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MRI has been extensively used in neurodegenerative disorders, such as Alzheimer’s
disease (AD), frontal-temporal dementia (FTD), mild cognitive impairment (MCI),
Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis
(ALS). MRI is important for monitoring the neurodegenerative components in other
diseases such as epilepsy, stroke and multiple sclerosis (MS). Manganese enhanced
MRI (MEMRI) has been used in many preclinical studies to image anatomy and
cytoarchitecture, to obtain functional information in areas of the brain and to study
neuronal connections. This is due to Mn2+ ability to enter excitable cells through voltage
gated calcium channels and be actively transported in an anterograde manner along
axons and across synapses. The broad range of information obtained from MEMRI
has led to the use of Mn2+ in many animal models of neurodegeneration which has
supplied important insight into brain degeneration in preclinical studies. Here we provide
a brief review of MEMRI use in neurodegenerative diseases and in diseases with
neurodegenerative components in animal studies and discuss the potential translation
of MEMRI to clinical use in the future.

Keywords: manganese, MEMRI, neurodegeneration, neuronal connectivity, tract tracing, manganese-52,
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INTRODUCTION

MRI is in widespread use for diagnosis of neurological disorders, for monitoring the progression
of disease, response to therapy, and for use in research. MRI is in active development for
all diseases that have a neurodegenerative component. This includes the diseases that are
primarily neurodegenerative such as Alzheimer’s disease (AD), other forms of dementia such as
frontal-temporal dementia (FTD) and mild cognitive impairment (MCI), Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). In addition,MRI is used for the
neurodegenerative components of diseases such as epilepsy, stroke and multiple sclerosis (MS) that
are not primarily caused by neurodegenerative processes. MRI applications to neurological diseases
can be broadly characterized as those where the brain changes have large effects on MRI and can be
used for diagnosis, medical decisions and trials with small numbers of participants. These studies
rely on well-established MRI contrast mechanisms including enhancement in T1 or T2 weighted
MRI, enhancement with gadolinium-based contrast agents, diffusion/perfusion techniques and
fMRI techniques. For example, diffusion MRI is sensitive to early tissue damage due to ischemia
which can influence treatment decisions, whereas long-term injury to tissue due to stroke can be
measured with T1 or T2 based MRI contrast (Yoo et al., 2009; Merino and Warach, 2010). Blood
brain barrier (BBB) breakage, detected due to leak of gadolinium-based agents, due to inflammation
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caused by MS is used to quantify the number of active lesions
which progress to chronic lesions in T1 or T2 based MRI after
extensive tissue damage (Traboulsee et al., 2016; Reich et al.,
2018). MRI contrast has been useful for localizing sites of tissue
damage, and to guide surgery for epilepsy, while fMRI has been
used to map functional areas such as language to guide these
surgeries (Duncan et al., 2016).

MRI has been less successful for diagnosis or treatment
decisions in individuals for most of the primarily
neurodegenerative diseases. In these cases, MRI has been
extremely useful for research or as a way to decrease number of
patients required in large trials where MRI can be an additional
biomarker. Quantitative anatomical studies have been most
useful in these cases. Hippocampal atrophy and ventricular
enlargement have been associated with AD and MCI (Jack et al.,
2004; Thompson et al., 2004; Ridha et al., 2008; Tang et al., 2014).
Cortical thinning has been demonstrated by MRI in a number
of neurodegenerative disorders such as HD (Nopoulos et al.,
2010; Nanetti et al., 2018). The growing sensitivity of MRI due to
increasing field strength and better detectors is allowing studies
to be done at resolutions below 0.125 mm3 (0.5 mm linear
resolution). Smaller volumes of hippocampal subfields such as
the subiculum, CA1, CA3 and dentate gyrus (DG), have been
measured in Alzheimer’s patients compared to MCI and healthy
patients (Kerchner et al., 2010; Mueller et al., 2010; Wisse et al.,
2014). Significant reduction in the olfactory bulb (OB) have also
been reported in AD and PD patients (Thomann et al., 2009;
Wang et al., 2011). In PD, changes in substantia nigra (SN) due
to neurodegeneration have been reported (Kwon et al., 2012;
Lehéricy et al., 2014) and changes in the striatum volume have
been studied in HD (Ross et al., 2014). In patients with ALS,
high resolution MRI has detected anatomical changes in primary
motor cortex and cortical spinal tract (Cosottini et al., 2016).
While these high-resolution studies offer tremendous potential
for moving to analyzing small numbers of patients the effect
sizes have not been large enough to enable MRI to contribute
to diagnosis and response to therapy in individuals. Therefore,
there is a need to develop other strategies to enable MRI to
detect processes associated with neurodegeneration. Manganese
enhanced MRI (MEMRI) has now been used in a large number
of preclinical studies in animal models of neurodegeneration.
Here we present a brief review of this work and discuss the
prospects for translating this type of contrast to humans.

