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In this study, we demonstrated the effects of a high-fiber diet on intestinal lesions,
oxidative stress and systemic inflammation in a murine model of endotoxemia. C57BL/6
mice were randomly assigned to four groups: the control group (CONTROL), which
received a commercial normal-fiber rodent diet comprising normal fiber; a CLP
group, which received a commercial normal-fiber rodent diet and underwent caecal
ligation puncture (CLP); a high-fiber group (HFG), which received a commercial
high-fiber rodent diet; and a high fiber + CLP group (HFCLP) which received a
commercial high-fiber rodent diet and underwent CLP (30%). The sepsis model
was created via CLP after 2 weeks of dietary intervention. Notably, dietary high-
fiber supplementation in HFCLP group improved survival rates and reduced bacterial
loads, compared with CLP alone. In the HFCLP group, dietary fiber supplementation
decreased the serum concentrations of pro-inflammatory cytokines such as tumor
necrosis factor-α (TNF-α), interleukin 6 (IL-6) and high-mobility group protein 1 (HMG-1)
but raised the concentration of interleukin 10 (IL-10), compared with the levels in
CLP mice. Meanwhile, high-fiber supplementation increased the relative proportions
of Akkermansia and Lachnospiraceae. These data show that dietary high-fiber
supplementation may be therapeutic for sepsis-induced lesions.
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INTRODUCTION

In 2011, more than $20 billion in hospital costs in the United States were attributed to sepsis
(Singer et al., 2016), a life-threatening organ pathology caused by a dysregulated host response to
infection. Sepsis pathogenesis is typically classified as an initial pro-inflammatory phase, followed
by an anti-inflammatory or immunosuppressive phase (Haak et al., 2018; Shankar Hari and
Summers, 2018). During the last 30 years, researchers have investigated a number of unsuccessful
immunotherapeutic strategies aimed at circumventing the unregulated pro-inflammatory host
response during the initial phases of sepsis. However, most of these strategies focused on the cascade
of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin (IL)-1 and
high-mobility group box 1 (HMGB1), which have all been shown to be of little practical therapeutic
value.
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Dietary modifications can affect systemic inflammation via
changes in the gut microbiota (Kau et al., 2011; Tilg and Moschen,
2015). Generally, fiber is classified as either ‘fermentable’ or
‘non-fermentable’ (i.e., resistant), and studies have investigated
the anti-inflammatory properties and mechanisms of the former
type (Wedlake et al., 2014; Simpson and Campbell, 2015). By
contrast, the protective anti-inflammatory properties of cellulose,
a non-fermentable fiber, have yet to be elucidated. Dietary fiber
has well-documented anti-inflammatory characteristics, which
can be partly attributed to fiber-induced actions on the gut
microbiota (Kuo, 2013; Simpson and Campbell, 2015). Morowitz
et al. (2017) demonstrated that the benefits associated with
dietary cellulose intake correlate with enrichment of the gut
microbiome taxon Akkermansia, a genus typically associated with
improved metabolic health. This finding led us to hypothesize
that supplementation with cellulose would enhance survival in
murine sepsis models by reducing intestinal lesions, modulating
oxidative stress and reducing systemic inflammation.

In this investigation, we demonstrated the effects of a high-
fiber diet on intestinal lesions, oxidative stress and systemic
inflammation in a murine model of endotoxemia.

