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Abstract. Any global software development project needs to deal with distances – 

geographical, cultural, time zone, etc. – between the groups of developers engaged 

in the project. To successfully manage the risks caused by such distances, there is a 

need to explicate and present the distances in a form suitable for manual or semi-

automatic analysis, the goal of which is to detect potential risks and find ways of 

mitigating them. The article presents a technique of modeling a global software 

development project suitable for such analysis. The project is modeled as a 

complex socio-technical system that consists of functional components connected 

to each other through output-input relationships. The components do not coincide 

with the organizational units of the project, and their teams can be distributed 

through the geographical and organizational landscape of the project. The 

modeling technique helps to explicate and represent various kinds of distances 

between the functional components to determine which of them constitute risk 

factors. The technique was developed during two case studies, of which the second 

is used for presenting and demonstrating the new modeling technique in the article. 

Keywords: Global software development, GSD, Distance, System, Risk 

management, Modeling, Team, Socio-technical. 

1  Introduction 

It is commonly accepted that a Global Software Development (GSD) project has a number of 

characteristics that makes the task of managing such a project more difficult than managing a one-

site project. This difficulty is connected to the various distances between the members and teams of 

a GSD project, which can be of different sorts: geographical, time-zone, socio-cultural, etc. [1]. 

These distances, when not taken into consideration, can result in decreased project 

effectiveness [2], [3]. To mitigate the risks of failure or underperformance due to the specific 

distances, there is a need to pinpoint the places in the project where the risks can materialize. One 
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way of doing the latter is by building a model of a GSD project that reveals these places in an 

explicit form. 

In this article, we suggest a way of modeling a GSD project aimed at potential risk detection that 

is based on viewing the project as a complex system. As most important actions in such a system 

are completed by people, a GSD project belongs to the category of so-called socio-technical 

systems. A socio-technical system is considered as consisting of people organized in some way who 

are using certain techniques and technology to ensure functioning of the system [4]. More 

particularly, we suggest a way of presenting a GSD project as a number of functional components, 

e.g. Requirements engineering, Design, Coding, Testing, in constant interaction with each other. 

Components are connected to each other through output-input relationships, meaning that the 

outputs produced by one component are used as inputs to other components. Such functional system 

decomposition is often used when modeling organizations, for instance, it serves as the basis for 

IDEF0 notation [5]. However, output-input relationships reveal only part of the structure of a socio-

technical system in general, and a GSD project in particular. A number of phenomena important for 

identifying risks remain outside the pure output-input relationships. To these, for instance, belong:  

 The teams that complete activities in different components may intersect, e.g. some members of 

the requirements engineering (RE) team may participate in the design activities and/or some 

members of the design team may participate in the RE activities. Lack of such intersection is 

considered as a risk factor: see, for instance, [6]. 

 Functional components can work in sequence or (at least partly) in parallel. 

 An output that is produced by one component may be misinterpreted by the component for 

which it serves as input [7]. Therefore, an additional channel of (informal) communication to 

clear such misunderstandings needs to be established. 

In the technique for modeling GSD projects discussed in this article, we include means for 

presenting, in a graphical form, many issues related to the complexity of a GSD project. This would 

facilitate easier understanding and meaningful discussions of potential risks and their mitigation. A 

new project modeling technique presented in this article is based on our previous work [8] on high-

level modeling of business processes. 

The rest of the article is structured according to the following plan. In Section 2, we present an 

overview of the GSD literature to introduce the reader to the set of problems related to GSD. In 

Section 3, we give our research background that includes a short overview of our research 

methodology and the history of the research project. In Section 4, we introduce the main concepts 

of presenting a software project as a socio-technical system using a simplified example, analyze the 

risks inherent to the socio-technical system under consideration, and briefly discuss how these risks 

can be mitigated. In Section 5, we present our proposal on graphical presentation of a GSD project 

as a socio-technical system aimed at detecting the areas with potential risks. Section 6 discusses the 

challenges on the way to the industry adoption of our proposals and the ways of meeting these 

challenges. Section 7 summarizes the results achieved and discusses plans for future research. 

The material in this article was first presented at the 10th IEEE International Conference on 

Global Software Engineering (ICGSE) and published in the proceedings of this conference [9]. The 

current article is a revised, restructured and extended version of [9], in which the content of 

Section 6 is completely new. 

2  GSD Literature Overview 

Standard software development processes are mostly challenged in GSD as they are subjected to a 

higher degree of complexity in various areas. Hence, for projects to succeed, they must be able to 

employ resources without concern for geographic location, attain a shared understanding among 

participants and effectively manage coordination issues [10]. The increased level of complexity is 

especially identifiable in project coordination because of differences in time zone and location, and 
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difficulties in communication due to insufficient proximity and challenging cultural diversity. A 

lower frequency of communication also leads to a reduced effectiveness in communicating [10]. 

Challenges, furthermore, occur in cooperation where lack of trust between development teams and 

lack of devotion to the project can cause problems, and finally, in infrastructure management which 

is tasked with consolidating diverse contexts [11]. Inadequate contextual information can be a cause 

of misunderstandings and hinders contact initiation [10]. 

Software developers are forced to cooperate and bridge various types of distances, such as 

geographic, time-related and cultural, which together can be summarized as “global distance” [12]. 

Different types of distances can be identified as the main barriers in successful GSD projects, as 

they impair communication, coordination and control processes. The nature of distance can be 

classified as “temporal, geographical and socio-cultural” [1]. 

Time separation between distributed teams due to time zone differences is often referred to as 

temporal distance. Competing schedules and corporate priorities as well as different working hours 

or cycles further complicate this issue which leads to less overlapping time that can be used for 

interactive and synchronous communication [1]. Temporal distance causes an upsurge in reaction 

time while offering fewer chances for real-time cooperation [12]. 

Geographical distance is not only a measure of physical proximity but also includes the ease of 

visiting another agent involved in the process. It can decrease the volume and strength of 

communication, which, in turn, indirectly affects coordination and control mechanisms leading to 

decreased effectiveness [2], [3]. Moreover, geographical distance impedes the exchange of tacit 

knowledge as well as building of working relationships between team members because 

opportunities for informal meetings are missing [13]. 

Socio-cultural distance is a complicated measure that revolves around linguistic and political 

aspects, organizational and national culture, as well as personal rationale [2]. The greatest challenge 

inherent to this dimension is the development of a shared understanding between individuals from 

diverse backgrounds.  

