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Abstracting Asynchronous Multi-Valued Networks

Jason STEGGLES1

Abstract

Multi-valued networks (MVNs) provide a simple yet expressive qual-
itative state based modelling approach for biological systems. In this
paper we develop an abstraction theory for asynchronous MVNs that
allows the state space of a model to be reduced while preserving key
properties. The abstraction theory therefore provides a mechanism
for coping with the state space explosion problem and supports the
analysis and comparison of MVNs. We take as our starting point
the abstraction theory for synchronous MVNs which uses the under–
approximation approach of trace set inclusion. We show this defini-
tion of asynchronous abstraction allows the sound inference of analy-
sis properties and preserves other interesting model properties. One
problem that arises in the asynchronous case is that the trace set of
an MVN can be infinite making a simple trace set inclusion check in-
feasible. To address this we develop a decision procedure for checking
asynchronous abstractions based on using the finite state graph of an
asynchronous MVN to reason about its trace semantics and formally
show that this decision procedure is correct. We illustrate the abstrac-
tion techniques developed by considering two detailed case studies in
which asynchronous abstractions are identified and validated for exist-
ing asynchronous MVN models taken from the literature.

Keywords: Multi-valued networks, abstraction techniques, biological
modelling, qualitative modelling.

1 Introduction

Multi-valued networks (MVNs) [25, 34, 35] are an expressive qualitative
modelling approach for biological systems (for example, see [35, 7, 28, 3]).
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They extend the well–known Boolean network [17, 18] approach by allowing
the state of each regulatory entity to be within a range of discrete values in-
stead of just true or false. The state of each regulatory entity is influenced
by other regulatory entities in the MVN and entities update their state
using either a synchronous update strategy [18, 39] where all entities simul-
taneously update their state, or an asynchronous update strategy [33, 15, 36]
where entities update their state independently using a non-deterministic
approach.

While MVNs have shown their usefulness for modelling and under-
standing biological systems further work is still needed to strengthen the
techniques and tools available for MVNs. One interesting area that needs
developing is a theory for abstracting MVNs. Abstraction techniques allow
a simpler model to be identified which can then be used to provide insight
into the more complex original model. Such techniques are well–known in
the formal verification community as a means of coping with the complex-
ity of formal models (see for example [9, 6, 10, 13]). The main motivation
behind developing such a theory for MVNs can be summarised as follows:

(1) The analysis of MVNs is limited by the well–known problem of state
space explosion. Using abstraction allows analysis results about a model to
be inferred from a simpler approximate model and so provides a means of
coping with the state space explosion problem.
(2) Often several MVNs are defined at different levels of abstraction when
modelling a system. It is therefore important to be able to formally relate
these models using an appropriate theory.
(3) An abstraction theory would provide a basis for the step–wise refinement
of MVNs.
(4) Identifying an abstraction for a complex MVN provides a means of bet-
ter visualising and understanding the behaviour an MVN, giving greater
insight into the system being modelled.

The abstraction theory we present for asynchronous MVNs is based on
extending the synchronous abstraction theory presented in [5]. We formu-
late a notion of what it means for an asynchronous MVN to be correctly
abstracted by a simpler MVN with the same network structure but smaller
state space. The idea is to use an abstraction mapping to relate the reduced
state space of an abstraction to the original MVN. An abstraction is then
said to be correct if its set of asynchronous traces is within the abstracted
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traces of the original MVN. This definition of abstraction represents an
under–approximation [9, 24] approach since not all of the behaviour of the
original MVN is guaranteed to have been captured within the abstraction.
We show that this approach allows sound analysis inferences about positive
reachability properties in the sense that any reachability result shown on an
abstraction must hold on the original model. An important result of this
is that it therefore follows that all attractors of an asynchronous abstrac-
tion correspond to attractors in the original MVN. Note that an alternative
approach commonly used in abstraction is to use an over–approximation
[9, 24, 10] in which false positives may occur for reachability results. How-
ever, such an approach appears to be problematic for MVNs and we discuss
this further in Section 3.

The non-deterministic nature of asynchronous MVNs mean that we
encounter additional complications compared to the synchronous case; an
asynchronous MVN can have an infinite set of traces which means that
directly testing trace inclusion to check a proposed abstraction is infeasi-
ble. We overcome these difficulties by constructing a decision procedure for
checking asynchronous abstractions that is based on the underlying finite
state graph of an MVN. We introduce the idea of step terms which are used
to denote possible ways to use sets of concrete states to represent abstract
states. The decision procedure starts with the set of all possible step terms
and then iteratively prunes the set until either a consistent abstract repre-
sentation has been found or the set of remaining step terms is too small to
make it feasible to continue. We provide a detailed proof that shows the de-
cision procedure correctly identifies asynchronous abstractions and discuss
the complexity of the decision procedure.

