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ABSTRACT
Introduction: The zoonotic malaria parasite Plasmodium knowlesi has currently
become the most dominant form of infection in humans in Malaysia and is an
emerging infectious disease in most Southeast Asian countries. The P41 is
a merozoite surface protein belonging to the 6-cysteine family and is a
well-characterized vaccine candidate in P. vivax and P. falciparum; however, no study
has been done in the orthologous gene of P. knowlesi. This study investigates the
level of polymorphism, haplotypes and natural selection of pk41 genes in clinical
isolates from Malaysia.
Method: Thirty-five full-length pk41 sequences from clinical isolates of Malaysia
along with four laboratory lines (along with H-strain) were downloaded from public
databases. For comparative analysis between species, orthologous P41 genes from
P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic
diversity, polymorphism, haplotype and natural selection were determined using
DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were
determined using MEGA 5.0 software.
Results: Analysis of 39 full-length pk41 sequences along with the H-strain identified
36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in
31 haplotypes. Nucleotide diversity across the full-length gene was low and was
similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the
two s48/45 domains indicated low level of polymorphisms for both the domains, and
the glutamic acid rich region had extensive size variations. In the central domain,
upstream to the glutamate rich region, a unique two to six (K-E)n repeat region
was identified within the clinical isolates. Overall, the pk41 genes were indicative of
negative/purifying selection due to functional constraints. Domain-wise analysis
of the s48/45 domains also indicated purifying selection. However, analysis of
Tajima’s D across the genes identified non-synonymous SNPs in the s48/45 domain
II with high positive values indicating possible epitope binding regions. All the
6-cysteine residues within the s48/45 domains were conserved within the clinical
isolates indicating functional conservation of these regions. Phylogenetic analysis of
full-length pk41 genes indicated geographical clustering and identified three

How to cite this article Ahmed MA, Chu K-B, Quan F-S. 2018. The Plasmodium knowlesi Pk41 surface protein diversity, natural selection,
sub population and geographical clustering: a 6-cysteine protein family member. PeerJ 6:e6141 DOI 10.7717/peerj.6141

Submitted 28 August 2018
Accepted 20 November 2018
Published 14 December 2018

Corresponding author
Fu-Shi Quan, fquan01@gmail.com

Academic editor
Erika Braga

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.6141

Copyright
2018 Ahmed et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.6141
mailto:fquan01@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6141
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


subpopulations of P. knowlesi; one originating in the laboratory lines and
two originating from Sarawak, Malaysian Borneo.
Conclusion: This is the first study to report on the polymorphism and natural
selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there
is low level of polymorphism in both s48/45 domains, indicating that this
antigen could be a potential vaccine target. However, genetic and molecular
immunology studies involving higher number of samples from various parts of
Malaysia would be necessary to validate this antigen’s candidacy as a vaccine target
for P. knowlesi.

Subjects Genetics, Parasitology, Epidemiology, Infectious Diseases, Population Biology
Keywords Plasmodium knowlesi, Pk41, Natural selection, 6-Cysteine family, s48/45 domain,
Polymorphism, Malaysia, Clinical samples, Low diversity, Vaccine

INTRODUCTION
Malaria is a major public health concern as it causes the death of a half a million people
around the globe annually (WHO, 2017). The zoonotic malaria parasite Plasmodium
knowlesi is now considered as the fifth Plasmodium species capable of infecting humans,
and cases are rapidly emerging in many countries of Southeast Asia (Ahmed & Cox-Singh,
2015; Cox-Singh et al., 2008; Garnham, 1966). According to latest reports, P. knowlesi
accounts for 70–80% of all malaria cases in Malaysian Borneo (Barber et al., 2017;
Barber et al., 2011; Daneshvar et al., 2009; William et al., 2013) and as per the world
malaria report 2017, there is a rapid increase of human cases in Malaysia (WHO, 2017).
P. knowlesi is often misdiagnosed as P. malariae under the microscope, therefore
molecular testing using PCR for confirmation is essential (Cox-Singh et al., 2008).
The erythrocytic cycle of this parasite is 24 h, which is the fastest among all human
malarias, and increase in parasite count has been associated with severe malaria in humans
with fatal outcome (Cox-Singh et al., 2008; Daneshvar et al., 2009; Willmann et al., 2012).
Genetic studies on invasion genes as well as whole genome studies have identified
at least three subpopulations of the parasite in clinical samples from Malaysia and two of
the populations were associated with the monkey hosts; Macaca fascicularis and
Macaca nemestrina in Malaysian Borneo (Ahmed et al., 2014, 2016; Assefa et al., 2015;
Pinheiro et al., 2015). A recent study on two genes that have been extensively used for
phylogenetic studies that is the mitochondrial cytochrome oxidase I (cox 1) and smaller
subunit ribosomal rRNA of P. knowlesi from clinical samples and wild macaques identified
two distinct subpopulation which clustered geographically to Peninsular Malaysia
and Malaysian Borneo (Yusof et al., 2016). These studies indicate that P. knowlesi
infections in humans is complex and involves multiple subpopulations of the parasite
and some of the infections may cause severe disease.