MATERIALS AND METHODS

Use and Care of Animals
All animal investigations were approved by the Tianjin Medical
University General Hospital, Tianjin, China. Animals were cared
for in accordance with the Chinese guidelines for animal use
and treatment. C57BL/6 mice were randomly assigned to four
groups (n = 20 each): control (CONTROL), which was fed
a commercial normal-fiber rodent diet (5% cellulose); CLP,
which was also fed a commercial normal-fiber rodent diet
and underwent caecal ligation and puncture (CLP); high-fiber
(HFG), which was fed a commercial high-fiber rodent diet (30%
cellulose); and high-fiber + CLP (HFCLP), which was fed a
commercial high-fiber rodent diet and subjected to CLP. The
mouse weights were monitored daily. After a 2-week dietary
intervention, a sepsis model was created by CLP according to
our previous report (Yu et al., 2017). Mice in all groups were
subjected to hypodermic peritoneal injection with 1 mL of a 0.9%
saline solution immediately after the operation. The resulting
lavage fluid was serially diluted with sterile saline, and 100-
µL aliquots of the dilutions were placed on agar plates and
incubated at 37◦C for 16 h. Subsequently, colony-forming units
(CFUs) in the samples of peritoneal lavage fluid were calculated
in accordance with previous studies (Morowitz et al., 2017).
Serum, tissue and fecal samples were stored at−80◦C for further
analysis.

Morphology Analysis of Intestinal Tissue
The small intestines of all mice were fixed in 10%
paraformaldehyde, embedded in paraffin and stained with
haematoxylin and eosin (HE). The disease scores were then rated
by two pathologists who were blind to the experimental design
and grouping to assess the extent of intestinal lesions (Shrum
et al., 2014; Yu et al., 2017).

Measurement of Oxidative Products,
Antioxidant Enzymes and Inflammatory
Cytokines
Twenty-four hours postoperatively, 10-mL blood samples were
collected from 8 mice per group and centrifuged at 3500 rpm for
8 min. Subsequently, serum samples were collected and stored
at −80◦C, after which the levels of oxidative products (e.g.,
malondialdehyde [MDA] and 8-iso-15(S)-prostaglandin F2α

[8-iso-PGF2α]) were detected using a commercial kit (Nanjing
Jiancheng Bio Co., Ltd., Nanjing, China). Catalase (CAT) and
superoxide dismutase (SOD) activities in the sera were also
detected using kits (Nanjing Jiancheng Co., Ltd., Nanjing, China)
according to the manufacturer’s instructions. Enzyme-linked
immunosorbent assay (ELISA) kits were used to determine the
serum concentrations of TNF-α, IL-6, IL-10 (R&D Systems)
and HMGB1 (Nanjing Jiancheng Co., Ltd., Nanjing, China) in
accordance with the manufacturers’ instructions (Yu et al., 2017).

Real-Time Quantitative PCR
The levels of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
and heme oxygenase-1 (HO-1) mRNA were detected using
real-time quantitative PCR. Expression of Gapdh mRNA was
used as a reference. The following gene-specific primer sequences
were used: Nrf2-F 5′-CGACAGAAACCTCCATCTACTGAA-3′,
Nrf2-R 5′-CCTCATCACGTAACATGCTGAAG-3′; HO-1-F 5′-
ACAGATGGCGTCACTTCG-3′, HO-1-R 5′-TGAGGACCCAC
TGGAGGA-3′; GAPDH-F 5′-CATCACTGCCACCCAGAAG
AC-3′, GAPDH-R 5′-CCAGTGAGCTTCCCGTTCAG-3′ (Yu
et al., 2017).

Sequencing and Analysis of Bacterial
16S rRNA Genes
Total DNA was extracted from fecal samples and purified,
and the V4 regions of 16S rRNA genes were amplified using
specific primers (515F-806R). All PCR reactions were performed
using Phusion R©High-Fidelity PCR Master Mix (New England
Biolabs, Ipswich, MA, United States). Sequencing was performed
on an Illumina MiSeq device (Illumina, Inc., San Diego, CA,
United States), and QIIME (v1.9) was used to demultiplex the raw
sequence reads. UPARSE (v8.0) was then used to filter the reads
for quality. Sequences with a similarity >97% were classified
in the same operational taxonomic unit (OTU). UCLUST and
Greengenes reference database (v13.8) were then used to assign
taxonomies to the predicted OTUs. Alpha diversity and QIIME
(Version 1.7.0) were used to analyze the complexity of each
sample.

