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Experimental manipulation of the intestinal microbiota influences health of the host
and is a common application for synbiotics. Here Clostridium butyricum (C. butyricum,
C.B) combined with corn bran (C.B + Bran) was taken as the synbiotics application
in a waned pig model to investigate its regulation of intestinal health over 28 days
postweaning. Growth performance, fecal short chain fatty acids (SCFAs) and bacterial
community were evaluated at day 14 and day 28 of the trial. Although the C.B + Bran
treatment has no significant effects on growth performance (P > 0.05), it optimized the
composition of intestinal bacteria, mainly represented by increased acetate-producing
bacteria and decreased pathogens. Microbial fermentation in the intestine showed a
shift from low acetate and isovalerate production on day 14 to enhanced acetate
production on day 28 in the C.B + Bran treatment. Thus, C.B and corn bran promoted
intestinal microbial fermentation and optimized the microbial community for pigs at an
early age. These findings provide perspectives on the advantages of synbiotics as a new
approach for effective utilization of corn barn.

Keywords: synbiotics, Clostridium butyricum, corn bran, intestinal bacteria, short chain fatty acids, weaned pig
model

INTRODUCTION

Great attention has been paid to the important influences of dynamic microbial communities
on human health. Several animal studies have proven that experimental manipulations of the
intestinal microbiota can modify many aspects of the host’s health. Commonly, probiotics have
been applied to manipulate the intestinal microbiota. Clostridium butyricum (C. butyricum, C.B)
is an anaerobic, gram-positive bacillus found in the intestine of healthy animals and is commonly
considered as a kind of probiotics. C.B plays an important role in optimizing the intestinal microbial
community, especially in the colon, and maintains the harmonious intestinal microecology by
inhibiting proliferation of harmful bacteria (Howarth and Wang, 2013). C.B prefers dietary fiber,
which is not digested directly by enzymes of monogastric animals, as its fermentable substrate
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(Sawicki et al., 2017). Orally administered C.B spores germinate
and grow in intestinal tracts and produce a mass of short chain
fatty acids (SCFAs) including acetate, propionate and butyrate
(Sun et al., 2016; Jia et al., 2017) by fermenting non-digestible
polysaccharides (Chen et al., 2013). SCFAs are major anions in
the colon that are absorbed rapidly and stimulate absorption of
water and sodium. SCFAs can be oxidized to serve as fuels for
colonic cells. Among them, butyrate is the main end products
of C.B (Cassir et al., 2016) and the major nutrient for energy
metabolism (Jackie et al., 2013; van der Beek et al., 2017) of
colonic epithelial cells (Ma et al., 2012; Gonçalves and Martel,
2013; Simeoli et al., 2017). SCFAs can also decrease colonic
pH, stimulate intestinal peristalsis, improve the intestinal micro-
environment and regulate the micro-ecological balance of the
colon (Ma et al., 2018). In addition, SCFAs have an important
role to play in proliferation and differentiation of colonocytes
and regulation of gene expression in colonic epithelial cells
(Nicholson et al., 2012). Theoretically, diets containing C.B
could beneficially impact growth performance, SCFAs formation,
and stability of microbial community in the gut of weaned
pigs.

The combination of probiotics and fibrous prebiotics is
called synbiotics. Dietary fiber includes a soluble part (SDF)
and an insoluble part (IDF), and the later mainly consists
of cellulose, hemicellulose, and lignin (Brownlee, 2011). In
the past, weaned animals were considered unable to ferment
carbohydrates. Recent research results suggest a proper addition
of dietary fiber can enhance intestinal health, modulate the
microbial community and support innate immunity of intestinal
mucosa in weanling piglets (Han et al., 2017). Previous studies
have proven that dietary fiber exerts its function by forming
SCFAs from fermentation of saccharolytic microbiota, especially
cellulose-degrading ones (Chen T. et al., 2017). An addition of
dietary fiber can serves as the fermentation substrate of hindgut
microorganisms and improves intestinal health by modulating
gut microbial composition and function (Jeffery and O’Toole,
2013; Desai et al., 2016; Martens, 2016; Brahma et al., 2017). The
intestinal microbiota contains highly diverse communities and
has multiple roles in metabolism and health of the host (Chen
et al., 2015; Wang et al., 2016).