Antimalarial vaccine is an important tool for malaria control and elimination, but high
polymorphism displayed by field isolates within candidate antigens remains as one of
the major factor hindering vaccine development. Leading vaccine antigens that are found
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to be under positive (diversifying) selection (like ama1, msp1 and msp2) are parasite
surface proteins and have evolved extensive genetic diversity in order to evade host
immune response in natural parasite populations (Barry & Arnott, 2014; Patel et al., 2017;
Takala et al., 2009). These candidates when tested in the field show allele-specific immune
response thereby reducing the efficacy of the candidate antigen in endemic regions
(Osier et al., 2010). For example, currently RTS,S, is the only candidate for vaccine
development which is designed based on the P. falciparum circumsporozoite protein. It has
reached phase IV clinical trials (Coelho et al., 2017); however, has low efficacy in the
field and one of the reasons was parasite diversity and allele-specific immune response
observed within field isolates of P. falciparum (Neafsey et al., 2015). The pkcsp diversity in
clinical isolates of Malaysia is also high and the epitope binding regions were under the
influence of positive natural selection (Fong et al., 2015). Many such antigens in
P. falciparum (Barry et al., 2013; Genton et al., 2002; Patel et al., 2017; Soe et al., 2017) and
P. vivax (Lo et al., 2017) have high nucleotide diversity, leading to allele-specific immune
responses or low efficacy during vaccine trials. Thus, it is important to assess the level
of diversity, type of natural selection and significance toward further studying of the
antigen as a vaccine candidate.

Among merozoite invasion proteins widely studied in P. falciparum and P. vivax, the
6-cysteine protein family is a mutli-stage conserved surface proteins which are expressed
in both asexual (merozoites) and sexual (gametocytes) stages of the parasite (Angel et al.,
2008; Garcia et al., 2009). The protein family in P. falciparum consists of five
members; Pf12, Pf12P, Pf38, Pf41 and Pf92 proteins which are expressed at the asexual
stages of the parasite’s life cycle and is characterized by the presence of six conserved
cysteine residues called the s48/45 domains (Arredondo & Kappe, 2017; Garcia et al.,
2009). The protein has a signal peptide but lacks the transmembrane domain (Garcia et al.,
2009). The Pf41 has two high affinity binding peptides in the s48/45 domains and is
anchored to the merozoite surface by forming an inverted heteroduplex with Pf12
(Taechalertpaisarn et al., 2012; Tonkin et al., 2013). Recent structural studies on Pf41 has
revealed that there is an intra-domain insertion which is necessary for binding to Pf12
and this protects it from proteolytic cleavage (Parker, Peng & Boulanger, 2015).
The P. vivax ortholog pv41 gene has been characterized (Angel et al., 2008). The Pv41 is
localized at the merozoite surface and high immunogenicity observed from patient sera
suggests its exposure to the host’s immune system (Cheng et al., 2013). Pf41 has been
under positive natural selection (Tonkin et al., 2013) and recognized by serum from
naturally infected individuals with seroprevalences in the range of 32–88% (Osier et al.,
2014; Richards et al., 2013). Population genetic analysis has revealed positive balancing
selection for C-terminal regions of the pv41 genes from China–Myanmar area
indicating immune evasion by the parasite (Wang et al., 2014). Despite the significance of
these studies, which has demonstrated the potential of P41 as a vaccine candidate,
no study has been conducted in the P. knowlesi ortholog Pk41 protein.