MEMRI has been used to image anatomy and
cytoarchitecture, obtain functional information from different
areas of the brain, and to trace neural connections and axonal
transport rates. All of this relies on the fact that Mn2+ is
essential for brain health and on the rich and complex biology
that the brain uses to move Mn2+. Brain architecture at the
level of cytoarchitecture has been imaged with MRI including
layer specific accumulation in the OB, cortex, hippocampus,
retina, and cerebellum after systemic administration (Watanabe
et al., 2002; Aoki et al., 2004; Lee et al., 2005; Berkowitz et al.,
2006; Silva et al., 2008). Clear cytoarchitectural boundaries for
different brain areas have been identified using MEMRI. Under
the right conditions increased neural activity in a specific area
can lead to increased accumulation of Mn2+ and contrast on

MRI. Sensory, motor, auditory, hypothalamic, and hippocampal
activity have been reported from MEMRI (Lin and Koretsky,
1997; Aoki et al., 2002; Morita et al., 2002; Hsu et al., 2007; Yu
et al., 2008; Eschenko et al., 2010; Hankir et al., 2012). A third
type of information can be obtained from direct injection of
Mn2+ into specific areas of the brain where Mn2+ will move in
an anterograde direction along the direction of information flow
to enable neuronal tracing studies (Pautler et al., 1998). Mn2+

will move transsynaptically allowing circuits to be mapped.
With direct application strategies, MEMRI has been used to
trace sensory pathways such as olfactory, visual, somatosensory,
and auditory pathways. This can be done at the level of specific
cytoarchitectural elements such as individual olfactory glomeruli,
or specific cortical laminae (Pautler et al., 1998; Watanabe et al.,
2001; Van der Linden et al., 2002; Allegrini and Wiessner, 2003;
Leergaard et al., 2003; Cross et al., 2004; Murayama et al., 2006;
Canals et al., 2008; Chuang and Koretsky, 2009; Tucciarone
et al., 2009). Other pathways such as descending motor pathways
and basal ganglia (BG)-striatal pathways have been imaged as
well (Saleem et al., 2002; Pautler et al., 2003; Murayama et al.,
2006). For detailed review on MEMRI procedures please see
Silva et al. (2004). This broad range of information fromMEMRI
has led to its application in animal models of neurodegeneration,
supplying important information about brain degeneration in
preclinical studies.

MEMRI IN ANIMAL MODELS OF
NEURODEGENERATION

Studies Using Systemic Administration of
Manganese
Animal models of neurodegenerative diseases have been used
in many MEMRI studies, that were mainly focused on either
anatomy and cytoarchitecture changes that relates to disease
symptoms and pathology. Following systemic administration
of manganese, contrast in the brain is achieved 24 h later
(Aoki et al., 2004; Lee et al., 2005). This allows the detection
of anatomical and laminar changes in the brain to assess
degeneration.