As the main by-product of corn processing, corn bran is
used widely as an ingredient for animal feed. Corn barn has
the highest content of dietary fiber among all cereal brans (Liu
et al., 2017). However, the high content of plant polysaccharides
in corn bran limits its nutritive value for pigs. Several processing
technologies such as solid-state fermentation, have been applied
to corn barn as an effort to improve nutritive value (Liu
et al., 2017). Use of saccharolytic bacteria might be another
approach to enhance the nutritive value of corn barn. The
combination of C.B and corn bran might be used as an effective
synbiotics. Synbiotics are a mixture of probiotics and prebiotics
that can exert the biogenic activity of probiotics, but also
selectively increase the number of bacteria, making the probiotics
more effective and lasting (Duncan and Flint, 2013). Thus,
this experiment was conducted to compare the influences of
synbiotics with C.B and corn bran or a single addition of C.B
on intestinal health using a weaned piglet model. A long-term

objective of this research is to evaluate the utility of synbiotics
in improving the nutritional value of low quality, fibrous feed
stuff.

MATERIALS AND METHODS

Ethics Approval and Consent to
Participate
All procedures of this experiment were approved by the animal
protection and utilization organization committee of China
Agricultural University (CAU20171015-3).

Pigs, Diets, and Experimental Protocol
Newly weaned pigs (n = 48; Landrace× Large White) were picked
from 24 litter piglets at 28 day age. Pigs (8.09 ± 0.25 kg) were
allotted randomly to a basal diet with 1% C.B or the basal diet
with 1% C.B and 5% corn bran (C.B + Bran). One pen as a
replicate, four replicates per treatment and six pigs per replicate.
The standard corn-soybean basal diet was formulated based on
the standard ileal digestible amino acids to satisfy 11–20 kg pigs’
requirement (NRC, 2012. See Table 1).

The C.B supplement (China Microorganism Preservation
Center, Strain No. 1.336) was included at 1% and consisted of
1× 108 CFU/g in spore state.

Each animal was weighed on days 14 and 28 of the trial
and feed intake was recorded weekly for every pen. ADFI,
ADG, and F/G were calculated. Fresh fecal samples from 8 pigs
per treatment were collected and immediately frozen in liquid
nitrogen on day 14 and day 28. Fecal samples were stored at
−80◦C for bacterial DNA and bacterial metabolite analysis.

Extraction of Fecal DNA
E.Z.N.A Stool DNA Kit (Omega Bio-Tek Inc., United States)
was used following the manufacturer’s protocols to detect
total bacterial DNA in fecal samples. A nanodrop 2000
spectrophotometer (Thermo Fisher Scientific, United States)
was used for DNA micro-quantification and 1% agarose gel
electrophoresis was used for detection of DNA size fragments.
Finally, quantified DNA was kept at −20◦C for DNA sequencing
analysis.

Polymerase Chain Reaction (PCR)
Amplification
Amplification of V3–V4 regions of the bacterial 16S rRNA gene
was accomplished via TransStart Fastpfu R© DNA Polymerase
(Takara, Japan) and a PCR procedure. The upstream primer
was 5′-barcode-ACTCCTACGGGAGGCAGCA-3′ and the
downstream primer was 5′GGACTACHVGGGTWTCTAAT-3′.
The reaction system of PCR (20 µL) include 5 × FastPfu buffer,
4 µL; 2.5 mM dNTPs, 2 µL; each primer (5 µM), both 1.6 µL;
FastPfu polymerase, 0.4 µL and template DNA, 10 ng. The PCR
procedure included 95◦C denaturation for 3 min; then 26 cycles
with 95◦C for 30 s, 55◦C for 30 s, and 72◦C for 45 s and finally
72◦C for 10 min.
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TABLE 1 | Ingredient composition and nutrient content of experimental diets
(%, Dry matter basis)1.