We illustrate the abstraction theory we develop by considering two de-
tailed case studies in which asynchronous abstractions are identified for bio-
logical MVN models taken from the literature. The first case study considers
an MVN model of the regulatory network that controls the biosynthesis of
tryptophan by the bacteria Escherichia coli [29, 27]. Tryptophan is essential
for the development of E. coli and its resource intensive synthesis is carefully
controlled to ensure its production only occurs when an external source is
not available. We investigate identifying asynchronous abstractions for an
existing MVN model of this regulatory mechanism which was developed in
[30]. The second case study considers a model for the genetic regulatory
network controlling the lysis–lysogeny switch in the bacteriophage λ [32, 7].
Bacteriophage λ [34, 23] is a virus which after infecting the bacteria E. coli
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makes a decision to switch to one of two possible reproductive phases: in
the lytic cycle the virus generates as many new viral particles as the infected
cell’s resources allow and then lyse the cell wall to release the new phage;
in the lysogenic cycle the λ DNA integrates into the host DNA providing
it with immunity from other phages and allowing it to be replicated with
each cell division. We consider identifying asynchronous abstractions for a
four entity MVN model [32] of the lysis–lysogeny switching mechanism.

The paper is organized as follows. In Section 2 we provide a brief
overview of the MVN framework and present a simple illustrative example.
In Section 3 we formulate a notion of abstraction for asynchronous MVNs
and consider the analysis properties that can be inferred from an abstrac-
tion. In Section 4 we present a decision procedure for checking asynchronous
abstractions and provide a detailed proof of correctness for this procedure.
In Section 5 we illustrate the theory and techniques developed by present-
ing two case studies that consider identifying asynchronous abstractions for
MVN models taken from the biological modelling literature. Finally, in
Section 6 we present some concluding remarks and discuss related work.

2 Multi-valued Network Models

In this section, we introduce multi-valued networks (MVNs) [25, 34, 35], a
qualitative modelling approach which extends the well-known Boolean net-
work [17, 18] approach by allowing the state of each regulatory entity to be
within a range of discrete values. MVNs can therefore discriminate between
the strengths of different activated interactions, something which Boolean
networks are unable to capture. MVNs have been extensively studied in cir-
cuit design (for example, see [25, 20]) and successfully applied to modelling
biological systems (for example, see [35, 7, 28, 3]).

An MVN consists of a set of logically linked entities G = {g1, . . . , gk}
which regulate each other in a positive or negative way. Each entity gi in an
MVN has an associated set of discrete states Y (gi) = {0, . . . ,mi}, for some
mi ≥ 1, from which its current state is taken. Note that a Boolean network
is therefore simply an MVN in which each entity gi has a Boolean set of
states Y (gi) = {0, 1}. Each entity gi also has a neighbourhood N(gi) =
{gi1 , . . . , gil(i)} which is the set of all entities that can directly affect its
state. A given entity gi may or may not be a member of N(gi) and any
entity in which N(gi) = {} is taken to be an input entity whose regulation
is outside the current model. The behaviour of each entity gi based on
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these neighbourhood interactions is formally defined by a logical next-state
function fgi which calculates the next-state of gi given the current states of
the entities in its neighbourhood.

We can define an MVN more formally as follows.

Definition 1. An MVN MV is a four-tuple MV = (G, Y,N, F ) where:
i) G = {g1, . . . , gk} is a non-empty, finite set of entities;
ii) Y = (Y (g1), . . . , Y (gk)) is a tuple of state sets, where each Y (gi) =
{0, . . . ,mi}, for some mi ≥ 1, is the state space for entity gi;
iii) N = (N(g1), . . . , N(gk)) is a tuple of neighbourhoods, such that N(gi) ⊆
G is the neighbourhood of gi; and
iv) F = (fg1 , . . . , fgk) is a tuple of next-state multi-valued functions, such
that if N(gi) = {gi1 , . . . , gin} then the function fgi : Y (gi1)×· · ·×Y (gin) →
Y (gi) defines the next state of gi. ✷

Consider the following simple example PL2 of an MVN defined in Fig-
ure 1 which models the core regulatory mechanism for the lysis–lysogeny
switch [34, 23] in the bacteriophage λ (this model is taken from [32]). It
consists of two entities CI and Cro, defined with neighbourhoods N(CI ) =
{CI ,Cro} and N(Cro) = {CI ,Cro}, and state spaces Y (CI ) = {0, 1} and
Y (Cro) = {0, 1, 2}. The next-state functions for each entity are defined
using the state transition tables presented in Figure 1.(b) (where [gi] is used
to denote the next state of entity gi). We can summarise the interactions
as follows: entity Cro inhibits the expression of CI and at higher levels of
expression, also inhibits itself; entity CI inhibits the expression of Cro while

2CroCI

Interactions

Inhibition
Activation

CI Cro [CI ] [Cro]

0 0 1 1
0 1 0 2
0 2 0 1
1 0 1 0
1 1 0 0
1 2 0 1

(a) Network structure (b) State transition tables

Figure 1: The MVN model PL2 of the core regulatory mechanism for the
lysis-lysogeny switch in bacteriophage λ (taken from [32]).
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promoting its own expression. (Note we say A inhibits B if A acts to reduce
the state of B, and A promotes B if A acts to increase the state of B.)