In this study, the domains of Pk41 protein were characterized based on the amino acid
sequence alignment to its orthologs in P. vivax (Pv41) and P. falciparum (Pf41).
Genetic diversity, natural selection, number of haplotypes and haplotype diversity
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within 39 isolates [35 clinical isolates and four laboratory lines (along with the H-strain)]
from Malaysia were determined using full-length Pk41 genes. Since this is the first study
of Pk41 from clinical samples, the information obtained from this study will be
helpful to understand the level of polymorphism within the functional domains in field
isolates for future functional studies as well as rational design and formulation of a
blood-stage vaccine against P. knowlesi.

MATERIALS AND METHODS
Pk41 sequence data
Thirty-nine full-length pk41 gene sequences were obtained from published database from
clinical isolates originating from Malaysian Borneo and three long-time isolated lines
from Peninsular Malaysia (along with the H-strain, PKNH_0303000) and the Philippine
Strain (Table S1) (Assefa et al., 2015). The genomes were downloaded from the European
Nucleotide Archive (https://www.ebi.ac.uk/ena). A map showing the geographical
location of the isolates used in the study is shown in Fig. S1. Signal peptide for
the full-length Pk41 was predicted using Signal IP 3.0 prediction software (Petersen
et al., 2011). Sequence data were aligned using the CLUSTAL-W program in MegAlign
Lasergene v 7.0 (DNASTAR) and polymorphism and phylogenetic analyses were
conducted in MEGA 5.0 software. In order to determine the relationship between
Pk41 sequences (laboratory lines and clinical isolates from Sarawak, Malaysian Borneo),
phylogenetic analyses were conducted using deduced amino acid sequences using
Maximum Likelihood (ML) method based on Poisson correction model as described
in MEGA 5.0 with 1,000 bootstrap replicates to test the robustness of the trees
(Table S1). Orthologous members of P. falciparum (PF3D7_04049000), P. cynomolgi
(PCYB_031270), P. coatneyi (PCOAH_00006000) and P. vivax Sal-1 (PVX_000995)
were also included in the analyses. ML-based phylogenetic trees were also constructed
based on the s48/41 domain I and II of Pk41 protein.

Sequence diversity and natural selection
Sequence diversity (p), which is defined as the average number of nucleotide differences per
site between two sequences was determined by DnaSP v5.10 software (Librado & Rozas,
2009). Number of polymorphic sites, parsimony informative sites (sites that have a minimum
of two nucleotides that are present at least twice), number of synonymous (silent mutations)
and non-synonymous substitutions (replacement mutations or mutations leading to
change in amino acids), number of haplotypes (H), singletons (a nucleotide variant that
appears only once in among the sequences) and haplotype diversity within the pk41 sequences
were also determined by DnaSP software. Graphical representation of nucleotide diversity was
conducted using the same software with window length 50 bp and step size 12 bp.

Natural selection was determined by calculating the rates of synonymous substitutions
per synonymous site (dS) and nonsynonymous substitutions per nonsynonymous site
(dN) which were computed by using Nei & Gojobori’s method (1986). Juke-Cantor
correction and their standard errors of these parameters were estimated by the bootstrap
method with 1,000 pseudo replicates as implemented in the MEGA 5.0 program

Ahmed et al. (2018), PeerJ, DOI 10.7717/peerj.6141 4/17

http://dx.doi.org/10.7717/peerj.6141/supp-7
https://www.ebi.ac.uk/ena
http://dx.doi.org/10.7717/peerj.6141/supp-1
http://dx.doi.org/10.7717/peerj.6141/supp-7
http://dx.doi.org/10.7717/peerj.6141
https://peerj.com/


(Tamura et al., 2011). Additionally, the Tajima’s D, Fu & Li’s D� and F� neutrality tests
were performed as implemented in DnaSP v5.10 software. Tajima’s D is expected to be
zero under neutrality. When Tajima’s D values are positive and significant it indicate
positive/balancing selection, whereas negative values suggest negative selection or
population expansion. Graphical representation of Tajima’s D was also conducted
using the same software. Significant positive values for Fu & Li’s D� and F� also indicates
population contraction due to a selection event while negative values indicated population
expansion and excess of singletons.