Coordination is one of the most challenging aspects of global software development and lack of it 

is often the reason why projects do not succeed [14]. The existence of distances has a strong impact 

on coordination due to its adverse effects on communication channels [3]. Geographical and 

temporal distances can cause communication problems, in particular, related to the rate of 

frequency and quality of communication [13]. For instance, tacit knowledge cannot be spread as 

easily through informal communication channels compared to cases where the distance does not 

exist or is short. This, in turn, negatively affects a mutual understanding of project aims, 

requirements and activities [14]. Further exacerbating this issue are socio-cultural distances, which 

can be the reason for misunderstandings and errors due to divergent underlying assumptions [13]. 

Thus, insufficient cultural recognition combined with deficient communication are often mentioned as 

the core challenges that project managers need to overcome in globally distributed environments [15].  

The characteristics of GSD projects, listed above, require a strategy for mitigating the risks 

inherent in this kind of project. To mitigate the risks, they need to be discovered. Some help in 

discovering the risks connected to the project structure can be obtained from the empirical works 

that relate structural characteristics of the project organization to the economic characteristics of the 

product and/or project, such as modularity, quality, productivity, and profitability. Two examples of 

such works are summarized below. 

Paper [16] investigates the relationship between the type of project organization and the level of 

code modularity by contrasting the products produced by commercial organizations to the ones 

produced by open source teams. It finds that, usually, an open source team produces code that is 

more modular than the ones coming from commercial organizations. Therefore, if the maintenance 

costs are an issue, dispersion of the project members and less face-to-face communication can be 

advantageous. However, such kind of settings may result in less well performing code. 

Paper [17] investigates the relationships between the characteristics of the project structure and 

economic parameters, such as productivity, quality and profitability. To the general characteristics 
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investigated in [17] belong geographical and time differences, the number of locations, imbalance 

between the teams in size, imbalance between work experience of teams, and project methodology 

(phase-based, iterative). The project characteristics above affect economic parameters differently. 

For instance, an increase in the number of sites and imbalance in the size of the teams both boost 

productivity at the expense of quality [17]. 

Though the empirical works above can help in identifying the risks, the relationships between the 

project characteristics and project outcomes discovered in these works are of statistical nature. They 

may or may not be relevant in a particular GSD project. In this work, we focus on finding a way of 

discovering potential risks in a particular GSD project by investigating the detailed setting of this 

project. 

3  Research Background 

The research presented in this paper belongs to the Design Science (DS) paradigm [18], [19]; in 

particular, we use a DS approach suggested in [20]. DS is related to finding new solutions for 

problems known or unknown [21]. To count as a DS solution, it should be of a generic nature, i.e. 

applicable not only to one unique situation, but to a class of similar situations: see Principle 1 

in [22]. Another difference between DS and practical design aimed at finding a solution for a 

particular problem is that a DS research project does not need to produce a solution to the problem 

that initiated the research. While developing a solution, or artifact in terminology of [18], [19], the 

researchers may discover that it might suit a different problem, and switch their attention to the 

latter. 

The research project from which we present results was started as a problem-solving project not 

related to GSD. The initial problem was discovered in a local practice of a small consulting 

company that developed a tool for building computerized support for business processes. The 

problem in a generic form was defined as: “given a particular business process, find a tool suitable 

for building computerized support for this business process”. The solution designed for this 

problem included a new technique for business process modeling on a high level, which was called 

a step-relationship model [8]. The model is defined as consisting of a number of steps and 

relationships between them, such as output-input relationships, parallel dependencies, etc. 

Relationships are defined through a set of square matrixes that can be visualized via arrows drawn 

between the rectangles that represent the steps. 

The first practical test of the step-relationship modeling technique was completed on a GSD 

project at a large ICT company [23]. This test was considered as a proof of concept/demonstration 

in terms of DS [18], [19]. The organization in question had transitioned from a waterfall-like, 

phase-based software development approach to a more flexible iterative development process using 

the Scrum framework for project management. Building a model for the GSD project in this 

organization had the aim of analyzing the appropriateness of the software tools employed in the 

process. The model was built based on the interviews conducted with various members of the 

project, and investigating internal documentation.  

During the final discussions about the model with the project management, it was suggested that 

the modeling technique we employed might be useful for other purposes than investigating the 

appropriateness of tools. The most promising area for new application was identified as assessment 

of risks connected to the distributed structure of the project and improvement of this structure. To 

be suited as a solution for the new problem, the step-relationship modeling needed to be further 

developed in two directions: 

1. It had to be enhanced to represent various distances encountered in GSD projects.  

2. A proper graphical visualization for the model needed to be found so that it would be easier to 

discuss the risks, and the ways to detect and mitigate them in the staff meetings. 
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A new DS research project was started with the aim to enhance the step-relationship process 

modeling technique to suit the goal of identifying potential risks in GSD projects. The results 

achieved so far are presented in Sections 4 and 5, where: 

 Section 4 introduces a number of concepts needed for: (a) considering a software project as a 

socio-technical system, and (b) discussing the risks involved in such a project and the ways of 

mitigating them. 

 Section 5 presents proposals of a visual modeling technique that helps to identify, discuss, and 

mitigate risks in a particular software development project.  

4  Software Project as a Socio-technical System 

4.1 Introducing the Main Concepts 

To introduce the main concepts of presenting a software project as a socio-technical system, we will 

use a simplified example shown in the diagram of Figure 1, which, to some extent, represents a 

classical model of software development: see, for instance, [24]. In this diagram, the software 

project is presented as a system that consists of four functional components: (1) Requirements 

Engineering (RE), (2) Design, (3) Coding and (4) Testing. These components are related through 

output-input links that are represented in Figure 1 as arrows going from one component to another. 

Figure 1. Simple model of a software project as a system (note that connections between the project and its 

environment are not shown) 

The diagram in Figure 1 does not prescribe in which order the functional components work. The 

order may be “in turns”, when the “next” component idles until the full output from the “previous 

component” is received as its input. Alternatively, the components can work in parallel delivering 

their outputs in smaller portions to the next components in line. The outputs can be delivered to the 

next in line components in various ways. For instance, the requirements could be delivered to 

Design by Requirements Engineering via giving Design access to a requirement management 

system where the requirements are stored in a structured way. 