An MVN is said to satisfy the unit state step assumption [34] if every
entity increases/decreases its state in unit steps of ±1 . We note that the
assumption of unit state steps is often made in the literature when using
MVNs (for example, see [8]). We avoid making this explicit assumption in
Definition 1 since it is not required for the theoretical results we develop.
However, in Section 3 we show that our notion of abstraction preserves the
unit state step assumption (see Theorem 12).

In the sequel, let MV = (G, Y,N, F ) be an arbitrary MVN. In a slight
abuse of notation we let gi ∈ MV represent that gi ∈ G is an entity in MV.

A global state of an MVN MV with k entities is represented by a tuple
of states (s1, . . . , sk), where si ∈ Y (gi) represents the state of entity gi ∈ MV.
As a notational convenience we often use s1 . . . sk to represent a global state
(s1, . . . , sk). When the current state of an MVN is clear from the context
we let gi denote both the name of an entity and its corresponding current
state. The global state space of an MVN MV, denoted SMV, is the set of all
possible global states SMV = Y (g1)× · · · × Y (gk).

The state of an MVN can be updated either synchronously (see [18, 39]),
where the state of all entities is updated simultaneously in a single update
step, or asynchronously2 (see [33, 15]), where entities update their state
independently. We define these update strategies more formally as follows:

Definition 2.

1) Synchronous Update: Given two states S1, S2 ∈ SMV, we let S1
Syn
−−→ S2

represent a synchronous update step such that S2 is the state that results
from simultaneously updating the state of each entity gi using its next-state
function fgi and the appropriate states from S1 as indicated by the neigh-
bourhood N(gi).

2) Asynchronous Update: For any gi ∈ MV and any state S ∈ SMV we
let [S]gi denote the global state that results by updating the state of gi in
S using fgi . Define the global state function nextMV : SMV → P(SMV) on
any state S ∈ SMV by

nextMV(S) = {[S]gi | gi ∈ MV and [S]gi 6= S}

2Note that different variations of the asynchronous semantics have been considered in
the literature (see for example [26]) but that we focus on the one most commonly used
for MVNs.
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Given a state S1 ∈ SMV and S2 ∈ nextMV(S1), we let S1
Asy
−−→ S2 represent

an asynchronous update step. ✷

Note that given the above definition, only asynchronous update steps
that result in a change in the current state are considered (see [15]).

Continuing with our example, consider the global state 12 for PL2 (see

Figure 1) in which CI has state 1 and Cro has state 2. Then 12
Syn
−−→ 01 is

a single synchronous update step on this state resulting in the new state 11.
Considering an asynchronous update, we have nextMV(12) = {02, 11} and

12
Asy
−−→ 02 and 12

Asy
−−→ 11 are valid asynchronous update steps.

The sequence of update steps from an initial global state through SMV

is called a trace. In the case of the synchronous update semantics such
traces are deterministic and infinite. Given that the global state space is
finite, this implies that a synchronous trace must eventually enter a cycle,
known formally as an attractor cycle [18, 35].

Definition 3. A synchronous trace σ is a list of global states σ =

〈S0, S1, S2, . . . 〉, where Si
Syn
−−→ Si+1, for i ≥ 0. ✷

The set of all synchronous traces, denoted TrS(MV), therefore com-
pletely characterizes the behaviour of an MVN model under the synchronous
semantics and is referred to as the synchronous trace semantics ofMV. Note
that we have one synchronous trace for each possible initial state and so the
set of synchronous traces is always finite (see [18, 39]).

In the asynchronous case, traces are non-deterministic and can be fi-
nite or infinite. A single initial state can have an infinite number of possible
asynchronous traces starting from it and thus in the asynchronous case there
can be infinite number of traces.