Statistical Analysis
Mouse survival rates are expressed as percentages (%). Other
data are presented as means ± standard deviations (SDs). The
log-rank (Mantel–Cox) test was used to evaluate differences in
survival rates between the groups; the unpaired t-test or Mann–
Whitney test was also used if the results were approximately
normally distributed (e.g., Gaussian distribution) or not normally
distributed, respectively. A P-value <0.05 was considered to
indicate a statistically significant difference. The statistical
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analyses were performed using SPSS, version 21.0 (IBM Corp.,
Armonk, NY, United States).

RESULTS

Survival Rate and Bacterial Load
Figure 1 suggests that a minimal number of mice died in each
of these groups, the survival rates in the CLP and HFCLP mouse
groups decreased significantly (P < 0.05). However, the mouse
groups subject to dietary high-fiber supplementation exhibited
an enhanced sepsis survival rate (P < 0.05). We further analyzed
the CFUs in peritoneal lavage fluid and found significantly higher
numbers in the CLP and HFCLP groups (P < 0.05). Notably, the
HFCLP group exhibited a marked reduction in CFUs, compared
to the CLP group (P < 0.05) (Figure 2).

Small Intestinal Morphology and Disease
Scores
To determine the severity of intestinal lesions, the small intestines
were subjected to HE staining, and appropriate histopathological
scores were assigned to rate the severities of the observed
intestinal injuries (Figure 3). In the CONTROL and HFG
groups, the intestinal mucosa did not exhibit any abnormal
morphological changes. However, shortening and atrophy of the
intestinal mucosal villi were observed in the CLP and HFCLP
groups. The Intestinal lesions were less severe in the HFCLP

FIGURE 1 | Effect of dietary fiber supplementation on the survival rates of
mice. The HFG group overlapped with the CONTROL group after day 2.

FIGURE 2 | Effect of dietary fiber supplementation on CFU counts in the
peritoneal lavage fluid (n = 8). ∗P < 0.05 vs. the CONTROL group, #P < 0.05
vs. the HFG group and &P < 0.05 vs. the CLP group.

group than in the CLP group (P < 0.05). In addition, the
intestinal disease scores of mice in the CLP and HFCLP groups
were much higher than those in the CONTROL and HFG groups
(P < 0.05).

Oxidative Products and Antioxidative
Enzymes
Figure 4 indicates that the levels of MDA and 8-iso-PGF2α were
higher in the CLP and HFCLP groups than in the CONTROL and
HFG groups (P < 0.05). Meanwhile, the levels of both oxidative
products were lower in the HFCLP group than in the CLP group
(P < 0.05). However, the activities of the anti-oxidative enzymes
CAT and SOD were lower in the CLP and HFCLP groups than
in the CONTROL and HFG groups (P < 0.05). Moreover, the
activities of both enzymes were higher in the HFCLP group than
in the CLP group (P < 0.05).

Serum Inflammatory Cytokines
Next, the serum levels of inflammatory cytokines were
investigated. Figure 5 demonstrates that the serum
concentrations of TNF-α, IL-6 and HMGB1 were significantly
increased in the CLP group, compared to the CONTROL
and HFG groups (P < 0.05). However, the dietary fiber
supplementation provided to the HFCLP group reduced TNF-α,
IL-6 and HMGB1 levels markedly, compared to those in the
CLP group (P < 0.05). The CLP and HFCLP groups exhibited
significantly higher serum IL-10 concentrations relative to those
in the CONTROL and HFG groups (P < 0.05). Furthermore, the
serum IL-10 level was significantly lower in the CLP group than
in the HFCLP group (P < 0.05).

HO-1 and HMGB1 Expression
The levels of HO-1 mRNA were significantly higher in the CLP
and HFCLP groups than in the CONTROL and HFG groups
(P < 0.05). Furthermore, the level of HO-1 mRNA was higher
in the HFCLP group, compared to the CLP group (P < 0.05)
(Figure 6). Similarly, the levels of Nrf2 mRNA were significantly
higher in the CLP and HFCLP groups than in the CONTROL and
HFG groups (P < 0.05). However, no significant difference in this
transcript was observed between the CLP and HFCLP groups.