A system as in Figure 1 can work satisfactorily if the outputs produced can be interpreted 

unambiguously by a receiving component. Even were this possible it would be difficult to achieve 

for a software project. The interpretation depends “on our background, education, experience, and 

simply from where we are standing at the moment (our responsibilities on the project)” [7]. The 

challenge of creating a shared understanding is expanded in global projects due to the reduced 

contextual information and impaired communication mechanisms [10]. To minimize the risk that 

the input is interpreted in a different way than intended, a negative (corrective) feedback needs to be 

introduced into the system. The work of such feedback is explained in Figure 2.  

Requirements 
Engineering (RE)

Design Coding Test

RE spec Design spec Code

Test spec

Reports on missing
or incorrect functionality

Bug reports
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Figure 2. Negative feedback between two components of the system 

Figure 2 depicts two components A and B connected through the output (or one of the outputs) of 

component A serving as input for component B. To create formalized output, the project members 

inhabiting component A need to build an understanding of this output in their minds, i.e. on the tacit 

level in the terminology of [25]; this is shown as a cloud inside the box that represents 

component A. The Understanding is not necessarily built before creating the Formalized output; 

this can be done in parallel or through a number of iterations. For the members of functional 

component B to create their own Formalized output, they need to create their own understanding 

(interpretation) of Formalized input from A. There is a risk that understanding B will not be aligned 

with understanding A, which would create a deviation possibly resulting in the production of ill-

suited software by the project. 

To exclude, or at least minimize, the deviation between Understanding A and Understanding B, a 

Feedback controller can be introduced into the system. As shown in Figure 2, the controller 

compares Understanding A with Understanding B and adds additional correcting input to B.  

The work of Feedback controller is illustrated in Figure 3. The axes in Figure 3 represent the 

space of all possible interpretations of Formalized input A. This space is shown as two-dimensional 

for illustrative purposes; in reality, it may be multi-dimensional. Understanding A is represented as 

a point in this space. Understanding B is shown in Figure 3 as it develops, starting as a wider circle 

in the 1st iteration which in the end should be narrowed to a point, hopefully coinciding with the 

point which marks the position of Understanding A in the interpretation space. 

As long as Understanding B “covers” Understanding A, as in the 1st iteration in Figure 3, there is 

no need for the Feedback controller to take any action. However, as soon as the coverage vanishes, 

as in the 2nd iteration in Figure 3, the Feedback controller reacts and provides a signal to “move” 

Understanding B in a way that it again “covers” Understanding A, as represented by the double line 

circle in Figure 3. 

Naturally, in a software project, the feedback controller cannot be implemented as a mechanical, 

analog or digital device. It should be implemented in some other way, e.g.:  

 Informal communication between the project members inhabiting functional components A and 

B by having a channel for questions and answers, or regular meetings. This way of arranging 

feedback requires that some members of the team of component A are available even if the task 

entrusted to them has been completed. 

 The teams assigned to components A and B have substantial intersection so that intersecting 

parts know Understanding A on a tacit level, and can transfer it to the rest of the team of 

component B through socialization, in terms of Nonaka’s theory of knowledge creation  [26]. 

 Team B has access to the internal working documents produced by team A, e.g. meetings 

minutes, protocols of meetings with stakeholders, video recordings, etc. This can be made 

available as documents or as traces in a computer system that supports the work of team A, if 

such system is in use by team A. 

Note, also, that discovery of divergence and thus need for correction falls in the area of 

responsibility of Team B. The discovery, for instance, can happen when (a) Team B starts having 

doubts that they understand the input properly, or (b) they cannot continue to narrow down their 

Formalized 
output

Feedback 
controller

Formalized 
input

Formalized 
output

Building 
understanding

Creating 
formalized 

output

Understanding

Functional component A

Building 
understanding

Creating 
formalized 

output

Understanding

Functional component B
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understanding as they feel that some information is missing or incorrect, e.g. there is a 

contradiction.  

 

 

Figure 3. Interpretation space and the work of the feedback controller 

The feedback connection between the system’s components is needed for any output-input 

relationship that has a risk of misunderstanding. We represent this connection with a dashed double 

arrow connecting the functional blocks with a label of what type of information is to be used by the 

feedback controller. For instance, adding feedback connections to the system diagram of Figure 1 

produces the system diagram of Figure 4. Note, that we have not provided feedback connections 

between Test and Coding, and Test and Design, regarding the inputs as unambiguous. The latter 

might not hold true in every case, which would require adding feedback connections between these 

components as well. 

Figure 4. Diagram from Figure 1 complemented with feedback connections 

4.2 Analyzing Risks Related to System Functioning 

In the sub-sections that follow, we discuss the risk factors in the software project using the diagram 

in Figure 4 for illustration purposes. The factors we consider are the ones that are related to the 

structure of the software project and the fact that people rather than machines are completing the 

work in the system’s functional components. In this discussion, the issues related to the use of 

appropriate project management methodology or deployment of people with the right qualifications 

and background are not considered. 

4.2.1 Parallel Dependencies between Functional Components 

Parallel dependency [8] exists in a case where two components A and B have an output-input 

relationship, and A works in parallel with B and provides inputs for B in portions. This, for instance, 

is natural for Coding and Test. It can also be the case for RE and Design, and Design and Coding. 

When the portions delivered are independent from each other, no major problem arises from the 

Requirements 
Engineering (RE)

Design Coding Test

RE spec Design spec Code

Test spec

Reports on missing
or incorrect functionality

Bug reportsInterpreting
requirements

Interpreting Design

Interpreting test specification
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parallelism. If, however, the next portion contradicts or negates the previous one, the situation can 

become confusing. The problem arises if the previous portion received by B has already been 

processed and incorporated in the formalized output. This predicament becomes even more critical 

if this part of the output has already been sent to the next functional component. Then, apart from 

partially redoing the work, a signal should be sent to the next component(s) to invalidate part of the 

input they have already received. Parallel work requires very good communication channels 

between the functional components, so that early warnings on the possible contradiction are sent 

and received promptly through the chain. As parallel dependencies must be managed effectively 

across remote locations, it is paramount to recognize the necessary coordination activities  [10]. 

4.2.2 Heterogeneity Inside Functional Components 

Heterogeneity concerns people that belong to the team of a given functional component. It can 

cause conflicts and create barriers for common understanding of what is to be produced by the 

component. Heterogeneity has several dimensions, including:  

 Professional – a team consists of people who belong to different professions, e.g. management, 

business analysts, programmers. Different professions use different terminology and see things 

differently, which can lead to misunderstanding and conflicts. 