In AD, large scale neuronal loss due to amyloid-β (Aβ)
plaque formation and the presence of neurofibrillary tangles
(NFTs) occurs at late stages of the disease (Hardy and Selkoe,
2002). Animal models of AD are based on overexpression of
either amyloid precursor protein (APP) or tau protein that
leads to the formation of Aβ plaques or NFTs, respectively. The
rTg4510 mouse model of tauopathy, that express high levels
of human tau and accumulates NFTs, is a model of both AD
and FTD. Following systemic administration of Mn2+, impaired
accumulation of Mn2+ was measured in the total hippocampus
and its subregions, and the amygdala. These are structures that
relate to memory formation deficits that were detected at early
stages of tau formation (3 months of age; Fontaine et al., 2017).
The Mn2+ accumulation in these regions was further reduced
with increased tau pathology at older ages (5–10 months of
age; Perez et al., 2013; Fontaine et al., 2017). The 5XFAD
mouse model that overexpress APP and presenilin 1, showed
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increased signal intensity in the hippocampus at early stages of
AD (2–5 months of age) compared to controls, while behavioral
assays showed increased learning and memory impairment with
mice age (Tang et al., 2016). MEMRI results are also consistent
with glucose studies in AD mouse models where impaired
uptake of glucose (either decreased or increased uptake) was
reported at different ages in mice (Luo et al., 2012; Poisnel
et al., 2012; Macdonald et al., 2014). EEG studies have detected
abnormal spike activity in the hippocampus of AD mice prior to
memory impairments, which may explain the underlying basis
of MEMRI results (Palop et al., 2007; Kam et al., 2016). Indeed,
the increased accumulation of Mn2+ in the 5XFADmouse model
at the early stages of AD, may be related to these EEG changes.
However, the manganese accumulation mechanisms are not yet
fully understood, and it could be due to Mn2+ uptake with
inflammation as there is a report of increased Mn2+ uptake with
elevated inflammation in stroke (Kawai et al., 2010).

MEMRI also enables direct visualization of laminar
specific neurodegeneration and its recovery with treatment.
Olfactory dysfunction is an early symptom of AD (and other
neurodegenerative diseases; Bacon et al., 1998). MEMRI study of
an olfactory-based ADmouse model with overexpression of APP
specifically in olfactory neurons was shown to detect laminar
changes in the OB and this was used to follow neurodegeneration
and recovery following systemic administration of manganese
(Saar et al., 2015). In the OB, overexpression of humanized-APP
resulted in the disruption of the bulb’s laminar structure. There
was decreased manganese enhancement in the glomerular layer
and a decreased OB volume compared to control (Figures 1A,B).
Turning off APP overexpression with doxycycline showed
a significant increase in manganese enhancement of the
glomerular layer after only 1 week (Figure 1C), with further
recovery after 3 weeks of the bulb back to control.

PD is characterized by the loss of dopaminergic neurons in
the pars compacta of the SNc that leads to activity changes in the
BG nuclei. In animal models of PD, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) induces death of dopaminergic
neurons in the SNc. Systemic administration of manganese in
a PD rat model, 2 weeks after MPTP lesioning in the SNc was
induced, resulted in decreased Mn2+ accumulation in the SNc
and striatum, and hippocampal subregions compared to control
rats due to degeneration of dopaminergic neurons. Increased
accumulation was measured in the subthalamic nucleus (STN).
Treatment of MPTP rats with ceftriaxone, was shown to prevent
these changes (Weng et al., 2016). In studies with a PD mouse
model of MPTP intoxication, Mn2+ enhancement was decreased
in the SNc compared to control while the striatum showed
increased Mn2+ enhancement after 2 days (Olson et al., 2016)
and 1 or 2 weeks (Kikuta et al., 2015). In the striatum, the
increased Mn2+ uptake, in the first few days after MPTP
intoxication, was suggested to reflect high astroglial reactivity
due to early striatum termini degeneration, which leads to
increased signal enhancement (Olson et al., 2016). Thus, Mn2+

accumulation could be very dependent on timing with respect
to cell death. Treatment with LBT-3627 (a VIPR2 agonist), prior
to MPTP intoxication did not result in increased manganese
enhancement in the SNc (Olson et al., 2016). These studies

FIGURE 1 | Coronal and horizontal T1 weighted images manganese
enhanced MRI (MEMRI), at 50 µm isotropic resolution, taken 24 h after iv
infusion of 100 mM MnCl2 solution of 4-week-old (A) control, (B) mutant and
(C) mutant mouse after 1 week of doxycycline treatment mice. Reprinted from
Saar et al. (2015) with permission from Elsevier.

show that MEMRI is able to detect neurodegeneration but also
enabled testing different reagents ability to block and/or reverse
neuronal loss.

Systemic administration of manganese was also used to
study neurodegenerative changes in animal models of retinal
degeneration. Dark adapted royal college of surgeons (RCS)
rats, a model of photoreceptor degeneration, underwent MEMRI
before degeneration onset [developmental stage Postnatal day (P)
17] and during the course of degeneration, (P36 and P57, after
the loss of rods and cones, respectively). The retinal thickness
was significantly reduced only in the pathological stage, P57 rats,
compared to age matched control rats. Decreased Mn2+ uptake
was evident in the developmental stage (P17), prior to the onset
of photoreceptor damage, throughout the retina, but increased
at later ages. This was attributed to ionic dysregulation during
pathological retinal thinning (Berkowitz et al., 2008).