Genetic differentiation
The ARLEQUIN software v.3.5.1.3 (Excoffier, Laval & Schneider, 2007) was used to compute
pairwise differences (FST) between P. knowlesi subpopulations which were identified though
ML-based phylogenetic analysis. The FST values were determined with 10,100 permutations.
FST is a comparison of the sum of genetic variability within and between populations based
on the differences in allelic frequencies. FST values are interpreted as no (0), low (>0–0.05),
moderate (0.05–0.15) and high (0.15–0.25) genetic differentiation.

RESULTS
Pk41 sequence identity within ortholg members and diversity within
P. knowlesi population
The signal peptide of the Pk41 protein was detected between amino acid positions 21 and
22 using the Signal IP server (Fig. S2). There was no transmembrane domain
predicted within the alignment. Alignment and comparison of the amino acid sequences of
the full-length P. knowlesi H reference strain Pk41 sequences with its ortholog in P. vivax
Sal-1 reference and P. falciparum 3D7 reference strain showed 84.9% and 41.5%
identities respectively. The sequence identity differed mainly due to the central region
which had a glutamate rich region in P. vivax and P. knowlesi but absent in P. falciparum.
The schematic structure of pk41 gene with domain coordinates and 6-cysteine residues in
comparison with its orthologs in P. vivax and P. falciparum are shown in Fig. 1.
Other orthologs in primate malarias that is P. cynomolgi B strain and P. coatneyi Hackeri
strain showed 84.1% and 87.5% sequence identity respectively. Within the full-length
pk41 sequences (n = 39), there were 36 polymorphic sites which led to 20 synonymous
and 16 non-synonymous substitutions. There were 28 parsimony informative sites,
of which three sites were of three variants and 18 singleton variable sites leading to
31 haplotypes (Table S2). All the 6-cysteine residues within the two s48/45 domains were
conserved, indicating active functional binding to host erythrocytes (Figs. S3 and S4).
In addition to non-synonymous SNPs, the Pk41 had a repeat region encoding
Lysine-Glutamic acid (K-E)n region (Fig. 2). The number of repeats varied from two to
six within the laboratory lines and Sarawak, Malaysian Borneo. In addition to the (K-E)n
repeat units, variation of glutamic acid (E)n repeats within the central domain led to
size variations of 1,182–1,233 bp within the isolates (Fig. 2).

The overall nucleotide diversity of full-length pk41 was higher (p = 0.00959 ± SD 0.0001)
compared to its ortholog in P. vivax (Forero-Rodriguez, Garzon-Ospina & Patarroyo, 2014)
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(Table 1). However, high nucleotide diversity within pk41 could be attributed to the size
variations observed within the (K-E)n repeat region and the Glu-rich region within the
P. knowlesi clinical isolates. The graphical representation of nucleotide diversity using the
sliding window plot (window length 50 bp and step size 12 bp) also revealed that the
diversity was high only within the central domain region due to the size variations
(Fig. 3A). The total number of insertion–deletion (InDel) sites within the central domain
was found to be 172. Of the 172 sites, 55 sites could be analyzed and the indel diversity was
found to be high [p (i) = 0.354]. Most SNPs identified within these s48/45 domains
were synonymous (Table 1). Domain-wise analysis of the s48/45 domain I and domain II
indicated that both domains had very low levels of polymorphisms similar to its ortholog
in P. vivax (Forero-Rodriguez, Garzon-Ospina & Patarroyo, 2014). Only two non-
synonymous mutations N123D and M124V were identified within the s48/45 domain I
(Fig. 2), which had minor allele frequency (MAF) greater than 10%. The s48/45
domain II had five mutations, of which only two non-synonymous mutations with
MAF > 10% (H271D and T272K) were identified (Fig. 2). The remaining three mutations
V262I, K332R and T344A were singleton non-synonymous mutations (Fig. 2). The two
s48/45 domains shared similar levels of nucleotide diversity and it ranged from
p = 0.00582–0.00530. The domain I had a slightly higher haplotype diversity compared to
domain II (Table 1).

Natural selection of Pk41
Analysis for natural selection of pk41 genes from Malaysia indicated that the gene is under
purifying/negative selection, implying functional constraints. The overall dN-dS, Taj D,

Figure 1 Schematic structure of P41 proteins in P. falciparum, P. vivax and P. knowlesi. The con-
served two 6-Cys domains, labeled as s48/45 Domain I and II along with its molecular weight, are in
shaded and dotted background, respectively. (K-E)n repeat region is shown in yellow. The position of
cystiene residues are given. The arrow marks indicate amino acid co-ordinates for each domain.