 Organizational – a team can consist of people who belong to different organizations. It is not 

uncommon that a large project may include several sub-contractors, each having different 

organizational values and goals, which can create tensions between the members of the team. 

 Geographical – a team is distributed across different geographical locations, and time zones, 

which can impede collaboration. 

 Cultural – team members can have different cultures due to their affiliation to different 

professions, organizations, and countries/regions. As culture affects the way people think and 

act, a different cultural background can create misunderstanding and conflicts. 

4.2.3 Distance between Functional Components 

The distance between functional components features the same dimensions as heterogeneity which 

was discussed in the previous sub-section. Suppose that teams for all functional components are 

homogeneous, i.e. all members of each team belong to the same profession, organization, location 

and culture. Then one of the risks to be considered is the distance between the teams of the 

functional components that are connected through output-input relationships. Firstly, the chance of 

Understanding B in Figure 2 diverging from Understanding A will increase with the distance. 

Secondly, communication via the feedback connection can be inefficient, for instance, due to 

different jargons, or cultural differences. Note that having heterogeneous teams may shorten the 

distance between the components in a case where both teams have intersecting mixtures of 

profession, cultures, etc. Hence, the ability to arrange heterogeneous teams for the purpose of 

cooperation inside each functional component may alleviate the problems related to the distance 

between the functional components. 

4.2.4 Absence or Deficiency of Feedback Connections 

A project may rely too heavily on the formalized outputs as inputs for the next components and 

does not provide means for effective functioning of the feedback controller from Figure 2. For 

instance, the RE team might be dissolved after completing its work, or move to another project and 

become unavailable. Such a situation leaves the divergence of Understanding A and B in Figure 3 

uncorrected, which can result in erroneous software being produced by the project. 
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4.3 Mitigating Risks 

As we consider a software project as a socio-technical system, the risks identified in the previous 

section could be mitigated in two ways: (1) through the proper arrangement of the social structure 

of the system, and (2) through its technical infrastructure. 

The first class of measures for risk mitigation includes, for instance, organization of the project in 

a way that guarantees substantial intersections between functional components (more exactly, their 

teams), e.g. some members of the RE team work with design as well. This simplifies the task of the 

feedback controller, as some members of the functional component that produces the input are 

readily available for Q&A sessions needed to detect and correct possible discrepancies. A socially 

related measure to deal with the heterogeneity of a team is to have training sessions where the 

members of the team learn the each other's preferred ways regarding their professions and/or 

cultures. As has already been mentioned, having heterogeneous teams can help to minimize the 

distances between the connected functional components. Thus ensuring that the heterogeneous team 

collaborates properly can also help to mitigate the risk connected with distances between the teams, 

or at least some of them. 

Measures regarding creating appropriate technical infrastructure include, for instance, introducing 

groupware type tools for each functional component. Hence, all intermediate decisions, notes, 

documents, etc. would be stored and could be made available to the team that will work with the 

output of the given functional component. Access to such internal material could help to organize 

the work of the feedback controller; even in the situation of limited access of team B to members of 

team A in Figure 2. The latter can occur, for instance, if team A left the project, or if there is a 

substantial time zone distance between the functional components A and B. Using the traces of the 

internal work of team A requires team B to understand the working ways of team A. Thus, bridging 

the professional distance between the functional components A and B is necessary. An alternative 

solution here would be having a tool that can translate the information from the internal systems 

used by A to the language understandable for team B. 

Although it is a important practical issue, the ways of reducing the risks are not the focus of this 

article 
†
. Our goal here is to show how considering a software project as a socio-technical system as 

in Figure 4 could help to identify potential risks that exist in a particular project. This is 

accomplished in the following sections via using an example from practice.  

5  Designing a Graphical Model for Identifying Risks 

5.1 Background and Goal 

As we have argued in the previous sections, identifying and mitigating risks in a software project 

needs to take into consideration socio-technical dependences between the functional components of 

the software project. To explicate these dependencies to the diverse people involved in the project, 

e.g. management, requirements engineers, developers and testers, their visual representation could 

be of great help. Several approaches to visualizing socio-technical dependencies have been 

suggested. Mostly these approaches are based on the idea of designing a tool that can extract and 

visualize such dependencies from information that can be obtained from the tools that support 

software development, such as configuration and version management systems, bug reports 

management systems, etc. A typical work in this area is [27], which presents a tool, called Ariande, 

for visualizing socio-technical dependencies. Ariande is a plugin for Eclipse that includes 

functionality for analysis of technical dependencies between the components of a software system. 

Based on authorship information, Ariande then “translates” the technical dependencies between the 

components into social dependencies between the developers engaged in the project. Ariande has a 

                                                 
†
 The issues related to the tools to be used to minimize the risks are discussed [8]. 
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goal of exploring these relationships to enable coordination of global software developers through 

visualization of these dependencies. Other tools of similar sorts are overviewed in the survey 

presented in [28]. 

Our goal with graphical presentation of a socio-technical model of a GSD project differs from the 

goal of the works cited above. These works concentrate on visualizing (a) specific dependencies (b) 

based on the information that can be automatically extracted from the tools that support software 

development. Our goal is different, namely: 

 To visualize more abstract properties of the software projects, like distances inside and between 

various teams, in order to localize and mitigate the risks related to these distances.  

 Do it independently whether or not it is possible to extract the information from the tools used 

in the project.  

More exactly, our goal is to visualize the concepts of a software project as a socio-technical 

system introduced in Section 4. The idea is to find appropriate graphical means of presenting these 

concepts, so that the model will be easy to analyze by human beings, e.g. during a meeting.  

All examples presented in this section are related to the project that we investigated in the 

business case described in the next sub-section. The resulting graphical model consists of a number 

of views, each of them representing a combination of the concepts introduced in Section 4.1. These 

views are discussed in detail in the following sub-sections, starting with Section 5.3. 