Microbial Diversity in the Fecal Samples
Bacterial 16S rRNA gene sequencing was used to profile the
gut microbiota in mice from each group. Notably, no statistical
differences in alpha diversity were observed among the four
groups (Table 1). However, significant between-group differences
were observed in the community compositions of the fecal
samples. In particular, samples collected from the HFG and
HFCLP groups contained highly abundant bacteria from the
family Lachnospiraceae, which are typically associated with a
healthy colon (P < 0.05). Meanwhile, the relative abundance of
Akkermansia, a bacterial genus with known health-enhancing
characteristics, was significantly higher in the HFG and HFCLP
groups (P < 0.05) (Figure 7).
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FIGURE 3 | Effects of dietary fiber supplementation on pathological intestinal changes. (A) HE staining of intestinal tissues (x 100) and (B) histopathological disease
scores of the intestines. ∗P < 0.05 vs. the CONTROL group, #P < 0.05 vs. the HFG group, and &P < 0.05 vs. the CLP group.

FIGURE 4 | Effects of dietary fiber supplementation on the serum levels of (A) MDA, (B) 8-iso-PGF2α, (C) CAT and (D) SOD. ∗P < 0.05 vs. the CONTROL group,
#P < 0.05 vs. the HFG group, and &P < 0.05 vs. the CLP group.

DISCUSSION

Septic shock is a frequent cause of mortality in critical patients
(Mayr et al., 2014; Rickard et al., 2014). Previous reports have
shown that sepsis morbidity might result from an extreme
pro-inflammatory response and/or extreme anti-inflammatory
response which generates a state of immunosuppression (Mayr

et al., 2014; Rickard et al., 2014). In this investigation,
we successfully generated a sepsis model and demonstrated
that dietary high-fiber supplementation led to an improved
survival rate with lower bacterial loading, compared to
CLP treatment alone. In addition, supplementation with a
high-fiber dietalleviated intestinal lesions and oxidative injuries,
thereby enhancing survival and reducing the serum levels of
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FIGURE 5 | Effect of dietary fiber supplementation on the serum levels of the cytokines (A) TNF-α, (B) IL-6, (C) HMGB1, and (D) IL-10. ∗P < 0.05 vs. the CONTROL
group, #P < 0.05 vs. the HFG group, and &P < 0.05 vs. the CLP group.

FIGURE 6 | Effects of dietary fibre supplementation on the levels of (A) HO-1 and (B) Nrf2 mRNA. ∗P < 0.05 vs. the CONTROL group, #P < 0.05 vs. the HFG group
and &P < 0.05 vs. the CLP group.

pro-inflammatory cytokines in a CLP-induced murine sepsis
model.

The generation of pro- and anti-inflammatory mechanisms
has been suggested to represent a vital stage in sepsis survival

TABLE 1 | Microbial alpha diversity in the collected fecal samples.