Definition 4. An asynchronous trace σ is either:

i) a finite sequence of global states σ = 〈S0, S1, . . . , Sn〉, where Si
Asy
−−→ Si+1,

for i = 0, . . . , n− 1, and nextMV(Sn) = {}.

ii) an infinite sequence of global states σ = 〈S0, S1, S2, . . . 〉, where Si
Asy
−−→

Si+1, for i ≥ 0. ✷

The set of all asynchronous traces, denoted TrA(MV), therefore com-
pletely characterizes the behaviour of an MVNmodel under the asynchronous
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Figure 2: The (a) synchronous and (b) asynchronous state graphs for PL2.

semantics and is referred to as the asynchronous trace semantics ofMV. Any
state S ∈ SMV which cannot be asynchronously updated, i.e. nextMV(S) =
{}, is referred to as a point attractor [34].

In our running example, PL2 has a state space of size |SPL2| = 6 and
has the following (finite in this case) set of asynchronous traces:

〈00, 01, 02, 01, 02, . . .〉 〈11, 01, 02, 01, 02, . . .〉
〈00, 10〉 〈11, 10〉
〈01, 02, 01, 02, . . .〉 〈12, 02, 01, 02, 01, . . .〉
〈02, 01, 02, 01, . . .〉 〈12, 11, 01, 02, 01, . . .〉
〈10〉 〈12, 11, 10〉

From the above traces it is clear that state 10 is a point attractor for PL2.

The behaviour of an MVN under the synchronous or asynchronous
trace semantics can be represented by a state graph (for example, see [36])
in which the nodes are the global states and the edges are precisely the

update steps allowed. We let SGS(MV) = (SMV,
Syn
−−→) and SGA(MV) =

(SMV,
Asy
−−→) denote the corresponding state graphs under the synchronous

and asynchronous trace semantics.

The synchronous and asynchronous state graphs for PL2 are presented
in Figure 2.

When analysing the behaviour of an MVN it is important to consider
its attractors which can represent important biological phenomena, such
as different cellular types like proliferation, apoptosis and differentiation
[16]. In the synchronous case all traces are infinite and so must lead to a
cyclic sequence of states which are taken as an attractor [18, 35, 39]. As
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an example, consider PL2 (see Figure 2.(a)) which has the point attractor

10 → 10; and attractors 00
Syn
−−→ 11

Syn
−−→ 00 and 01

Syn
−−→ 02

Syn
−−→ 01 of

period 2. In the asynchronous case we have point attractors which are states
that cannot be updated and also the strongly connected components3 in an
MVN’s asynchronous state graph are considered to be attractors [36]. Again,
considering PL2 (see Figure 2.(b)) we can see that in the asynchronous case

it has a point attractor 10 and an attractor 01
Asy
−−→ 02

Asy
−−→ 01.

3 Asynchronous Abstractions

In this section we consider developing a notion of abstraction for asyn-
chronous MVNs. The idea is to formulate what it means for an MVN to
be correctly abstracted by a simpler MVN with the same network structure
but smaller state space. We take as our starting point the abstraction tech-
niques developed for synchronous MVNs [5] and investigate extending these
to the asynchronous case. We show that our approach allows sound analysis
inferences about positive reachability properties and that all attractors of
an asynchronous abstraction correspond to attractors in the original MVN.

We begin by recalling the notion of a state mapping and abstraction
mapping [5] used to reduce an entity’s state space.

Definition 5. Let MV be an MVN and let gi ∈ MV be an entity such
that Y (gi) = {0, . . . ,m} for some m > 1. Then a state mapping φ(gi) for
entity gi is a surjective mapping φ(gi) : {0, . . . ,m} → {0, . . . , n}, where
0 < n < m. ✷

The state mapping must be surjective to ensure that all states in the
new reduced state space are used. From a biological viewpoint it may also
be reasonable to further restrict the state mappings considered, for example,
only considering those mappings which are order-preserving. Note we only
consider state mappings with a codomain larger than one, since a singular
state entity does not appear to be of biological interest.

As an example, consider entity Cro ∈ PL2 (see Figure 1) which has
the state space Y (Cro) = {0, 1, 2}. It is only meaningful to simplify Cro to
a Boolean entity and so there are two possible state mappings of interest to

3A strongly connected component of a graph is a maximal set of nodes such that every
node is reachable from each other in the set [36].



258 J. Steggles

achieve this:

φ(Cro) = {0 7→ 0, 1 7→ 1, 2 7→ 1}, φ′(Cro) = {0 7→ 0, 1 7→ 0, 2 7→ 1}.

In the examples that follow we choose to use the first state map φ(Cro)
which maps state 0 to 0 and merges states 1 and 2 into a single state 1.

In order to be able to simplify several entities at the same time during
the abstraction process we introduce the notion of a family of state map-
pings.