5.2 Business Case and Knowledge Base 

The business case organization used as an example in this paper is a multinational ICT corporation 

that develops a large variety of software solutions for telecommunications technology. One of the 

software maintenance departments at the case organization, and its respective software development 

process, was selected for our investigation. The process exhibits several characteristics that are 

inherent to globally distributed settings. Firstly, four different locations are involved in the software 

development process. The sites are distributed across four different countries, of which three are 

located in Europe, and one resides in Asia. Secondly, a number of different organizations 

collaborate in the software development. These organizations can be categorized, according to their 

type, as the head office, semi-independent sub-division and independent sub-contractor. Thirdly, 

people with diverse professional backgrounds are engaged in the process. In particular, the groups 

of professions include the operational management, technical design staff and test engineers. The 

project employs Scrum as its development methodology; the developers work in parallel and use 

short iteration cycles and continuous integration. 

As the selected case represents a typical large software development project in a global setting, it 

offers sufficient challenges, and provides an adequate test scenario for building a socio-technical 

model, and also for designing extensions to the step-relationship modeling technique from [8] to 

make it suitable for this end. 

The main bulk of information for building a graphical model of the project was obtained via 

interviewing the key people in the project, i.e. a project manager placed in the head office and three 

sub-project managers, one for each respective geographical location. Additionally, internal 

documentation has been studied. The same people were used to verify the model and assess the 

enhancements to the step-relationship modeling technique that were added when developing the 

graphical model. This was done in an iterative manner during brainstorming sessions. 

Besides the information obtained from the key participants of the GSD project, the following 

three sources of knowledge were used when designing the extensions to the step-relationship 

model: 

1. The existing body of knowledge on characteristics of GSD projects, see the literature 

overview in Section 2.  
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2. The existing body of knowledge related to visualization of dependencies in software projects, 

such as [27], [28], as well as more general recommendations related to visualization, such as 

[29].  

3. Own experience of software development. 

5.3 The Main View – Output-input Relationships 

The main view of the model is the output-input view shown in Figure 5. In this view, rectangles 

represent functional components of a socio-technical system, while solid line arrows represent 

output-input relationships between the components. A label inside a rectangle describes the function 

completed by the component; a label on an arrow identifies what kind of an output is sent from one 

component to another. Dashed arrows represent feedback connections as defined in Section 4.1. In 

Figure 5, we assume that each solid arrow (output-input relationship) is accompanied by a feedback 

connection that is not shown on the diagram. The dashed arrows are explicitly present only if 

corrective signals are coming from the component not directly connected to the given one: see, for 

instance, the dashed arrow between Application Testing and a Feature X Development. 

 

Figure 5. System view with output-input relationships  

5.4 Visualizing Parallel Dependencies 

As described in Section 4.2.1, a parallel dependency exists between two functional components if 

they are connected via an output-input relationship, and at the same time, they can work, partially or 

fully, in parallel. We use two approaches to representing parallel dependency in a graphical model. 

The first one is quite simple, i.e. via using red color to mark output-input relationships between the 

components that have parallel dependencies. This is depicted in Figure 5, which actually is a view 

that combines both output-input relationships and parallel dependencies. 
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A more elaborate way of depicting parallel dependencies is presented in Figure 6. The diagram in 

Figure 6, called timeline intensity diagram, plots the process components on a timeline running 

from left to right and indicating the passing of time. The components that are depicted next to each 

other are executed in a sequential manner, whereas the components that are stacked on top of each 

other are executed simultaneously. This notation provides a detailed view of time dependencies, 

showing partial as well as full overlapping. Furthermore, the diagram shows the workload intensity, 

and how it changes during the execution. For this, the vertical dimension of the shape that depicts a 

functional component is used. The greater the height of the shape the more work is required for the 

respective process component at a particular point in time.  

Figure 6. Timeline intensity for parallel dependencies  

The diagram in Figure 6 shows, in an explicit way, all parallel dependencies that exist in the 

project, i.e. functional components that run in parallel while providing inputs to each other. For 

such dependencies, additional attention is necessary in terms of coordination efforts to ensure 

smooth process execution. 

5.5 Visualizing Teams' Intersections 

As discussed in Section 4.3, intersecting teams is one of the ways of mitigating risks inherent to a 

complex project, thus they need to be visualized in the model. Currently, intersecting teams are 

visualized indirectly via showing the composition of each functional component in terms of 

organizational structure, as explained below. 

From the organizational structure point of view, several organizational units can participate in the 

project. Each functional component falls into the area of responsibility of a certain unit. This, 

however, does not imply that the team of the given functional component consists of the members 

of only one unit. For some functional components, their teams consist of members from several 

units, which points to intersection between the teams. The organizational units engaged in our 

business case and the distribution of responsibilities between them are presented in Table 1. 
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Table 1. Mapping of functional components and team responsibility 

Functional Component Responsible Unit (in bold) + other participants 

Generating change requests Others (not part of the project under consideration) 

Pre-Screening System Management + representatives from feature teams 

Release Planning Scheduling Project Management + sub-project managers from feature teams 

Feature A Development Feature development – Country 2  

Feature B Development  Feature development – Country 3 

Implementation/ Coordination 
Project Management + sub-project managers from feature teams and 

System I&V 

System I&V (Integration & 

Verification ) 

System I&V (Integration & Verification)  

+ representatives from feature teams 

Application Testing Others (not part of the project under consideration) 

Visualization of responsibility for, and composition of, each functional component is achieved 

via assigning two colors to each functional unit, border color and a filling color, as done in Figure 7. 

The color assignments for our business case project are presented in Figure 7 under Notation in the 

left bottom corner. The border of a functional component in Figure 7 is colored in accordance with 

the border color of the unit that is responsible for this component. In addition, each component in 

the diagram is sliced horizontally into sectors to represent different units that contribute to its work. 

Each sector receives the filling color of the corresponding unit, the height of the sector indicating 

the relative proportion of the participants from this unit. 

Figure 7. Teams' composition and intersection  

Actually, Figure 7 represents a combination of the output-input view with team composition. 

Indirectly, this diagram also shows component teams' intersection. If two components have the 

same filling color inside, e.g. Feature A Development and Implementation Coordination, their 
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teams intersect. This can be used for identifying intersecting teams between the components that 

have output-input relationships. 

An advantage of using team composition for identifying intersecting teams is that a diagram like 

the one in Figure 7 is relatively easy to draw, even manually. Nevertheless, such indirect 

visualization has its drawbacks, as it does not always show the size of an intersection. For instance, 

the composition of Implementation Coordination gives an idea of the size of intersection Feature A 

Development and Implementation Coordination in relation to the size of the Implementation 

Coordination team. However, it gives no idea of the intersection size in relation to the size of the 

Feature A Development team. In absolute numbers this intersection is quite small – just one team 

project manager. In relation to the size of the Implementation Coordination team, this is a sizable 

intersection, but in in relation to the size of Feature A Development – it is not. Other possible ways 

of presenting intersecting teams are discussed in Section 6. 