Items C.B C.B + Bran

Ingredients

Corn 55.02 50.12

Soybean meal 15.70 15.30

EFFSB 5.00 5.00

Corn bran – 5.00

C. butyricum 1.00 1.00

Soybean protein concentrate 4.00 4.00

Fish meal 4.00 4.00

Whey powder 8.00 8.00

Sucrose 3.00 3.00

Zinc oxide 0.28 0.28

Soya-bean oil 1.30 1.50

Calcium hydro phosphate 1.20 1.20

Limestone 0.50 0.50

Salt 0.30 0.30

L-Lys HCl 0.30 0.35

Met 0.20 0.25

Thr 0.15 0.18

Trp 0.10 0.10

Val 0.20 0.25

Chromic oxide 0.25 0.25

Premix2 0.50 0.50

Total 100.00 100.00

Nutrient concentration

DE, MJ·kg−1 14.50 14.50

CP 18.50 18.50

NDF 11.75 13.25

ADF 4.25 4.80

Ca 0.80 0.80

P 0.60 0.60

SID Lys 1.30 1.30

SID Met + Cys 0.80 0.80

SID Thr 0.90 0.90

SID Trp 0.30 0.30

1ADF, acid detergent fiber; C.B, basal diet + C. butyricum; C.B + Bran, basal
diet + C. butyricum + corn bran; CON, basal diet; CP, crude protein; DE,
digestible energy; EFFSB, extruded full fat soybeans; NDF, neutral detergent fiber;
SID, standard ileal digestibility; Lys, lysine; Met, methionine; Thr, threonine; Trp,
tryptophan; Val, valine; Ca, calcium; P, phosphorus. 2Supplied per kilogram of
complete diet: vitamin A, 12,000 IU; vitamin D3, 2,500 IU; vitamin E, 30 IU; vitamin
K3, 3 mg; vitamin B12, 0.012 mg; riboflavin (vitamin B2), 4 mg; niacin (vitamin B3),
40 mg; pantothenic-acid (vitamin B5), 15 mg; choline chloride, 400 mg; folacin,
0.7 mg; thiamine (vitamin B1), 1.5 mg; (vitamin B6), 3 mg; biotin, 0.1 mg; Zn,
100 mg as ZnO; Mn, 40 mg; Fe, 90 mg; Cu, 200 mg; I, 0.35 mg; Se, 0.3 mg.

Illumina MiSeq Sequencing
After purification with the AxyPrep DNA Purification kit
(Axygen Biosciences, United States), PCR products were detected
by Agarose gel (2%) electrophoresis and were quantified
using PicoGreen dsDNA Quantitation Reagent (Invitrogen,
United States) on QuantiFluor-ST Fluorometer (Promega,
United States). After that, collected amplicons for paired-end
sequencing (2 × 300 bp) according to standard protocols.
This process was completed on the Illumina MiSeq platform

(Allwegene, China). The raw data in this manuscript have been
uploaded to the NCBI SRA Database under an accession no.
SRP159591.

Bioinformatics Analysis of Sequencing
Data
For raw fastq files analysis, the first step was to demultiplex and
quality-filter data via QIIME (version 1.17). basic principles used
in this process were: (i) Sequencing reads were trimmed at the
sites with an average quality score <20 over a 50 bp sliding
window and deleted trimmed reads less than 50 bp; (ii) The
reads that contained mismatching barcode were deleted; and (iii)
Removing the paired reads with less than 10 bp overlapping.