Neuronal Tracing Studies With MEMRI
Direct injection of manganese into specific brain areas can be
used to trace neuronal connections in the brain and allows for
the detection of impaired intracellular transport. Thus, MEMRI
can be used to study axonal transport and measure axonal
transport rates in the rodent brain. In the Tg2576 AD mouse
model, Aβ depositions were detected in the OB prior to other
brain areas, which resulted in decreased olfactory function
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(Wesson et al., 2010). Intranasal administration of manganese
showed that the axonal transport rates from the olfactory
epithelium to the OB layers were decreased prior to Aβ plaque
formation and continued to decrease with the progression of
Aβ plaque formation in this mouse model (Smith et al., 2007;
Wang et al., 2012). Similar results were obtained with an
APP knockout (APP−/−) mouse model (Smith et al., 2010).
A MEMRI study in a triple transgenic AD mouse model,
reported decreased axonal transport in the olfactory system,
that preceded Aβ plaque deposition and also the formation of
NFTs (Kim et al., 2011). In the APP knockout (APP−/−) mouse
model, Mn2+ injection into CA3 region of the hippocampus,
showed reduced Mn2+ transport from the hippocampus to
the amygdala and basal forebrain and to the contralateral
hippocampus (Gallagher et al., 2012). Intraocular injection of
Mn2+ also revealed reduced Mn2+ transport in the visual
system of those mice (Gallagher et al., 2012). Similar study
of Mn2+ injection into the CA3 region of the hippocampus
in APPSwInd transgenic mice, that express mutant APP with
both Swedish and Indiana mutations, showed decreased Mn2+

transport along the hippocampus to basal forebrain pathway
with ageing and altered Mn2+ accumulation in APPSwInd
mice that displayed Aβ plaques. This suggest that the natural
alteration in neuronal connections with ageing is further
disrupted with APP overexpression and the formation of Aβ

plaques (Bearer et al., 2018). In addition, MEMRI was used
to assess therapeutic reagents and test their ability to improve
axonal transport. Treatment with R-Flurbiprofen, that selectively
reduce Aβ42, and chronic treatment with MRK-560, a gamma-
secretase inhibitor, were shown to significantly improve axonal
transport rates in Tg2576 mice (Smith et al., 2011; Wang et al.,
2012).

In the rTg4510 mouse model of tauopathy, nasal
administration of Mn2+ revealed axonal transport deficits in the
OB in an age dependent manner starting at 3 months of age,
prior to tau pathology (Majid et al., 2014). This is similar to other
AD mouse models where axonal transport deficits preceded
Aβ plaque formation in the brain. Moreover, a different mouse
model of tauopathy, JNPL3, also measured impaired axonal
transport of Mn2+ with increasing tau pathology (Bertrand et al.,
2013).

Axonal transport of manganese was studied in a widely used
ALS mouse model, the Tg SOD1-G93A, which is a model of
severe neurodegeneration with selective loss of motor neurons
and progressive motor weakness. Intranasal administration of
manganese showed significantly slower transport rates in OB of
ALS mice compared to control mice. Acute treatment with NAP
(davunetide), a microtubule interacting compound that protects
against tau pathology, resulted in similar axonal transport rates as
for control mice in this mouse model of ALS (Jouroukhin et al.,
2013).

Intraocular injection of manganese was used to follow retinal
degeneration changes of P90 RCS rats, in which photoreceptors
are already degenerated. Changes in the retina laminar structure
were detected using MEMRI with the loss of three out of the
seven layers detected in normal retina as well as significant retinal
thinning (Nair et al., 2011).