5.6 Visualizing Components Heterogeneity 

We have chosen two approaches to visualization of components' heterogeneity introduced in 

Section 4.2.2. Both approaches are illustrated in Figure 8 where three dimensions of heterogeneity – 

geographical, organizational, and professional – are presented. The first approach represents 

heterogeneity by the density of dots included in the background pattern of a functional component. 

The high density of dots in the pattern indicates homogeneity of the component, the low density of 

dots points to the heterogeneity of the component in the given dimension. In Figure 8, this approach 

is applied so as to represent the geographical dimension of heterogeneity. The high density of dots 

means geographical proximity, i.e. all members of the team are in the same location 

(a homogeneous team in the geographical sense), whereas a low density of dots symbolizes 

a geographically dispersed team. 

An advantage of the density approach of the visualization is that it gives an overall impression on 

the level of heterogeneity. Another advantage is that the level of heterogeneity in this case is easy to 

calculate. The drawback is that the picture can be misleading. For instance, the visualization will be 

the same when we have 50 % of team members from one country and 50 % from another, and when 

we have 90 % from one country and 10 % from the other. 

The second approach for visualizing the level of heterogeneity is by using distinct patterns to 

identify the different values of the dimension in which heterogeneity is to be presented. In Figure 8, 

this approach is used for representing organizational and professional heterogeneity. Patterns are 

used to slice the rectangle that represents a given component horizontally in proportion to the 

percentage of team members affiliated with each pattern. Each value, in this case, is represented by 

a different pattern, while colors can be also used to underline the distinction. The advantage of this 

kind of visualization, compared with using the density of dots, is that it clearly shows the proportion 

of each value in the total combination. However, such visualization demands more work on 

assessing the proportion and drawing the diagram when the drawing is done by hand (without using 

a tool).  

The slicing approach to visualization works well when one member of the team can be affiliated 

only to one value in the given dimension. This is, for instance, the case with the organizational 

dimension in Figure 8. When this assumption is not true, the slicing approach will be insufficient as 

it is practically impossible to show intersections when using sliced patterns. An example where 

multiple affiliations may exist is the professional dimension in Figure 8. To use the slicing 

visualization in this case, we made a simplification, relating a person to a profession that closely 

corresponds to the current position in the project. For instance, a project manager was considered as 

belonging to the management profession, independently of whether he/she possessed technical 

skills due to his/her past engagements. To represent situations with some team members having 

multiple affiliations, something like Venn diagrams could be used. This however is difficult to 

employ when the model is drawn manually. There is a need to have a tool that can help in drawing 
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diagrams based on the numerical data supplied to it. This issue is discussed in more details in 

Section 6. 

 

Figure 8. Dimensions of heterogeneity of functional components 

Note that the pattern-based visualization shown in Figure 8 can be combined with the output-

input view of Figure 5 by using sliced filling of the rectangles, in the same way as it has been done 

for team composition in Figure 7. In this case, we get two new views that show different kinds of 

heterogeneity with respect to inter-team communication. 

5.7 Visualizing Distances between Functional Components 

The only way we have used so far for representing distances between functional components 

(see Section 4.2.3) is illustrated in Figure 9. Diamonds are introduced on the arrows that represent 

output-input relationships between the components. The density of the dots in the filling patterns of 

the diamonds is used for representing the distances. Figure 9 illustrates representing geographical 

distances between the components: the lower the density of the dots, the greater the geographical 

distance. The distance is measured between the units responsible for each component. Connections 

with greater distances need special consideration, for instance, when deciding on tools to be used 

for communication between the component teams. It is also possible to apply the notation from 

Figure 9 to the diagram in Figure 6, which makes it possible to study both distances and team 

intersections, since having intersecting teams may bridge some of the distances (see the discussion 

in Section 4.3) 

The diamond notation can be used for representing other types of distances, e.g. professional or 

cultural. One advantage of this way of visualizing distances is its simplicity. The diamond notation 

can be used even when the model is drawn by hand, without using any special tool. However, this 

visualization can be misleading, as the distance is considered between the responsible units without 

Patterns chosen for 

representing values in the 

dimensions 

Examples of using patterns to represent heterogeneity of components in 

different dimensions 

Note: Pattern Organization in the organizational dimension represents the head office of the corporation. 
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taking into account the composition of the teams. A more appropriate way of measuring the 

distances between the teams could be by getting an average of the distances between each pair of 

people, one from each team. In this case, intersection of teams will automatically “shorten” the 

distance. For more detailed discussion of this topic see Section 6. 

Figure 9. Geographical distances between functional components  

5.8 Assessing the Usefulness 

As has been already mentioned in Section 5.2, building the model for our business case was based 

on interviewing project participants, especially those in charge of the GSD project and its sub-

projects (managers). The final model consisted of combinations of various views discussed in the 

previous sub-sections. Additionally to concepts discussed above, some views included information 

on communication/collaboration tools used inside each component, as well as between components. 

These were added to facilitate analysis of whether the tools employed were appropriate, considering 

the heterogeneity of the teams, and the distances between them. 

The final model was presented both to, and discussed with, people inside the project, and 

managers at the higher level of organizational hierarchy. The focus of the presentations was on 

identifying potential risks, thus when presenting the model, we put red circles on the places that 

could constitute risks.  

The model was presented and discussed separately with: 

1. The project manager who has total responsibility for the project. This was done during several 

face-to-face meetings.  

2. The project group that, beside the project manager, included sub-project managers and 

technical staff from Feature teams and System Integration & Verification. This was done 

during a virtual audio meeting while sharing the computer screen. 

3. A management group that, beside the project manager, included various program managers. 

This was done during a face-to-face meeting. 

The most positive feedback was provided by the project manager. This is understandable, as she 

was involved in the modeling project more than any other project member. The project manager 

saw the model being useful for project planning, not only in the current GSD project, but also in 

other projects in the company. In her view, when a new project is to be created, its model could be 

built and analyzed before actually starting the project. Another potential usage could be in assessing 

the tools used inside and between the components, e.g. to check whether the tools would be suitable 

considering the heterogeneity of the teams and distances between them. 