UPARSE (version 7.11) was used to gather OTUs with a 97%
similarity. UCHIME was used to identify and delete chimeric
sequences. RDP Classifier2 based on Silva (SSU115) 16S rRNA
database was used to complete the taxonomic analysis for each
16S rRNA gene sequence with a confidence threshold of 70%.
Venn diagrams software of R tools generated Venn figures
(Figures 1A,B), which represented visually of the similarity
and overlap of the OTU samples. The alpha diversity indexes,
including Chao index and Shannon index, were all calculated
using qiime software (version v.1.83) of Mothur v.1.21.1 and
produced Figures 1C,D. Vegan and ggplot2 package of R tools
conducted the Non-metric multidimensional scaling (NMDS)
analysis and produce Figures 1E,F. Based on the results of
taxonomic analysis, using R tool to produce the diagram of
species composition in different samples (Figures 2A,B). To
clustering data for abundance similarity between species or
samples, using vegdist and hclust of vegan package of R tools to
do distance calculation and clustering analysis, which distance
algorithm did by Bray-Curtis and clustering method did by
complete-linkage. Diagram of results shown as Figures 2C–F, 3.

Detection of SCFAs
About 0.5 g feces were put into a 10 mL polypropylene tube and
diluted with 8 mL deionized water. Tubes containing samples
rested in an ultrasonic bath for 30 min, and were centrifuged at
8,000 rpm for 10 min. The supernatant was drained into an empty
tube and diluted 50 times and then filtered with a 0.22 µm filter.
High performance ion chromatography of ICS-3000 (Dionex,
United States) was used to analyze the components of 25 µL
of extracted sample solution. Separate organic acids used AS11
analytical column (250 mm× 4 mm); separate the other gradient
conditions used an AG11 guard column. Varying concentrations
of potassium hydroxide was used for gradient contrast. Those
concentrations were: 0.8–1.5 mM for 0–5 min; 1.5–2.5 mM for
5–10 min; 2.5 mM for 10–15 min. The flow rate is 1.0 mL/min.

Statistical Analysis
The data analysis and graphic analysis of growth performance and
organic acid data were performed by unpaired t-test of SPSS 19.0

1http://drive5.com/uparse/
2http://rdp.cme.msu.edu/
3http://qiime.org/scripts/alpha_rarefaction.html
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FIGURE 1 | Richness, diversity, and similarity of bacterial communities between different dietary treatments in weaned pigs. Venn diagram of the OTUs in basal diet
with C. butyricum (C.B) group and basal diet with the combination of C. butyricum and corn bran (C.B + Bran) group at the 14th day (A) and 28th day (B) after
weaning. Bacterial richness was estimated by the Chao1 value (C). Bacterial diversity was estimated by Shannon index (D). The diff-NMDS plot comparative
analysis of sample in bacterial community between two groups were showed on day 14 (E) and 28 (F) after weaning.

and GraphPad prism 6.0. Results are shown as means ± SEMs.
P-value <0.05 was considered a significant difference.

RESULTS

Effect of C.B and Corn Bran on Growth
Performance
From the day 0 to 14 and day 14 to 28, growth performance
indicated by average daily feed intake (ADFI), average
daily gain (ADG) and the ratio of ADFI to ADG (F/G)

between two treatments showed no significant difference
(Table 2).

Effects of C.B and Corn Bran on
Intestinal Bacterial Richness, Diversity,
and Similarity
To understand changes in intestinal bacteria, we performed
16S rRNA gene sequencing of fecal samples on day 14 and 28
after weaning. After quality control, size filtering, and chimera
removal, 449,014 and 463,345 clean reads were obtained from
feces collected on day 14 and day 28, respectively. The total
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FIGURE 2 | Community structures of fecal bacteria between different dietary treatments in weaned pigs. Bacterial community structure in basal diet with
C. butyricum group (C.B) and basal diet with the combination of C. butyricum and corn group (C.B + Bran) were described at the phylum (A), order (B), family (C,D),
and genus (E,F).

operational taxonomic units (OTU) numbers were classified
at 97% similarity, with 626 OTUs and 669 OTUs detected in
fecal samples on days 14 and 28, respectively. Fecal bacterial
communities of the two groups shared about 86.42% on day 14
and 85.35% on day 28 (Figures 1A,B). Interestingly, the number
of unique OTUs in the C.B+ Bran treatment was well above that
in C.B group on day 28.