Definition 6. Let MV = (G, Y,N, F ) be an MVN with entities G =
{g1, . . . , gk}. Then an abstraction mapping φ = 〈φ(g1), . . . , φ(gk)〉 for MV
is a family of mappings such that for each 1 ≤ i ≤ k we have φ(gi) is either
a state mapping for entity gi or is the identity mapping Igi : Y (gi) → Y (gi)
where Igi(s) = s, for all s ∈ Y (gi). Furthermore, for φ to be useful we
normally insist that at least one of the mappings φ(gi) is a state mapping.

✷

Note in the sequel given a state mapping φ(gi) we let it denote both
itself and the corresponding abstraction mapping containing only the single
state mapping φ(gi).

An abstraction mapping φ can be used to abstract an asynchronous
trace (see Definition 4) using a similar approach to that detailed for syn-
chronous traces [5]. We begin by defining how an abstraction mapping can
be lifted to a global state.

Definition 7. Let φ = 〈φ(g1) . . . φ(gk)〉 be an abstraction mapping for
MV. Then φ can be used to abstract a global state s1 . . . sk ∈ SMV by ap-
plying it pointwise, i.e. φ(s1 . . . sk) = φ(g1)(s1) . . . φ(gk)(sk). ✷

We can apply an abstraction mapping φ to an asynchronous trace
σ ∈ TrA(MV) by applying φ to each global state in the trace in the obvi-
ous way and then merging consecutive identical states. Note that removing
consecutive identical states is needed to ensure abstracted traces are well-
defined since by the definition of an asynchronous trace (see Definition 4)
each asynchronous update rule must result in a new global state (i.e. the
state of an entity has to change in order for a state transition to occur).

Definition 8. Let φ = 〈φ(g1) . . . φ(gk)〉 be an abstraction mapping for
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MV and let σ ∈ TrA(MV) be either a finite σ = 〈S0, S1, . . . , Sn〉 or infinite
σ = 〈S0, S1, S2, . . . 〉 asynchronous trace. Then φ(σ) is the abstracted trace
that results by

i) First apply the abstraction mapping to each state in σ, i.e. in the finite
case 〈φ(S0), φ(S1), . . . , φ(Sn)〉 or in the infinite case 〈φ(S0), φ(S1), φ(S2), . . . 〉.
ii) Next merge consecutive identical global states in the trace into a sin-
gle global state to ensure that no two consecutive states are identical in
the resulting abstracted trace, i.e. suppose the result is an infinite trace
〈φ(S0), φ(S1), φ(S2), . . . 〉 then we know φ(Si) 6= φ(Si+1), for all i ∈ N. ✷

We let φ(TrA(MV)) = {φ(σ) | σ ∈ TrA(MV)} denote the set of ab-
stracted traces.

As an example, consider applying the abstraction mapping φ(Cro) =
{0 7→ 0, 1 7→ 1, 2 7→ 1} to the PL2 asynchronous trace 〈00, 01, 02, 01, 02, . . .〉.
Part i) of Definition 8 above results in the trace 〈00, 01, 01, 01, 01, . . .〉; we
now merge identical consecutive states to derive the abstracted trace 〈00, 01〉.
It is interesting to note that abstracting an infinite trace can result in a finite
abstracted trace, as above. The intuition here is that a cyclic set of states
have been abstracted to a single point. The complete set of abstracted
asynchronous traces of PL2 using φ(Cro) are given below:

φ(Cro)(〈00, 01, 02, 01, 02, . . .〉) = 〈00, 01〉
φ(Cro)(〈00, 10〉) = 〈00, 10〉
φ(Cro)(〈01, 02, 01, 02, . . .〉) = 〈01〉
φ(Cro)(〈02, 01, 02, 01, . . .〉) = 〈01〉
φ(Cro)(〈10〉) = 〈10〉
φ(Cro)(〈11, 01, 02, 01, 02, . . .〉) = 〈11, 01〉
φ(Cro)(〈11, 10〉) = 〈11, 10〉
φ(Cro)(〈12, 02, 01, 02, 01, . . .〉) = 〈11, 01〉
φ(Cro)(〈12, 11, 01, 02, 01, . . .〉) = 〈11, 01〉
φ(Cro)(〈12, 11, 10〉) = 〈11, 10〉

The definition of an asynchronous abstraction is based on its trace se-
mantics and follows along similar lines to that for the synchronous case [5].
We say an asynchronous abstraction is correct if its set of traces is within
the abstracted traces of the original MVN. This definition of abstraction
represents an under–approximation [9, 24] approach since not all of the be-
haviour of the original MVN is guaranteed to have been captured within
the abstraction (we discuss the implications of this below).
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Definition 9. Let MV1 = (G1, Y1, N1, F1) and MV2 = (G2, Y2, N2, F2)
be two MVNs with the same structure, i.e. G1 = G2 and N1(gi) = N2(gi),
for all gi ∈ MV1. Let φ be an abstraction mapping from MV2 to MV1.
Then we say that MV1 asynchronously abstracts MV2 under φ, denoted
MV1 ✁