The feedback from the project group was less definite, which can be explained by the fact that the 

participants of the meeting, who were not involved in model building, had difficulty in 

understanding the short presentation. In addition, the meeting, being virtual and without video, 

made it difficult to hold the discussion. Due to the geographical distances and busy schedule of the 

project team, it was difficult to get feedback after the meeting. Anyway, no negative comments 

were forwarded to us, while some members considered the model as potentially useful for (a) initial 

planning, and (b) introducing new members to the project. 
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The general attitude was more positive during the presentation to the management group. The 

model was considered as useful for the intended purpose – identifying potential risks. The attendees 

also found it interesting and useful to have a model whose basic elements did not coincide with the 

organizational structure. It gives a proper basis for discussing the problems and solutions related to 

communication and collaboration inside the project. A natural question arose of whether the 

identified potential risks actually occurred in reality. We could not give an answer to this question, 

as it required further research. 

Besides testing the usefulness of our model as a whole, we also evaluated whether the types of 

visualization chosen for each view were satisfactory. Only the project manager was available for 

this evaluation. During the evaluation, we went through all model views, and discussed whether the 

chosen ways of visualizing the concepts, relevant to the given view, were satisfactory. Positive 

reaction has been obtained for all views. The validation, however, can be considered only as 

preliminary, because it included only one person, and this person was part of our modeling project. 

A more thorough investigation of the chosen ways of visualization is required: one that includes 

more people who are external to the research project. 

6  Challenges on the Way to Industry Adoption  

Design science research cannot generate, on its own, enough test cases for statistical validation of 

an artifact/solution [20]. This can only be done by the industry adopting the solution. The version of 

modeling technique presented in the previous sections is suitable for a research project, but it is not 

mature enough for the adoption. There are some challenges to be overcome in order to make the 

technique more attractive for adoption. 

The first challenge is connected to the fact that drawing a socio-technical model is quite time-

consuming, considering the multitude of views. While drawing the output-input diagram is not too 

difficult, producing all other views manually is quite a tiresome task. The second challenge is 

connected to the fact that analysis of risks based on the model is done manually. To make adoption 

easier, these challenges need to be addressed by automating, at least partially, both building the 

model, and identifying the risks.  

For automation purposes, we will be using the matrix form suggested in [8] for presenting 

various views of socio-technical model (see Table 2). 

Table 2. A fragment of the output-input matrix for Figure 5 

According to this form, each view is presented as a square matrix, where both rows and columns 

represent the system's functional components. A diagonal cell, if used, characterizes the respective 

component, while a non-diagonal cell characterizes relationships between the column component 

and row component. For instance, the output-input diagram in Figure 5 can be represented as a 
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matrix in which a cell (a,b), where a is a column component and b is a row component‡, contains a 

list of formalized outputs from component a that serve as formalized inputs to component b. A 

fragment of such a matrix for the model in Figure 5 is presented in Table 2. Matrices of the type 

illustrated in Table 2 can be analyzed by formal means and even combined with each other to 

produce more complex views of the system that represent various combinations of perspectives. 

In the rest of this section, we present examples of using our socio-technical model in matrix form 

to meet the challenges identified above.  

6.1 Calculating Team Intersection 

Basic information on teams' intersection can be presented as a matrix where the diagonal shows the 

size of each team, while a non-diagonal cell (a,b) shows the size of intersection between the team of 

column component a and the team of row component b. An example of such a matrix is presented 

in Table 3. This basic team intersection matrix is symmetric as the values (a,b) and (b,a) are the 

same. The absolute values, as in Table 3, actually, do not represent the strength of the linkage 

between the two components, as the strength depends on the size of the teams. To represent the 

strength, a derived matrix, called relative intersection matrix, can be produced by dividing the value 

in each cell (a,b) by the value in cell (a,a); see Table 4 that is derived from Table 3. The result, the 

value in cell (a,b), will show the percentage of the size of team a which is also engaged in the 

activities of team b. The higher the value, the tighter is the coupling between components a and b, 

in the sense that component b knows enough of what is happening in component a on the tacit level.  

Table 3. An example of the basic team intersection matrix 

 Release 

Planning 

Feature A 

development 

Feature B 

development 

Implementation 

Coordination 

System 

I&V 

Release 

Planning 
6 2 2 4 2 

Feature A 

development 
2 25 0 1 0 

Feature B 

development 
2 0 15 1 0 

Implementation 

Coordination 
4 1 1 4 1 

System I&V 2 0 0 1 20 

Table 4. A relative team intersection matrix derived from Table 3 and Table 2 

 Release 

Planning 

Feature A 

development 

Feature B 

development 

Implementation 

Coordination 

System 

I&V 

Release 

Planning 
 8 % 13 % 100 % 10 % 

Feature A 

development 
33 %  0 % 25 % 0 % 

Feature B 

development 
33 % 0 %  25 % 0 % 

Implementation 

Coordination 
66 % 4 % 7 %  5 % 

System I&V 33 % 0 % 0 % 25 %  

                                                 

‡
 We follow a rather unusual notation for identifying a matrix cell where the first component is the column, 

and the second is the row to follow the direction of the flow from output (column) to input (row). 
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Note that the derived matrix becomes asymmetric; a tight coupling between a and b is not 

automatically translated into a tight coupling between b and a when the sizes of the teams are not 

equal. 

In addition to showing percentage of intersection, Table 4 has red borders around cells that are 

not empty in the output-input matrix from Table 3. Formally, this means that the matrix in Table 4 

is a merger of the derived team intersection matrix and simplified output-input matrix, where 

simplification consists of reducing the values in the nonempty cells to Boolean yes/no. The essential 

level of intersection in the cells with red borders indicates that the feedback controller between the 

cells might be ensured via the intersection. In case the intersection does not exist or is a low value, 

say in single digit numbers, there might be a need to implement the feedback controller via other 

means, e.g. communication channels, or shared space available for both teams. Such situations are 

marked via the red font color in Table 4. 

6.2 Calculating Professional Distance between Teams 

As has already been noted, the same person may possess knowledge and experience from several 

professions. This should be taken into consideration when measuring the professional distance. In 

this sub-section, we will show how the professional distance between the teams can be identified 

and assessed, while using the matrix form. As in the previous example, we first create a basic 

matrix of inter-professional relationships in the following manner. The diagonal of the matrix 

defines the sizes of the teams. A non-diagonal cell (a,b), where a is a column and b is a row, shows 

the number of members of team a that have practical experience of work done in component b. An 

example of such a matrix is presented in Table 5. 