The Chao1 index and Shannon index were detected
to study the effect of C.B and corn bran inclusion on
bacterial abundance and diversity. Between C.B and C.B +
Bran groups, no significant differences were observed on
both day 14 and 28 (Figures 1C,D). The β diversity of
OTU community comparisons done by hierarchical clustering
showed no differences between the two groups on day 14
(Figure 1E). But on day 28, intestinal microbiota of two

treatments were clustered separately (Figure 1F), indicating
a significant effect of corn bran in the later period of the
experiment.

Effects of C.B and Corn Bran on
Community Structure of Fecal Bacteria
The most prevalent phyla were Firmicutes and Bacteroidetes
in the present fecal samples, accounting for more than 95% of
the total microbiota (Figure 2A). On day 14 after weaning, no
significant differences were found in the dominant phyla among
the two treatments. On day 28, the proportion of Firmicutes
dramatically increased from 69.67% in the C.B group to 88.14%
in the C.B + Bran group, while the proportion of Bacteroidetes
sharply decreased from 25.72 to 7.83%.
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FIGURE 3 | Correlation analysis between the varied ADG and fecal acetate and corresponding intestinal flora at different levels on d 28. (A) is the order level.
(B) is the family level. (C) is the genus level. Star in red color bar means that there is a significant positive correlation. Star in green bar means that there is a
significant negative correlation.

At the order level, Firmicutes were mainly composed of
Clostridiales, Lactobacillales, and Selenomonadales, while
Bacteroidales was the dominant order of Bacteroidetes
(Figure 2B). Erysipelotrichales of Firmicutes decreased
significantly in the C.B + Bran group on day 14. On day
28, Clostridiales and Lactobacillales increased dramatically from
28.37 to 48.91% and 14.94 to 30.46%, respectively in the C.B +
Bran group. However, Selenomonadales of Firmicutes dropped
its proportion significantly from 24.53% in the C.B group to
6.49% in the C.B + Bran group on day 28. Bacteroidales as the
predominant order of Bacteroidetes were markedly lower in the
C.B+ Bran group on day 28.

At the family level, the only change on day 14 occurred
in the proportion of Erysipelotrichaceae that declined from
2.27% in the C.B group to 0.61% in the C.B + Bran group
(P < 0.05) (Figure 2C). On day 28, changes between the two
groups were multiple and various (Figure 2D). In the order of
Clostridiales, Ruminococcaceae and Lachnospiraceae increased
by 9% (P < 0.05), while Veillonellaceae and Acidaminococcaceae
decreased from 18.18 and 6.35% to 5.86 and 0.64%, respectively
(P < 0.05) in the C.B+ Bran group compared with the C.B group.
Additionally, Prevotellaceae showed a similar significant decrease
with its order Bacteroidales.

Genera in fecal samples on day 14 displayed slight changes
with increased Lactobacillus and decreased Megasphaera in
the C.B + Bran group without difference (Figure 2E).
On day 28, there was no significant difference in the
dominant genera including Lactobacillus and Streptococcus.
Prevotellaceae_NK3B31_group, Prevotella_9 and Prevotella_1

of Prevotellaceae, as well as Ruminococcaceae_UCG_005 of
Ruminococcaceae changed resembled to their change in family
level (P < 0.05) (Figure 2F).