MEMRI tracing after direct injection was also done in the
unilateral 6-hydroxydopamine (6-OHDA) rat model of PD,
where lesions are induced in the SNc. Mn2+ injection into the
globus pallidus nucleus and SN of unilateral 6-OHDA showed
increased transport across hemispheres in several structures such
as the habenular complex (Hab), and the thalamic anteroventral
compared to control rats (Pelled et al., 2007). This suggests a
large degree of plasticity in this model of neurodegeneration.
A later study used MEMRI to study the etiology of depression
in PD with 6-OHDA rat model. Manganese injection to the
raphe nuclei showed reduced raphe connectivity, following the
loss of dopamine cells and enhanced connectivity in Hab, that
was associated with depression like behavior. Apomorphine
treatment, a dopamine replacement therapy, resulted in partial
recovery in raphe connectivity (Sourani et al., 2012). In contrast
to the previous studies, manganese injection into the STN of
6-OHDA rats in a different study, showed decreased axonal
transport from ipsilateral STN to structures of BG, such
as ventral pallidum compared to control rats (Soria et al.,
2011).

Genetic mutations are associated with axonal transport
impairment that is commonly found in neurodegenerative
diseases, such as APP and tau in AD, SOD1 in ALS, huntingtin
in HD and Parkin in PD (Millecamps and Julien, 2013). Indeed,
decreased axonal transport rates in affected areas of the brain
is a robust finding across a number of animal models of
neurodegenerative diseases presented here. Axonal transport
measurements using MEMRI gives unique information and
would be an ambitious target for potential translation to humans.

MEMRI IN DISEASES WITH
NEURODEGENERATIVE COMPONENTS

Although not defined as neurodegenerative diseases, MS,
stroke, epilepsy, and glaucoma cause neurodegeneration in
later stages. MS is an inflammatory disease of the central
nervous system (CNS) and is characterized with lesions that
can appear throughout the brain and in later stages with
demyelinated axons and progressive neurodegeneration. In
stroke, following the acute stage where an ischemic core is
formed, the later stages are characterized with ongoing vascular
impairment and neurodegeneration. Epilepsy is characterized
by spontaneous recurrent seizures with the development of
hippocampal sclerosis, neuronal cell loss, inflammation and
neurodegeneration.

The most common type of stroke is the ischemic stroke.
Animal models of ischemic stroke includes the middle cerebral
artery occlusion (MCAO) and photothrombotic cortical injury
(PCI). Systemic administration of manganese in rats and mice
that undergo unilateral MCAO and PCI showed increased
manganese accumulation in the perilesional tissue and reduced
Mn2+ transport in the first few days after stroke was induced
(Aoki et al., 2003; Hao et al., 2016; Chan et al., 2017).
The increased Mn2+ uptake was attributed to inflammatory
processes in the perilesional tissue (Kawai et al., 2010; Hao
et al., 2016). This opens the possibility of using Mn2+ to
measure inflammatory responses. It was also shown that
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the affected brain area with enhanced Mn2+ was smaller
than the area that was detected with reduced apparent
diffusion coefficient in diffusion MRI. This was interpreted to
mean that MEMRI detects the ischemic core consistent with
accumulation of Mn2+ being due to inflammation (Kawai et al.,
2010).

Local injection of manganese into the brain was used to study
connectivity in animal models of stroke. Manganese injection
into sensorimotor cortex, 2 weeks after unilateral stroke induced
by MCAO in rats, exhibited reduced and delayed manganese
enhancement in the ipsilateral thalamus and SN which indicates
loss of connectivity of areas in the sensorimotor cortex (van
der Zijden et al., 2007, 2008; Hao et al., 2016). At later time
points, 4 and 10 weeks after stroke, manganese enhancement
was restored in ipsilateral sensorimotor cortex and increased
enhancement was detected in the contralateral hemisphere that
was correlated to functional recovery observed in behavioral
tests (van der Zijden et al., 2008). The accumulation in the
contralateral hemisphere was attributed to increased plasticity
along the corpus callosum (CC). However, manganese injection
into the contralateral primary motor cortex showed declined
manganese enhancement into the ipsilateral sensorimotor cortex
10 weeks after stroke (van Meer et al., 2010). This result was
explained by larger induced lesions and the different location
of manganese injection in this study as compared to the earlier
study.