φ
A MV2, if, and only if, TrA(MV1) ⊆ φ(TrA(MV2)). ✷

As an abstraction example, consider the MVN APL2 defined in Figure
3 which has the same structure as PL2 (see Figure 1) but is a Boolean model.
Then given the abstraction mapping φ(Cro) = {0 7→ 0, 1 7→ 1, 2 7→ 1} we

CI Cro [CI ] [Cro]

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

〈00, 01〉 〈10〉
〈00, 10〉 〈11, 01〉
〈01〉 〈11, 10〉

00

01

10

11

Figure 3: State transition tables defining APL2, the associated asyn-
chronous trace semantics TrA(APL2) and asynchronous state graph.

can see that TrA(APL2) ⊆ φ(Cro)(TrA(PL2)) holds and so APL2 is an

abstraction of PL2, i.e. APL2 ✁
φ(Cro)
A PL2 holds. Note that APL2 has

two point attractors: 01 and 10 which correspond to the two attractors
associated with PL2 (see Figure 2.(b)) and thus, APL2 can bee seen to be
a good approximation of the behaviour of PL2.

Recall that one of the original motivations for developing an abstraction
theory was to aid the analysis of complex MVNs. It is therefore important
to consider what properties of an asynchronous MVN can be inferred from
an abstraction MVN. We consider reachability and the existence of attrac-
tors since these are the main properties that are considered when analysing
an MVN.

Theorem 10. Let MV1 ✁
φ
A MV2 and let S1, S2 ∈ SMV1 . If S2 is reach-

able from S1 in MV1 then there must exist states S′

1, S
′

2 ∈ SMV2 such that
φ(S′

1) = S1, φ(S
′

2) = S2, and S′

2 is reachable from S′

1 in MV2.

Proof. Since S2 is reachable from S1 there must exist a trace σ ∈ TrA(MV1)
which begins with state S1 and which contains state S2. From Definition
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9, we know that TrA(MV1) ⊆ φ(TrA(MV2)) must hold. Therefore there
must exist a trace σ′ ∈ TrA(MV2) such that φ(σ′) = σ. From this it is
straightforward to see that there must exist the required states S′

1 and S′

2

in σ′ such that φ(S′

1) = S1, φ(S
′

2) = S2, and S′

2 is reachable from S′

1. ✷

The above theorem indicates that inferring reachability properties from
an abstraction is sound but not complete [13]. The implications of this can
be summarised as follows: (i) If one state is reachable from another in
an abstraction then a corresponding reachability property must hold in the
original model; (ii) However, if one state is not reachable from another in an
abstraction then a corresponding reachability property in the original MVN
may or may not hold and more analysis will be required. This relates to
the fact that our notion of abstraction represents an under–approximation
[9, 24] of the original model. The alternative approach would be to use an
over–approximation abstraction model [9, 24, 10] in which false positives can
arise and need to be dealt with. It turns out that an over–approximation
approach is not well suited to our goal of finding an abstraction model of an
MVN that is itself a well–defined MVN. To illustrate the potential problems,
consider what happens if a point attractor is identified to a non–attractor
state by an abstraction mapping. In this case no over–approximation ab-
straction can exist since such an MVN would need to contain a state that
was both a point attractor and also had a successor state. Thus the approach
taken here of using an under–approximation appears to be the appropriate
approach to use.

A consequence of the above reachability result is that all attractors in
an abstraction must have corresponding attractors in the original MVN.

Corollary 11. If MV1 ✁
φ
A MV2 then all attractors of MV1 must repre-

sent attractors in MV2.

Proof. Follows directly from the definition of an asynchronous attractor
and Theorem 10. ✷

It is interesting to consider what other properties of MVNs are pre-
served by abstractions. The result below shows that our notion of asyn-
chronous abstraction preserves the unit state step assumption that is often
placed on MVNs [34, 8].
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Theorem 12. Let MV1 and MV2 be two MVNs with the same structure
and let MV2 satisfy the unit state step assumption. Let φ be an abstraction
mapping from MV2 to MV1 which is order preserving (i.e. for any gi ∈ MV2

and any states s1, s2 ∈ Y (gi) (inMV2), if s1 ≤ s2 then φ(gi)(s1) ≤ φ(gi)(s2)).

If MV1 ✁
φ
A MV2 then MV1 must satisfy the unit state step assumption.