Effects of C.B and Corn Bran on
Concentration of Fecal SCFAs
To evaluate the effect of combining C.B with corn bran on
intestinal fermentation, the concentration of fecal SCFAs,
including acetate, propionate, butyrate, isobutyrate, and
isovalerate were measured (Table 3). On day 14, concentration
of acetate and isovalerate were lower (P < 0.05) in the C.B +
Bran group than the C.B group. On day 28, the concentration of
acetate increased with the combined addition of C.B and corn
bran compared with the single addition of C.B (P < 0.05).

Correlation Analysis Between the Varied
Index (Growth Performance and Fecal
SCFAs) and Corresponding Intestinal
Flora
To further discover whether the effects of C.B with corn
bran on the intestinal microbiota were associated with the
fluctuating growth performance and fecal SCFAs, the correlation
analysis between the differentially abundant intestinal bacteria
at the order, family and genus level and ADG and acetate
on day 28 was completed. The community abundance of the
orders Clostridiales, Lactobacillales and Bacteroidales were
correlated negatively with ADG on day 28 (Figure 3). Down
to the family and genus level, Ruminococcaceae with its genus
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TABLE 2 | Effect of dietary C.B and C.B+ corn bran inclusion on weaned pigs growth performance1.

Items Day 0–14 Day 14–28

C.B C.B + Bran P-value C.B C.B + Bran P-value

ADFI, g 464.5 ± 42.2 462.7 ± 40.1 >0.05 678.7 ± 34.9 641.4 ± 31.0 >0.05

ADG, g 292.1 ± 45.2 304.8 ± 27.4 >0.05 435.7 ± 18.5 415.5 ± 3.1 >0.05

F/G 1.65 ± 0.14 1.53 ± 0.08 >0.05 1.57 ± 0.13 1.54 ± 0.07 >0.05

1Values are means ± SEMs, n = 24/treatment. ADFI, average daily feed intake; ADG, average daily gain; C.B, basal diet + C. butyricum; C.B + Bran, basal diet +
C. butyricum+ corn bran; F/G, the ratio of ADFI to ADG.

TABLE 3 | Effect of dietary C.B and C.B + corn bran inclusion on concentration of fecal SCFAs (mg/g feces)1.

Items Day 14 Day 28

C.B C.B + Bran P-value C.B C.B + Bran P-value

Acetate 3.11 ± 0.21a 2.69 ± 0.23b <0.05 2.91 ± 0.14b 3.46 ± 0.15a <0.05

Propionate 2.02 ± 0.14 1.57 ± 0.17 >0.05 2.10 ± 0.16 2.17 ± 0.13 >0.05

Butyrate 0.97 ± 0.28 0.81 ± 0.18 >0.05 1.14 ± 0.11 1.26 ± 0.10 >0.05

Isovalerate 0.15 ± 0.03a 0.07 ± 0.05b <0.05 0.16 ± 0.02 0.17 ± 0.03 >0.05

Total acid 6.93 ± 0.54 5.69 ± 0.78 >0.05 6.73 ± 0.48 7.76 ± 0.46 >0.05

1Values are means ± SEMs, n = 8/treatment. Different superscripts in same row mean a significant difference, P < 0.05. SCFAs, short chain fatty acids; C.B, basal diet
+ C. butyricum; C.B + Bran, basal diet + C. butyricum + corn bran. a,b Different superscript within a row means significantly different (P < 0.05).

(Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-014) and
Lachnospiraceae in the order Clostridiales as well as Lacto-
bacillus of Lactobacillaceae in the order Lactobacillales
were correlated negatively with ADG on day 28. However,
Bacteroidales including Prevotellaceae_NK3B31_group and
Phascolarctobacterium, as well as Burkholderiales and Fibro-
bacterales were correlated positively with ADG on day 28.
For the increased fecal acetate, the genus Subdoligranulum of
Ruminococcaceae in Clostridiales was correlated positively with
it on day 28.