MEMRI has also been used in animal models of MS. A
common animal model for MS is experimental autoimmune
encephalomyelitis (EAE), which uses active immunization with
CNS homogenates, myelin, or myelin-derived antigens, that
induce autoimmune mediated responses. As optic neuritis is
one of the first symptoms of MS, MEMRI was used to assess
axonal transport in the optic nerve (ON) in EAE animal
models. In an EAE rat model, systemic administration of Mn2+

showed increased signal enhancement in the ON compared
to control rats 24 h after administration, that was correlated
with the severity of axonal loss. The increase in Mn2+ might
have been due to overload of intracellular Ca2+ in response
to axonal damage in the ON (Boretius et al., 2008). In
an EAE mouse model, following intraocular injection, Mn2+

accumulation as well as axonal transport rates were significantly
decreased both in moderate and severe optic neuritis when
compared to control mice. The degree of alteration in axonal
transport was correlated to the extent of visual impairment
and changes in axonal pathology (Lin et al., 2014). In another
study, the EAE mouse model was used to follow changes
in CC connectivity with MEMRI, as atrophy of CC is also
observed in MS patients. Manganese was directly injected
into the visual cortex and the CC was traced over time. An
increase in manganese enhancement was detected in the CC
compared to control mice in the first 14 h after Mn2+ injection
in this study (Chen et al., 2008). It is not clear why an
increase was detected in the CC, but it was suggested that it
involved ion dyshomeostasis, due to increased intracellular Ca2+

accumulation.
Animal models of temporal lobe epilepsy includes the kainic

acid (KA) and pilocarpine induced status epilepticus (SE) models

that represent the acute phase of epilepsy. In the latent phase,
animals are seizure free until the onset of spontaneous recurrent
seizure in the chronic phase. These phases are associated with
different neurobiological changes such as, hippocampal sclerosis,
mossy fiber sprouting, inflammation and neurodegeneration.
MEMRI studies after systemic administration of Mn2+, showed
decreased signal intensity in the hippocampus that was attributed
to decreased neuronal activity in a KA rat model (Alvestad
et al., 2007; Immonen et al., 2008). Decreased manganese signal
in the DG and CA3 was also detected in the acute phase of
30 min induced SE in the pilocarpine model, with the low
signal related to edema and not to cell death (Malheiros et al.,
2014). Increased manganese signal intensity in the DG and
CA3 was detected later in the latent phase (Alvestad et al.,
2007). In the chronic phase the epileptic rats showed increased
signal intensity in the CA3 and DG compared to control
rats. However, this increased MEMRI signal was correlated
with mossy fiber sprouting and not with neurodegeneration
(Immonen et al., 2008; Malheiros et al., 2012) and was not
dependent on seizure frequency (Immonen et al., 2008). In
a different rat model, where SE was induced by lithium-
pilocarpine injection, MEMRI was used to assess mesenchymal
stem cells (MSCs) treatment to reduce epileptogenesis in the
hippocampus. In this study, higher manganese signal was
detected in the DG and CA3 of vehicle treated epileptic rats
compared to controls following systemic Mn2+ administration.
The manganese enhancement was reduced in MSC infused
rats and was associated with suppression of mossy fiber
sprouting seen by histology in the MSC group (Fukumura et al.,
2018).

In a MEMRI study of neuronal activation, increased
manganese signal intensity was observed in the CA3 region
of the hippocampus in the acute phase of KA-treated rats
compared to control. Injection of diltiazem, an L-type calcium
channel blocker, to KA-treated rats, resulted in attenuation of
the manganese signal in the CA3 demonstrating an activity
dependent uptake. This was correlated with decreased focal
edema and decreased neuronal swelling observed by histology
following diltiazem injection (Hsu et al., 2007). Direct injection
of manganese into the entorhinal cortex of KA injected rats
resulted in increased number of manganese enhanced pixels
in the DG and CA3 compared to control rats. This increase
was correlated to histological mossy fiber sprouting (Nairismägi
et al., 2006). Direct Mn2+ injection into the lateral ventricle
also resulted in increased manganese enhancement in the
hippocampus, CA1 and DG, but was inversely correlated with
seizure frequency (Dedeurwaerdere et al., 2013).

Glaucoma is characterized by progressive degeneration
of retinal ganglion cells, that later effect structures along
the visual pathway in the brain. Although not primarily a
neurodegenerative disease, its main clinical impact is due to
neurodegeneration. The DBA/2J mouse model is a late onset,
hereditary glaucoma model associated with age dependent
increase in intraocular pressure. MEMRI studies with DBA/2J
mice showed changes in ocular anatomy due to glaucoma
(Calkins et al., 2008) and decreased manganese enhancement in
superior colliculus, ON and lateral geniculate nucleus compared
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to control mice that was further decreased with age (Fiedorowicz
et al., 2018; Yang et al., 2018). Similar results were obtained
in an induced ocular hypertension rat model of chronic
glaucoma, where decreased Mn2+ enhancement in the ON of the
glaucomatous eye was observed after intravitreal injection (Chan
et al., 2008).