Proof. If MV2 satisfies the unit state step assumption then it is clear
the state steps in every trace σ ∈ TrA(MV2) must also satisfy this property.
Since φ is order preserving it follows by Definition 8 that every abstracted
trace φ(σ) ∈ φ(TrA(MV2)) must satisfy this property. Now by assumption
and Definition 9 we know TrA(MV1) ⊆ φ(TrA(MV2)). Thus, TrA(MV1)
and therefore MV1 must satisfy the unit state step assumption. ✷

We conclude this section by discussing the problem of searching for
possible abstractions for an MVN. Searching for abstractions is problematic
due to the large number of potential models that need to be considered. For
example, consider trying to find an abstraction with k entities each of which
has n states. If we did this using a brute force approach then we would have
to consider (nnk

)k possible candidate models. In [5] an approach for limiting
this search space for synchronous abstractions was proposed and we show
that this approach can also be applied in the asynchronous case.

The key idea is to apply an abstraction mapping to the original MVN
to produce a set of potential abstraction models [5].

Definition 13. Let φ = 〈φ(g1), . . . , φ(gk)〉 be an abstraction mapping
for an MVN MV. For each entity gi ∈ MV we can abstract the next-state
function fgi : Y (gi1)×· · ·×Y (gin) → Y (gi) to a (possibly) non-deterministic
next-state function

φ(fgi) : φ(gi1)(Y (gi1))× · · · × φ(gin)(Y (gin)) → φ(gi)(Y (gi))

by applying φ to its definition, i. e. let sj ∈ φ(gij )(Y (gij )), for j = 1, . . . , n,
then we define φ(fgi)(s1, . . . , sn) by the set

{φ(fgi(s
′

1, . . . , s
′

n)) | s
′

j ∈ Y (gij ), φ(gij )(s
′

j) = sj , for j = 1, . . . , n}

We say that the MVN MVA results from applying φ to MV iff:
(1) MVA has the same entities and neighbourhood structure as MV;
(2) The state space of each entity gi ∈ MVA is the set φ(gi)(Y (gi));
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(3) For each gi ∈ MVA its next–state function

fMVA

gi
: φ(gi1)(Y (gi1))× · · · × φ(gin)(Y (gin)) → φ(gi)(Y (gi))

is a deterministic restriction of φ(fgi).
We define φ(MV) to be the set of all such MVNs, i.e.

φ(MV) = {MVA | MVA results from applying φ to MV} ✷

We can show that any asynchronous abstraction for an MVN MV un-
der φ must be a member of the set of potential abstractions φ(MV).

Theorem 14. If MV1 ✁
φ
A MV2 then MV1 ∈ φ(MV2).

Proof. Suppose for a contradiction that MV1 6∈ φ(MV2). Then there
must exist at least one entity gi ∈ MV2 such that the next–state function
fMV1
gi

: Y (gi1) × · · · × Y (gin) → Y (gi) for gi in MV1 is inconsistent with

φ(fMV2
gi

), i. e. for some s1 ∈ Y (gi1), . . . , sn ∈ Y (gin) we have

fMV1
gi

(s1, . . . , sn) 6∈ φ(fMV2
gi

)(s1, . . . , sn)

Given the above, it is clear there must exist a trace σ ∈ TrA(MV1) which
contains a state step based on the update fMV1

gi
(s1, . . . , sn) and therefore

σ 6∈ φ(TrA(MV2)). However, this contradicts the assumption MV1✁
φ
AMV2

since by Definition 9 we have TrA(MV1) ⊆ φ(TrA(MV2)). ✷

4 A Decision Procedure for Abstractions

Having formulated a definition of an asynchronous abstraction in the pre-
vious section we are now interested in defining a procedure for checking
whether a proposed abstraction MV1 is an asynchronous abstraction of an
MVN MV2. In the synchronous case the approach taken was to simply
check that each trace σ ∈ TrS(MV1) was contained within the set of ab-
stracted traces φ(TrS(MV2)). However, in the asynchronous case both sets
of traces TrA(MV1) and φ(TrA(MV2)) may be infinite and so such a simple
set inclusion check is not feasible. Instead we propose a decision procedure
based on using the finite state graph that summarise the behaviour of an
asynchronous MVN. The idea is to consider all sets of states and associated
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edges that can be used to model an abstract state. We then iterate through
these removing those state sets which can not be represented given the cur-
rent allowable state sets. If at any point we no longer have any state sets
remaining for a particular abstract state then we have shown the abstraction
is not valid and we terminate the decision procedure. If, on the other hand,
we reach a point at which no more state sets can be removed then we know
the abstraction must be valid and we can again terminate the procedure.

In the sequel let MV1 and MV2 be MVNs with the same structure and
let φ be an abstraction mapping from MV2 to MV1.