Full-size DOI: 10.7717/peerj.6141/fig-1
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Figure 2 Amino acid polymorphism within Pk41 proteins sequences from Malaysia. The green
shaded regions represents the polymorphism with s48/45 domains I and II and the polymorphic residues
are shaded in orange. The yellow shaded region is the (K-E) repeat region and blue shaded region is the
Glu-rich region and the polymorphism within them. The amino acid position colored in red represents
the insertions within the clinical isolates from Malaysian Borneo.

Full-size DOI: 10.7717/peerj.6141/fig-2

Table 1 Estimates of nucleotide diversity, haplotype diversity and neutrality indices of pk41.

Domain No.
samples

SNPs Syn NonSyn No.
haplotype

Diversity ± SD Taj D dN-dS ± S.E Fu & Li’s D* Fu & Li’s F*

Haplotype Nucleotide

Full-length 39 36 20 16 31 0.982 ± 0.011 0.00959 ± 0.0001 -0.79 (P > 0.1) -0.02 ± 0.006 -1.29 (P > 0.1) -1.37 (P > 0.1)

S48/45
Domain I

12 10 2 14 0.870 ± 0.038 0.00582 ± 0.0009 -0.21 (P > 0.1) -0.03 ± 0.001 0.46 (P > 0.1) 0.28 (P > 0.1)

Glutamic-rich
region
(excluding
InDel sites)

9 7 2 10 0.750 ± 0.060 0.00543 ± 0.0007 -1.31 (P > 0.1) 0.002 ± 0.0001 -2.06 (P > 0.1) -2.14 (P > 0.1)

S48/45
Domain II

10 5 5 9 0.727 ± 0.064 0.00530 ± 0.0007 -0.71 (P > 0.1) -0.013 ± 0.008 -1.48 (P > 0.1) -1.45 (P > 0.1)

Note:
SNPs, Single nucleotide polymorphisms; SD, Standard deviation: Syn, Synonymous substitutions; NonSyn, Non synonymous substitutions: SE, Standard error.
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Fu and Li’s D� and F� values across the genes were negative (Table 1) but not significant.
Domain-wise analysis of dN-dS also indicated that the s48/45 domains were under
negative selection. Taj D values and Fu & Li’s D� and F� were also negative, but not
significant indicating purifying selection and population expansion in each domain
(Table 1). However, graphical representation of Taj D across the entire gene identified
certain regions within the s48/45 domains, which showed high positive D values (Fig. 3B)
indicating non-synonymous SNPs in the region could be under positive balancing
selection. These results indicated that a higher number of samples will be necessary for
a statistically significant negative selection at this locus.

Figure 3 (A) Graphical representation of nucleotide diversity (π) within Pk41 genes and (B) Tajimas
D value across the full-length Pk41 genes. The three domains; s48/45 domain I, II and the central
domains are marked and with double-sided arrows. Dotted lines were used to indicate the peaks in
p graph and the D graph. The asterisk indicates high positive Tajimas D values within the domain. The p
graph and the D graph were drawn with window length 50 and step size 12 in Dnasp.

Full-size DOI: 10.7717/peerj.6141/fig-3

Ahmed et al. (2018), PeerJ, DOI 10.7717/peerj.6141 8/17

http://dx.doi.org/10.7717/peerj.6141/fig-3
http://dx.doi.org/10.7717/peerj.6141
https://peerj.com/


Phylogenetic analysis
Phylogenetic analysis of the 39 full-length Pk41 deduced amino acid sequences with other
Plasmodium species using ML method identified three distinct P. knowlesi sub-
populations. Of the three subpopulations, two populations originated from Malaysian
Borneo (Fig. 4). The four laboratory lines, the H-strain, the Malayan Strain, MR4 and the
Philippine Strain, which originated from Peninsular Malaysia and Philippines formed