Items CONTROL HFG CLP HFCLP

OTU 1276 1143 1212 1098

Chao1 1035.65 1022.74 1084.83 1044.67

Ace 1120.13 1069.18 1132.46 1106.94

Shannon 5.21 4.92 5.09 5.15

Simpson 0.88 0.91 0.89 0.89

(Munford and Pugin, 2001; Rickard et al., 2014). In our study,
mice with severe CLP-induced sepsis in the CLP and HFCLP
groups exhibited more severe intestinal injuries, compared
to untreated mice. Excessive cytokines secretion and elevated
oxidative species levels underpin the pathogenesis of sepsis
(Xie et al., 2014). To observe the effects of dietary fiber
supplementation on intestinal lesions induced by severe sepsis,
the concentrations of inflammatory factors (e.g., pro- and anti-
inflammatory cytokines) were monitored. Similarly, dietary fiber
supplementation was shown to reduce the concentrations of pro-
inflammatory cytokines, including TNF-α, IL-6 and HMGB1,
and increase the concentration of IL-10 in sera from HFCLP mice
relative to sera from the CLP group. Previous investigations have
demonstrated that HMGB1 is a useful marker of severe sepsis,
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FIGURE 7 | Relative abundances of the microbial taxa predicted to be enriched or depleted after dietary fibre supplementation. The indicated taxa
(A) Lachnospiraceae and (B) Akkermansia had relatively high abundances across all sample groups. ∗P < 0.05 vs. the CONTROL group, #P < 0.05 vs. the HFG
group and &P < 0.05 vs. the CLP group.

and several reports have demonstrated that once activated and
secreted into the extracellular milieu, this cytokine can mediate
sepsis-related inflammatory responses (Wang et al., 2014; Stevens
et al., 2017). Consistent with earlier studies (Bae, 2012; Nogueira-
Machado and de Oliveira Volpe, 2012; Cho and Choi, 2014),
our investigation demonstrated a correlation of the HMGB1
level with intestinal lesion severity. These data demonstrate that
dietary fiber supplementation improves the clinical outcomes of
mice subjected to sepsis.

The transcription factor Nrf2 is a key regulator of suitable
antioxidant and anti-inflammatory responses (Vriend and Reiter,
2015; Ren et al., 2018). This investigation demonstrated greater
mRNA levels of HO-1 and Nrf2 in mice subjected to CLP
injection relative to normal mice. However, even higher levels
were observed in septic mice subjected to the dietary high-
fiber intervention. Severe sepsis can cause disintegration of the
intestinal tight junctions, resulting in systemic inflammation and
oxidative stress (Ren et al., 2018). At this time, Nrf2 may be
activated to translocate from the cytoplasm to the nucleus, where
it binds to the ARE gene and thereby regulates the expression
of SOD and CAT (Liu et al., 2014). HO-1, which is generated
downstream of Nrf2, exerts beneficial actions against and thus
downregulates pro-inflammatory responses (Yu et al., 2009;
Vijayan et al., 2011; Bortscher et al., 2012).

The configuration of the gut microbiota has been shown to
influence therapeutic responses in a variety of clinical conditions,
including cancer and diabetes (Taur et al., 2014; Forslund
et al., 2015; Vetizou et al., 2015). To date, however, clinical
investigations of sepsis have not considered the status of the gut
microbiota (i.e., they did not assess individual gut microbiota
species present within the gut over the disease period). Diet
is known to represent a robust connection between the gut
microbiota and immune function (Kau et al., 2011; Tilg and
Moschen, 2015). It would seem that this association is relevant to
sepsis survival. In this investigation, the high-fiber intervention
partly protected against systemic inflammation and mortality in
a murine sepsis model. Earlier work by Peck et al. indicated
that calorie restriction also enhanced survival in mice challenged
with S. typhimurium (Peck et al., 1992). In this study, mice
also exhibited clear alterations in gut microbiota, particularly an

enrichment of the genus Akkermansia. These anaerobic micro-
organisms are typically found in both human and rodent gut
microbiomes, and their abundance in humans has been shown
to inversely correlate with body weight and inflammatory activity
in patients with inflammatory bowel disease (Png et al., 2010;
Santacruz et al., 2010).

CONCLUSION

This study has demonstrated that dietary supplementation with
high fiber alleviates intestinal injuries. The mechanism of action
is thought to be partially attributable to modifications of both
the microbiota and host physiology by fiber supplementation,
which thereby permit an appropriate and survival-promoting
inflammatory response to the injury. Possibly, an improved
comprehension of the correlations between the diet, microbiota
and systemic pathology could lead to novel diet-based therapeutic
approaches for sepsis. However, additional investigations are
needed to assess the potential benefits of an intervention
comprising dietary high-fiber supplementation for the treatment
of severe sepsis.
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