Table 5. An example of the basic inter-professional matrix 

 Release 

Planning 

Feature A 

development 

Feature B 

development 

Implementation 

Coordination 

System 

I&V 

Release 

Planning 
6 4 4 4 2 

Feature A 

development 
4 25 15 2 5 

Feature B 

development 
4 25 15 2 5 

Implementation 

Coordination 
4 3 2 4 3 

System I&V 3 5 4 2 20 

Table 6. A relative inter-professional matrix 

 Release 

Planning 

Feature A 

development 

Feature B 

development 

Implementation 

Coordination 

System 

I&V 

Release 

Planning 
 16 % 13 % 100 % 10 % 

Feature A 

development 
66 %  100 % 50 % 25 % 

Feature B 

development 
66 % 100 %  50 % 0 % 

Implementation 

Coordination 
66 % 12 % 13 %  15 % 

System I&V 50 % 20 % 26 % 50 %  
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To show the strength of inter-professional connections, a derived matrix, called relative inter-

professional matrix, can be obtained by dividing the value in each cell (a,b) by the value in cell 

(a,a): see Table 6 that is derived from Table 5. The result, the value in cell (a,b), will show the 

percentage of team a having experience of participating in activities conducted in component b. The 

higher the value, the tighter is the inter-professional connection between components a and b, in the 

sense that team a understands the nature of activities in component b.  

Note that the derived matrix becomes asymmetric, a tight coupling between a and b is not 

automatically translated into a tight inter-professional connection between b and a when the sizes of 

the teams are not equal. 

A high value of inter-professional connection between components a and b is desirable when a 

produces a formalized output to serve as input for b. In Table 6, such a situation is marked by cell 

(a,b) having a red border. Firstly, inter-professional connections can help to make the formalized 

output more understandable for component b; secondly it makes it easier to create a feedback 

controller between a and b, based on answering the questions from b to a, as a has enough people 

that understand the language and concerns of team b.  

A high value of the reversed inter-professional connection between components a and b can also 

be helpful when a produces formalized output to serve as input for b. This value is represented in 

cell (b,a) which is symmetrical to cell (a,b). The high value in cell (b,a) can compensate for the low 

value in cell (a,b) in two ways. Firstly, a substantial number of members of b, having tacit 

understanding of activities that happened in a, can help team b to understand the formalized output 

from a, even if it has been written in the professional language of component a. Secondly, b will 

have enough people to arrange a feedback controller between b and a. The controller can be 

arranged based on the people from b, who understand activities and input from a, communicating 

with team a in the questions-answers manner. Alternatively, it can be arranged by these people from 

b, having access to the internal documentation/systems of team a, to look for answers themselves.  

Summarizing the deliberation above, when team a produces input for team b, tight inter-

professional connection either between a and b (i.e. a understanding b) or between b and a (b 

understanding a) will be of help in creating a feedback controller between b and a. However, the 

method of organizing the controller will differ dependent on which connection is stronger. 

6.3 Summary 

In the previous sub-sections, we presented two examples of using matrixes for defining views of the 

socio-technical model of a software project. In both examples, first, a basic matrix is created, based 

on the factual data from the project. Then, a derived matrix is built, based on a simple procedure 

that can be fully automated. In addition, the derived matrix is merged with another matrix also 

according to a simple algorithmic procedure. Based on the combined matrix, risks are analyzed and 

pointed out. The results of operations on the matrixes can then be converted into a graphical model 

by amending the basic input-output diagram of the type shown in Figure 5. The distances identified 

in a matrix can be represented in a form similar to Figure 9, or in a more elaborate form. This 

procedure can be fully automated, provided that the basic input-output diagram has been built 

manually. 

Summarizing the above, it seems possible to automate, at least partially, the building of a socio-

technical model of a GSD project in the following manner. Firstly, a basic output-input diagram is 

built. Secondly, a number of basic matrixes are filled. Thirdly, derived matrixes are produced via a 

fully automated procedure, and risks are identified through highlighting specific cells. Fourthly, 

based on the basic output-input diagram and derived matrixes, a number of additional graphical 

views are built and risks related to them, if any, are graphically highlighted. To make such 

automation possible, a tool needs to be built that facilitates drawing a basic input-output diagram 

and filling basic matrixes. Building such a tool can help to meet the challenges to adoption of our 

proposals by the industry.  



21 

7  Conclusion – Main Contributions and Future Plans 

7.1 Contributions 

According to the literature overviewed in Section 2, effects of various types of distances between 

the members of a GSD team have been known for some time. Various authors have suggested 

pragmatic ways of dealing with these effects. However, to the best of our knowledge, the goal of 

building a model of a software project that visualizes these distances and helps to identify the areas 

at risk has not, so far, been discussed in the scientific literature. Defining such a goal represents the 

first contribution of this paper to the theory and practice of GSD.  

In Section 4, we suggested the concepts that need to be represented in a model of GSD team; 

some of them, like the feedback controller, not having been much discussed in the contemporary 

GSD literature. The choice of the concepts was made having the goal of identifying potential areas 

of risk. The conceptual model of a GSD project, informally presented in Section 4, represents the 

second contribution of this paper. 

 In Section 5, we presented a practical version of implementation of the conceptual model from 

Section 4, which we consider as the third contribution of this paper. This implementation has been 

tested in one case study and partly validated in that setting. Our implementation of the conceptual 

model from Section 4 needs further testing and improvement to meet challenges on the way to 

industrial adoption discussed in Section 6. However, even in its current form, this model can serve 

as a proof that the concepts introduced in Section 4 can serve as a basis for creating a practical 

socio-technical model of a GSD project aimed at risk identification and mitigation. In addition, 

Section 6 includes suggestions as to how the identified challenges can be met. 

7.2 Plans for the Future 

Our plans for the future include further development of the model along the lines presented in 

Section 6, and testing it in new business cases. Another area for future research could be devising 

measures to mitigate the risks both in the social and technical plans. This topic is also included in 

our plans for the future.  

The model presented in the paper was designed with a view to identifying and mitigating risks in 

GSD projects. However, the model might be useful for other purposes, for instance, it could be used 

in educational activities for software engineers and managers. Investigation of areas, besides risk 

identification and mitigation, where our socio-technical model can be of use is also included in our 

plans for the future. 
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