TRANSLATING MEMRI TO HUMANS

The large number of studies that have used Mn2+ as a contrast
agent in neurodegenerative diseases to assess both anatomical
and neuronal connectivity changes in preclinical studies, makes
it interesting to determine if it may be possible to apply
MEMRI to humans. Unfortunately, the potential use of Mn2+

as a contrast agent in human studies of neurodegeneration is
limited by toxicity. Most of the animal studies are done at
doses that might be hard to justify in humans (Chandra and
Shukla, 1976; Wolf and Baum, 1983; Crossgrove and Zheng,
2004). In the past, mangafodipir (MnDPDP, Teslascan), an
FDA-approved chelatedMn2+ contrast agent was used in clinical

studies to image healthy volunteers and patients with liver
metastases, pancreatic cancer, and myocardial infarction (Wang
et al., 1997; Federle et al., 2000; Schima et al., 2002; Skjold
et al., 2007). The specific tissue contrast is due to release of
Mn2+ from the chelate due to transmetalation with zinc in the
blood. However, the FDA-approved label indication for liver
metastases detection did not warrant further production and
it is not widely available. Furthermore, FDA-approved doses
are lower than used in animal studies of neurodegeneration.
Nevertheless, animal studies have shown the potential usefulness
of MnDPDP to study retinal degeneration (Olsen et al., 2008;
Tofts et al., 2010). Unlike gadolinium-based agents, which
are extracellular agents with rapid clearance that requires
significant extracellular space to detect, the manganese signal
enhancement is due to intracellular accumulation of Mn2+

that lasts in the tissue long after it is cleared from the
blood. This property provides the unique contrast in the brain
where cytoarchitecture, activity and neuronal tracing can be
detected. Early studies with MnDPDP administration to healthy
volunteers, showed increased Mn2+ enhancement in the choroid

FIGURE 2 | 52Mn nasal administration in monkeys (A) positron emission tomography (PET) images co-registered with MRI images from front to back immediately
after (day 0) and 7 days after nasal administration of 52Mn2+. 52Mn2+ solution of 7-22 MBq (0.2–0.6 mCi) was administered to both nostrils on day 0 (total volume
0.5 ml). Immediately after 52Mn2+ administration the radioactivity is localized only to the nose area. By day 7 the 52Mn2+ traced into the brain from the nose to the
amygdala. (B) Olfactory pathway in monkeys. PET images co-registered with MRI images following 52Mn2+ administration into the nostrils and the corresponding
monkey atlas images (Martin and Bowden, 2000). 52Mn2+ administration to the nostrils traces the olfactory pathway from the nose to the olfactory bulb (OB), then to
the olfactory tract, olfactory nucleus, piriform cortex, amygdala and the frontal cortex. Reprinted from Saar et al. (2018) with permission from Springer.
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plexus and pituitary gland, structures that lack a BBB (Wang
et al., 1997; Sudarshana et al., 2018). It will be interesting to
see if MnDPDP enhances the brain in human studies in cases
where there is breakdown of the BBB, due to MS and other
disorders.

Parenteral nutrition contains manganese, making this a
possible way to administer Mn2+. Signal enhancement in BG
structures, mainly the globus pallidus, in T1 weighted images
was reported. However, in these cases the patients received
long-term parenteral nutrition (>1 month), showed very high
whole blood manganese concentrations and in some cases
developed parkinsonian-like symptoms. No signal change was
detected in the brain of control patients and low manganese
exposure patients (Quaghebeur et al., 1996; Aschner et al., 2015;
Livingstone, 2018). With these limitations, parenteral nutrition
may be useful for some clinical applications of MEMRI. In
the past, MnCl2 solution was given intravenously to healthy
volunteers to study its safety and efficacy for cardiovascular
imaging. Decreased myocardium T1 values were measured while
no adverse events and good tolerance for MnCl2 were reported
(Fernandes et al., 2011). This may allow the use of MnCl2
solution, at appropriate doses, for brain imaging in clinical
studies.

