes in lower abundances, yet belonging to the core
microbiome. In this sense, mothur showed larger sensitivity
at detecting microorganisms that can potentially populate the
cow rumen. This may be important, as differences in the RA
of less frequent groups of microbes may be relevant. These
differences affect the microbiota similarity between samples or
individuals. In turn, this would affect the phenotypic variance
of a complex trait explained by the microbiota using mixed
models that accounted for the microbiota composition as a
random effect with a covariance structure given by these
similarities between samples. Performance of mixed model
methodology under Best Linear Unbiased Prediction or any other
Reproducing Kernel Hilbert Space scenario greatly depends on
the structure of the covariance or kernel matrix used as reported
in González-Recio et al. (2009, 2014b). Incorrect or improper
microbiotas similarity matrices might bias the proportion of
variance explained by the microbiota or genetic correlation
estimates between host genome and its metagenome. Up to the
best of our knowledge, there is no proof of concept to determine
what tool provides a more suitable similarity matrix. The degree
of aimed microbiota specificity may affect the choice of the
pipeline. Mock communities that mimic the true composition
of rumen microbiota are not yet available. This study also
highlights the necessity to create benchmark samples with a
known composition of cultivated ruminal microorganisms to
evaluate different bioinformatics tools, as well as the convenience
of including more rumen specific communities into the gene
databases. In this sense, those mock samples could include the
genera that have been detected by only one of the tools (Table 3).
Moreover, It must be consider that the samples used in this
study combined the four possible ruminal fractions and the RAs
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in the samples might differ from the true composition in the
rumen. Nonetheless, this is not expected to affect the comparison
between pipelines.

MATERIALS AND METHODS

This study was carried out in accordance with Spanish
Royal Decree 53/2013 for the protection of animals used for
experimental and other scientific purposes. An ethics committee
was not necessary in this case because it was conducted
on pre-existing data from a previous trial based on routine
management practices in commercial farms. Data used in this
study were described in Gonzalez-Recio et al. (2018). In brief,
samples were obtained from ruminal content from 18 cows
from 2 breeds (10 Holstein and 8 Brown Swiss) allocated in
the Fraisoro Farm School (Zizurkil, Gipuzkoa, Spain). Ruminal
samples were collected from each dairy cow using a stomach
tube connected to a mechanical pumping unit. About 100 ml
of each ruminal extraction were placed into a container and
were frozen immediately after the extraction and then stored
at −20 ± 5◦C until analysis. Samples were gradually thawed
overnight at refrigeration (5 ± 3◦C) and squeezed through four
layers of sterile cheesecloth to separate solid (solids with a particle
size smaller than the diameter of the sampling tube) from liquid
digesta phases. This latter phase was subsequently separated
into planktonic organisms and bacteria associated with the
liquid fraction. The solid phase was separated in associated and
adherent fractions. Fractionation procedures were carried out
following the methodology described in Yu and Foster (2005).
The four fractions were lyophilized and combined to obtain a
unique sample with the four fractions represented proportionally
(on dry matter basis).

After composition, DNA extraction was performed using
the commercial Power Soil DNA Isolation kit (Mo Bio
Laboratories, Inc., Carlsbad, CA, United States) following
manufacturer’s instructions. The extracted DNA was subjected
to paired-end Illumina sequencing of the V4 hypervariable
region of the 16S rRNA. Universal bacterial 16S rRNA gene
primers (515F: 5′-GTGCCAGCMGCCGCGGTAA-3′ and 806R:
5′-GGACTACHVHHHTWTCTAAT-3′ (Caporaso et al., 2011)
were used to generate the bacterial amplicon libraries (expected
amplicon size 250 bp). The libraries were generated by means
of Nextera kit. The 250 bp paired-end sequencing reactions
were performed on a MiSeq platform (Illumina, San Diego, CA,
United States). Data are publicly available at http://www.ebi.ac.
uk/ena/data/view/PRJEB26635.

Sequences were pre-processed using Trimmomatic tool (v
0.36) (Bolger et al., 2014). Sequences below 220 bp in length and
average quality score below 30 on a window of 20 bases were
discarded. In total, 3,261,168 reads were analyzed. The remaining
sequence data were then processed using the two softwares:
QIIME package version 1.9.1 (Caporaso et al., 2010) and mothur
version 1.39.5 (Schloss et al., 2009; Kozich et al., 2013). In
the case of QIIME, forward and backward reads were joined
with join_paired_ends.py. Chimeras were identified and filtered
using usearch method (Rognes et al., 2016). Finally, the tool

was used to pick closed-reference OTUs from the GreenGenes
database (May 2013 version) or SILVA database (Quast et al.,
2013)1 (release 132) and representative sequences with a 99%
of similarity were kept. The pipeline for mothur also began
by joining forward and backward reads. Chimeras and unique
sequences were removed using UCHIME (Edgar et al., 2011).
Sequences were then preclustered, and finally classified using
the default method (naïve Bayesian classifier; Wang et al., 2007)
on classify.seqs(), with the same cut-off for sequence identity
and reference databases as above. OTUs were summarized at
phylum, class, order, family, and genus. Phylogenetic groups with
an abundance lower than 0.1% in all samples were excluded from
the final analyses. The pipelines used can be found in a git-hub
repository2.

All statistical analyses were performed in R v3.5.1 (R Core
Team, 2015). When Pearson correlation was calculated, the
statistical significance was tested using the cor.test() command
from the base package.

Filtering and Chimera Removal
Differences in the number of sequences left after chimera removal
from each tool (mothur vs. QIIME) was computed using a least
squared mean regression.

The linear model was:

y = µ+ xβ+ e

where y was the vector of the number of reads left for
each sample after filtering and chimera removal with either
mothur or QIIME (n = 2 × 18), µ is the intercept, x is the
incidence vector assigning each record to the corresponding
tool (mothur vs. QIIME), β is the coefficient estimate, and e
is the vector of residuals assumed to be independently and
identically normally distributed. The level of significance was set
to α = 0.05.

Richness and Relative Abundance
Differences between mothur vs. QIIME were computed using
a simple generalized linear model. Sequence reads from each
sample (n = 18) were analyzed with the mothur or QIIME
pipelines, and using either SILVA or GG databases. The statistical
analysis for the resulting richness and RAs were computed within
database as follows:

y = µ+ xβ+ e

where y was the vector of number of microbial taxa at the
genus level (or their RA) assigned either with mothur or
QIIME (n = 2 × 18) using GG, µ is the intercept, x is the
incidence vector assigning each record to the corresponding
tool (mothur vs. QIIME), β is the coefficient estimate, and e
is the vector of residuals assumed to be independently and
identically normally distributed. The level of significance was set
to α = 0.05.

1http://www.arb-silva.de
2https://github.com/alopgar/16S-analysis/tree/master/16S-mothur-and-QIIME-
pipeline-comparison
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Further, the same statistical analysis was performed using the
RAs obtained with SILVA as the reference data base.

Similarly, the number of unclassified reads from each tool
within reference database were analyzed using the same model
as above.

Dissimilarity Matrix and Principal
Component Analyses
Non-metric multidimensional scaling (nMDS) was performed to
explore the ruminal community structure, using the phyloseq
package (v 1.24.2). The ordinate function was used to estimate
dissimilarities using Bray–Curtis distances. Plot_ordination
was used to plot these dissimilarities between mothur and
QIIME pipelines with either SILVA or GreenGenes as the
reference databases, grouping taxa by genus, family, and phylum
levels.
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