Figure 4 Phylogenetic relationship of Pk41 proteins from clinical isolates of Malaysia and the
ortholog in other Plasmodium species based on Maximum Likelihood method. The two P. knowlesi
Pk41 subpopulations identified in Malaysian Borneo are shown as cluster 1 and cluster 2 and the four
laboratory lines formed the cluster 3 from Peninsular Malaysia. Numbers at the nodes indicate bootstrap
values. Full-size DOI: 10.7717/peerj.6141/fig-4
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the third subpopulation (Fig. 4). The pk41 sequences were obtained from a previously
published genomic study (Assefa et al., 2015) where the clinical samples were found to be
associated with the primary hosts of P. knowlesi, that is Macaca fascicularis and
Macaca nemestrina. Thus, cluster 1 and cluster 2 identified in this study also associated
with Macaca fascicularis and Macaca nemestrina, respectively. The ML method showed
that the Pk41 was more closely related to P. coatneyi 41 compared to its ortholog in
P. vivax, P. falciparum and P. cynomolgi. Independent domain-wise ML-based
phylogenetic analysis (for s48/45 domain I and II) also indicated same pattern of three
subpopulations (Figs. S5 and S6). Two distinct amino acid polymorphisms N123D
and T272K in domain I and II of s48/45, respectively, were the core determinants in
separating P. knowlesi clinical isolates into two subpopulations in Sarawak (Fig. 2).
The minor alleles (N and T) were associated withMacaca nemestrina and the major allele
(D and K) were associated with Macaca fascicularis. However, phylogenetic trees
constructed based on the central domain did not indicate any pattern of subpopulations
(data not shown).

Genetic differentiation within P. knowlesi subpopulations
Pairwise population differentiation index (FST values) using ARLEQUIN software
identified very high and significant genetic differentiation within the subpopulations
originating from Sarawak, Malaysian Borneo (FST = 0.732, P < 0.000, between cluster 1 and
cluster 2), Table S3. Similar high and significant genetic differentiation was also observed
between parasites population of within the laboratory lines and Sarawak, Malaysian
Borneo clusters (Table S3) suggesting that parasitic transmission is confined to each of the
regions. Previous studies have established that these two distinct sympatric subpopulation
clusters from Sarawak, Malaysian Borneo were associated with their primary hosts
that is Macaca fascicularis and Macaca nemestrina (Assefa et al., 2015; Divis et al., 2017).

DISCUSSION
Blood stage antigens, which are localized at the merozoite surface, play an important role
in invasion into erythrocytes. These antigens are directly exposed to host immune
response during merozoite egress, and thus are excellent vaccine candidates. A candidate
antigen should optimally possess low polymorphism to be efficacious across different
geographical locations and avoid allele specific immune response. Recent P. knowlesi
studies on known vaccine candidates for example normocyte binding protein xa and xb
(Ahmed et al., 2014), csp (Fong et al., 2015),msp-142 (Yap et al., 2017) showed high genetic
diversity in field isolates of Malaysia. However, some merozoite surface proteins for
example pkaarp (Muh et al., 2018) and pkmsp1p (Ahmed, Fauzi & Han, 2018a) showed
low levels of polymorphisms, which signifies potential candidacy for vaccine studies.
The 6-cysteine protein family is conserved across Plasmodium species and Pf41 and Pv41
are major blood stage antigens that generate protective immune response in patients
(Crosnier et al., 2013; Hostetler et al., 2015). Low levels of polymorphisms in field isolates
have been reported and may prove to be excellent vaccine candidates (Forero-Rodriguez,
Garzon-Ospina & Patarroyo, 2014). The objectives of the present study were to
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genetically characterize the pk41 gene from clinical isolates from Sarawak, Malaysian
Borneo and study the level of genetic diversity, natural selection acting on the full-length
Pk41 and at its functional s48/45 domains. Sequence alignment of 39 full-length amino
acid sequences of Pk41 showed that it shares approximately 84.9% sequence identity
with its ortholog Pv41. Since P. knowlesi is a primate malaria parasite and closely related to
P. coatneyi (Muehlenbein et al., 2015), its sequence identity was highest with Pco41.
The overall nucleotide diversity of pk41 was low within the clinical isolates (36 SNPs) and
were of similar levels to its ortholog species P. vivax (Forero-Rodriguez, Garzon-Ospina &
Patarroyo, 2014). Despite the fact that phylogenetic analysis of Pk41 amino acid
sequences revealed three distinct subpopulations in Malaysia, the non-synonymous SNPs
in each of the s48/45 domains were very low indicating functional conservation. It is
interesting to note that the diversity observed within the pk41 genes was due to the central
domain which had two repeat regions that is (K-E)n repeat region and the glutamic
acid (E)n repeat region. Insertions of two to three (K-E)n repeats were detected only in
isolates originating from Sarawak, Malaysian Borneo, but not in the laboratory lines
which originated from Peninsular Malaysia (H-strain) and Philippines. Variation of
repeat numbers that is in (K-E)n and (E)n led to size variations within the clinical isolates.
It is also important to note that this (K-E)n repeat region is unique only to P. knowlesi
and absent in its ortholog P. vivax and the clinical isolate originating from Sarawak
had higher number of repeats. The implications of these repeats only in clinical isolates
could be due to recent evolution of P. knowlesi in human population and these repeat
units could be potential targets for immune evasion. Thus, immunological studies
considering these repeat units would be necessary to further characterize as a
vaccine candidate.