Another approach would be to use radioactiveMn2+ to enable
positron emission tomography (PET) studies rather than rely on
MRI. Recent advances in preparation of high energy radiotracers
allow for the production of two manganese radiotracers for
PET imaging; manganese-51 (51Mn) and manganese-52 (52Mn)
with half-lifes of 46 min and 5.6 days, respectively. As PET has
higher sensitivity than MRI, a lower concentration of Mn2+

can be used for PET, that may enable its use in clinical studies
to obtain information that has been shown to be useful in
preclinical MEMRI studies. Indeed, manganese-54, a gamma-
emitter (54Mn, t1/2 = 312.5 days) has been used to study
manganese accumulation of tissues in the body of mice and
monkeys (Dastur et al., 1971; Lydén et al., 1983) and has been
used to visualize specific neuronal connections in rats (Sloot and
Gramsbergen, 1994; Tjälve et al., 1996; Takeda et al., 1998). Due
to its high gamma energy and long half-life (∼1 year), 54Mn is
not likely to be clinically useful.

The half-life of 5.6 days, of the positron emitter 52Mn allows
its use in longitudinal biodistribution studies in the body and
brain (Topping et al., 2013; Graves et al., 2015; Brunnquell
et al., 2016; Hernandez et al., 2017; Napieczynska et al., 2017;
Saar et al., 2018). MEMRI studies have shown that following
systemic administration, the final distribution of manganese
in the brain that allows anatomical structures was achieved
24 h after infusion. This makes 52Mn a suitable radiotracer for
imaging of brain anatomy and function. 52Mn2+ infusion in
rats showed manganese accumulation of the radiotracer in the
head and brain with a similar contrast to that seen in MEMRI
(Brunnquell et al., 2016; Saar et al., 2018).

The ∼6 days half-life of 52Mn should also allow neuronal
tracing studies. Intranasal administration of 52Mn2+ traces the
olfactory pathway over the course of several days in monkeys
(Figure 2; Saar et al., 2018) similar to MEMRI (Pautler
et al., 1998; Chuang and Koretsky, 2009). Immediately after

administration 52Mn2+ radioactivity was localized in the nasal
turbinates with no manganese accumulation in the brain. By
4 days later 52Mn2+ could be traced to the amygdala and
prefrontal areas of the cortex (Figure 2). Nepieczynska et al
(Napieczynska et al., 2017) showed imaging of the dopaminergic
and striatonigral pathways in rats 24 h after direct injection of
52Mn2+ into the ventral tegmental area and the dorsal striatum,
respectively. The ability of 52Mn2+ to follow neuronal pathways
after direct injection of the 52Mn2+ PET tracer to a specific
area in the brain similar to MEMRI, can be used to study all
the neuronal pathways already studied with MEMRI such as
the visual and BG pathways (Pautler et al., 1998; Watanabe
et al., 2001; Murayama et al., 2006). Quantification of the axonal
transport changes as has been done inMEMRI for animal models
of neurodegenerative diseases should also be possible. Finally,
the rise in usefulness of focused ultrasound to break the BBB
in human should enable delivery of Mn2+ to any area of the
human brain, as has already been shown in rodents (Howles
et al., 2010). It is interesting that the manganese radiotracer
52Mn2+ for PET imaging acts so similar to that of Mn2+ in
MEMRI, even though the PET dose is ∼2,000-fold lower (Saar
et al., 2018). The lower PET resolution may present a problem
for using Mn-PET instead of MEMRI as it limits the ability
to detect cytoarchitecture and small structures in the brain.
However, the growing interest in PET/MRI systems may enable
the use of Mn-PET with high resolution MRI image registration.
These results demonstrates that 52Mn2+ may be useful in human
studies for imaging neurodegeneration by tracking changes
in neuronal connections and anatomical changes at clinically
safe doses.

CONCLUSION

In conclusion, there is a large growth of preclinical
literature that has used MEMRI to study different aspects
of neurodegeneration. Due to the wide variety of mechanisms
that the brain uses for accumulation of Mn2+, care must be
taken in assigning the cellular mechanism for any changes
in MEMRI after systemic Mn2+ administration. However,
tracing studies that use Mn2+ to measure changes in axonal
transport have been more straightforward. MEMRI has been
used to assess pharmacological treatments in animal models of
neurodegeneration and can serve as a screening tool to identify
potential therapeutics. Development of MRI agents that can be
used at safe doses or use of PET manganese radiotracers might
enable the translation of these exciting results to humans.
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