DISCUSSION

Previous researches on the effects of corn bran on body
health varied according to many factors with some of
them indicating that fiber-rich diets would enhance growth
performance (Gerritsen et al., 2012) while others showed
reduced or unchanged digestibility of nutrients and energy
(Jaworski et al., 2017; Morowitz et al., 2017). Dietary factors
including source, solubility, processing and dose (Williams
et al., 2017) can affect intestinal fermentation. Considering
the low utilization of corn bran, it is necessary to link corn
barn with new treatments such as combining with probiotics
that will improve nutritional value. Thus, this manuscript
aimed at investigating the effect of adding C.B and corn bran
for intestinal health via using a weaned pig model, which
is an ideal alternative model for humans (Heinritz et al.,
2013).

Previous studies shown that C.B addition alone or corn barn
addition alone both have no significant effects on ADG and ADFI
(Liu et al., 2018; Zhang et al., 2018). Here, the combination of

C.B and corn bran keep the consistent effects on them, indicating
the combination has no negative effects on pig growth. However,
we noticed that separate addition of these two substances both
reduced the specific microbial flora in pigs, especially for C.B
addition on day 28 (Liu et al., 2018; Zhang et al., 2018). However,
the combination application of them showed different effects.
Herein, increase of microbial diversity motivated our interest
to study their combination how to affect intestinal microbiota
structure in present study.

Microbial changes caused by C.B and corn bran should be
discussed separately by period. On day 14 after weaning, both
within- and between-habitat diversity of fecal samples remained
stable. As for specific alterations in the microbial community,
reduced Erysipelotrichaceae in the C.B and Bran group, suggests a
positive effect of corn barn and a reduced potential for erysipelas
infection (Ding et al., 2015). The intestinal microbial structure
of newly weaned pigs is immature, and not firmly established. So,
weaning stress can easily disturb the dynamic balance of intestinal
microbiota (Chen L. et al., 2017, 2018). In present study, lack of
difference in the intestinal microbiota between treatments on day
14 may due to successful establishment of C.B in the early period
after weaning (Zhang et al., 2018). Also, intestinal function is
not mature enough to successful digest dietary fiber (Xu et al.,
2014). Thus, if we want to investigate the additive effects of corn
bran on intestinal microbiota, select of the appropriate period is
essential.

Since diversity is considered as an indicator of healthy
microbiota (Salonen et al., 2012), the increased diversity
from day 14 to 28 suggests at least 28 days are required for
the gut to adapt to weaning stresses (i.e., change in diet,
social structure, and environment). Significant changes of
microbial composition on day 28 indicated modulation of
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corn bran mainly occurred in the later period after weaning
when a relatively stable microbial community has been
established (Zhao et al., 2018). Addition of corn bran with high
concentration of IDF provided fermentation substrates for
intestinal microbiota such as C.B and increased the amount
of unique OTUs and microbial variance. The present increase
of Firmicutes has been proven to ferment polysaccharides
to SCFAs (D’hoe et al., 2018) and orders of Clostridiales
and Lactobacillales also showed a great boost in cellulose
degradation. Clostridiales in the intestinal mucosa is a pivotal
mediator for fiber fermentation, butyrate production, and
mucosal immunity (David et al., 2015; Bensoussan et al.,
2016). In addition, some bacteria of Clostridium such
as Ruminococcus flavefaciens, Ruminococcus bromii, and
Faecalibacterium prausnitzii can use the cellulosome system to
degrade cellulose (Zhang et al., 2015; Hu et al., 2016). Among
the Clostridiales, Ruminococcaceae increases in prevalence
in diets enriched in resistant starch, while Lachnospiraceae
is improved in a diet rich in wheat bran (Louis et al.,
2014). In the C.B + Bran group, the higher proportion of
Ruminococcaceae and Lachnospiraceae suggested an elevated
demand for fiber degradation. Additionally, Ruminococcaceae
and Lachnospiraceae are associated with lean phenotypes (Menni
et al., 2017), which is consistent without performance effects
in C.B + Bran group. When considering bacterial function,
several changes merit attention. Prevotellaceae is reported to
be associated with several human diseases, such as asthmatic
airway inflammation and arthritis (Scher et al., 2013; Clarke
et al., 2014). So, for humans, Prevotellaceae is thought to be
an opportunistic pathogen (Lukens et al., 2014; Pianta et al.,
2017). Decreased Prevotellaceae in the C.B + Bran group
showed the benefits of combining C.B with corn bran. In sum,
the addition of corn bran optimized the intestinal microbiota
with increasing fiber-degrading bacteria and decreasing
pathogens.