Tests of natural selection (using dN-dS, Taj’s D and Li and Fu’s D� and F�) yielded
negative values indicating that the Pk41 is under negative/purifying selection; however, the
P-values were not significant indicating higher sample size would be necessary for a
statistically significant result. Domain-wise analysis of natural selection also indicated
negative selection. It is interesting to note that Pv41 and Pf41 have been found to be under
positive natural selection in various geographical locations (Tonkin et al., 2013; Wang
et al., 2014). The contrasting results observed in P. knowlesi could be because of the
three subpopulations identified in this study and majority of the clinical isolates were from
Sarawak where two subpopulations coexists. In addition to this, there were natural
variations of repeat units (within the central domain) in the clinical isolates and not all
codons could be analyzed for natural selection. Thus, it would be important to collect
higher number of samples to determine natural selection within each subpopulations.
In the current study, it is also worth mentioning the presence of non-synonymous SNPs
within the s48/45 domain II of pk41 showing high Taj D values, which may indicate
possible epitope binding regions under immune selection pressure. However, these would
need further confirmation through immunological studies targeted at these regions.
Reports of positive balancing selection within the C terminal s48/45 domain II of pv41
genes have been recently reported from an endemic region (Wang et al., 2014).
Similar positive peaks for Taj D values for CTL epitope regions in P. falciparum and
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P. knowlesi TRAP protein have been identified (Ahmed, Lau & Quan, 2018b;
Weedall et al., 2007).

The ML-based phylogenetic tree showed separation of the Pk41 proteins from
Malaysian Borneo into two populations while the four laboratory lines (H-strain, Malayan
strain, Philippine Strain and the MR4 strain) formed the third subpopulation
originating from Peninsular Malaysia and Philippines as observed by Assefa et al. (2015).
Interestingly, only s48/45 domain I and II contributed to the grouping of the parasites
into three subpopulations indicating selective forces may play a decisive role in bifurcation
of trees. Previous studies on blood vaccine candidates such as the PkNBPXa (Ahmed
et al., 2016), PkAMA1 (Faber et al., 2015) and PkMSP1P (Ahmed, Fauzi & Han, 2018a)
from Malaysian Borneo also documented geographical separation and the presence of
two P. knowlesi subpopulations for these antigens.

Population differentiation index FST based on Pk41 between the parasite sub-
populations had significantly higher genetic differentiation (FST > 0.7, Table S3) and
this can be attributed to the sympatric nature of the parasite populations and their host
associated factors as identified previously in a genomic study (Assefa et al., 2015).
High genetic differentiation values between long-term isolated laboratory lines and
Sarawak, Malaysian Borneo isolates were due to the geographical distance between the two
regions, which is separated by the South China Sea (Fig. S1). These results indicate
localized transmission in South Asian countries and Malaysian Borneo and the co-
existence of the two sympatric subpopulations in Sarawak, Malaysian Borneo. However, a
vaccine designed based on the low polymorphic s48/45 domains could still be effective
for all the three subpopulations. Thus, further characterization through genetic
as well as immunological studies is necessary.

CONCLUSIONS
The present study is the first to investigate genetic diversity and natural selection of the
pk41 gene from clinical samples of Sarawak, Malaysia. Low level of genetic diversity
was observed within the s48/45 domains of the gene, accompanied by extensive size
variations due to the repeat regions in the central domain. Overall, the gene is probably
under negative/purifying natural selection; however, certain regions in the s48/45 domain
II showed high Tajima’s D values thus could be under balancing selection. Further genetic
studies with higher number of clinical isolates (specifically form Peninsular Malaysia)
as well as immunological studies characterizing the functional domains would be necessary to
validate Pk41 as a potential vaccine candidate.
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