The wave of microbial fermentation in the intestine caused
by the combination of C.B and corn bran deserves attention.
Intestinal production of SCFAs depends on composition of
intestinal microbes, substrate source and chyme transit time
(Wichmann et al., 2013). In this study, fecal samples were used
for SCFAs analysis. Unlike chyme samples, feces mainly reflect
the nutritional difference between production and consumption.
In the present study, we found that fecal acetate content
declined with the C.B + Bran treatment on day 14 but
increased on day 28. Acetate is the most abundant SCFA,
and its concentration in the lumen is influenced by dynamic
balance of production, use, and mucosal uptake (Elamin
et al., 2013; Louis et al., 2014). Food with low viscosity
such as bran could alter the intestinal microenvironment with
reduced activity of amylase in small intestine (Desai et al.,
2016; Martens, 2016), which could explain the decreased
concentration of SCFAs on day 14. However, on day 28 the
increased anaerobic bacteria in the C.B + Bran treatment,
such as Ruminococcaceae and Lachnospiraceae are known
to produce acetate and suppress the growth of Bacteroidales
which is the preferential producer for propionate (Flint et al.,
2008). Butyrate serves as a major energy source for intestinal

enterocytes and exerts health-promoting effects on the colon
(Huang et al., 2015). Bacteria synthetizes butyrate through two
primary pathways. One pathway is a conversion of acetate to
butyrate via butyryl-CoA (Duncan et al., 2002; Besten et al.,
2013; Louis et al., 2014). The second pathway is a direct
synthesis via butyrate kinase. Lactobacillus, Megasphaera, Blautia,
and Prevotella are considered to participate in the butyrate
producing (Berni Canani et al., 2016; Zhang et al., 2018).
Among that, Lactobacillus was thought contact with butyrate
production via expands butyrate-producing bacterial strains, like
Blautia, Roseburia, and Coprococcus (Berni Canani et al., 2016).
But here, the fluctuation of proportion in Megasphaera, and
Prevotella made it is difficult to contact them with butyrate
production. In present study, we have not observed any
significant change in butyric acid content on day 14 and day
28, despite content of fecal butyrate increased slightly on day
28 along with increasing of fecal acetate. These results were
consistent with previous study (Liu et al., 2018; Zhang et al.,
2018). It should explains two things. First, the relationship
of SCFAs concentrations in digesta and in feces should not
be positively associated (Fan et al., 2017). Moreover, these
results reminded us that producing butyrate maybe not the
main ways of C.B or corn barn on improving intestinal
environment. The specifically mechanism need further been
illuminated.

Given our results, the effects of combination of C.B and
corn bran should lie in providing substrates for intestinal
fermentation, increasing acetate to reduce colonic pH, and
optimizing intestinal microbiota which suppressed harmful
bacteria.

CONCLUSION

Addition of corn bran to C.B changed the intestinal microbial
community greatly with increasing fiber-degrading bacteria
including Ruminococcaceae and Lachnospiraceae and decreasing
pathogens such as Erysipelotrichaceae and Prevotellaceae. IDF
in the corn bran provided fermentable substrates for colonic
microbiota and enhanced intestinal fermentation with elevated
acetate content in feces on day 28. Thus, the combination
of C.B and corn bran enhanced the benefits of the single
addition of C.B with optimized intestinal microbiota and
fermentation in the later period after weaning. Additionally, it
suggested a new application for the use of corn bran as with
synbiotics.
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