In order to define a decision procedure checkAsynAbs(MV1,MV2,φ)

for checking if MV1 is an asynchronous abstraction under φ of MV2 we be-
gin by formulating some preliminary concepts.

i) Representing abstract states: Let S ∈ SMV1 then we define

φ−1(S) = {S′ | S′ ∈ SMV2 , φ(S′) = S}

to be the set of all states in MV2 that can represent the abstract state S.

ii) Set of identical consecutive states: For any state S′ ∈ SMV2 we define
the set [S′]φ of all consecutive reachable states from S′ that have the same

abstract state φ(S′). Define [S′]φ =
⋃

i∈N[S′]φi , where [S′]φi is defined recur-

sively: [S′]φ0 = {S′} and

[S′]φi+1 = {S′

2 | S′

1 ∈ [S′]φi , S′

2 ∈ nextMV2(S′

1), φ(S′) = φ(S′

2)}.

We now define the notion of a step term, an expression which is used
to represent one possible way to model an abstract state and its next state
connections using a set of concrete states. A step term has the form
[S : Γ : D(S1), . . . , D(Sm)] where S is the abstract state being modelled
and Γ is a set of concrete states abstracting to S which are being used by
the step term to model S. For each abstract next state Si reachable from
S the set of concrete states D(Si) is included in the step term; it contains
all those concrete next states reachable from Γ that abstract to Si. (For an
illustrative example of a step term see Figure 6.) Such step terms will form
the basis of our decision procedure and are more formally defined as follows.

Definition 15. Let S ∈ SMV1 and suppose nextMV1(S) = {S1, . . . , Sm}.
Then for each non-empty set of states Γ ⊆ φ−1(S) we define the step term
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st(S,Γ) by
st(S,Γ) = [S : Γ : D(S1), . . . , D(Sm)],

where D(Si) = {S′

2 | S′

1 ∈ Γ, S′

2 ∈ nextMV2([S′

1]
φ), φ(S′

2) = Si}, and
nextMV2 has been lifted from taking a single state as input to taking a set
of states in the obvious way. Note that the use of [S′

i]
φ is needed in the above

definition to take account of the merging of consecutive identical states that
occurs in abstracted traces (see part ii) in Definition 8).

We say a step term [S : Γ : D(S1), . . . , D(Sm)] is valid iff:
i) the states Γ used in a step term have the appropriate connections, i.e.
D(Si) 6= {}, for i = 1, . . . ,m; and
ii) if nextMV1(S) = {} (i.e. S is a point attractor in SGA(MV1)) then for
each S′ ∈ Γ either: a) there must exist S′′ ∈ [S′]φ such that nextMV2(S′′) =
{}; or b) there exists states in [S′]φ which form a cycle in SGA(MV2). ✷

For any S ∈ SMV1 we let Step(S) denote the set of all valid step terms

Step(S) = {st(S,Γ) | Γ ⊆ φ−1(S), st(S,Γ) is valid}.

Observe that each valid step term st(S,Γ) ∈ Step(S) must correctly
model in MV2 the connections between S ∈ SMV1 and its corresponding
next states nextMV1(S) in MV1.

The proposed decision procedure is presented in Figure 4. It works by
creating a family C = 〈C(S) ⊆ Step(S) | S ∈ SMV1〉 of sets of all valid step
terms. It then repeatedly looks at each set of step terms C(S), for each
abstract state S ∈ SMV1 , removing those that have next states that are not
currently represented in the remaining stored step terms of C. The Boolean
function notRepresented(Si, D(Si), C) used below is defined to be true if,
and only if, there does not exist a step term st(Si,Γi) ∈ C(Si) such that
Γi ⊆ D(Si).

To illustrate how the above decision procedure works we consider apply-
ing it to a simple example where we check whether a proposed abstraction
MV1 does correctly abstract an MVN MV2. For simplicity, we use an ab-
stract description of the behaviour of MV1 and MV2 which is defined by
the state graphs depicted in Figure 5, where A1, A2,. . . represent concrete
global states and A,B,. . . represent abstract global states. Suppose we have
an abstraction mapping φ that maps global states in MV2 to abstract global
states in MV1 in the obvious way, i.e. φ(Ai) = A, φ(Bi) = B, φ(C1) = C,
and φ(D1) = D. Applying the initialization phase of the decision procedure
results in the set of step terms given in the left column of the table in Figure
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Algorithm checkAsynAbs(MV1,MV2,φ):

/** Initialise valid step terms **/

for each S ∈ SMV1 do C(S):= Step(S)
/** Iteratively check sets of step terms **/

repeat

done:=true

for each S ∈ SMV1 do

for each [S : Γ : D(S1), . . . , D(Sm)] ∈ C(S) do

for i:= 1 to m do

if notRepresented(Si, D(Si), C) then

C(S):= C(S)− {[S : Γ : D(S1), . . . , D(Sm)]}
done:=false

if C(S) = {} then return false

until (done)

return true

Figure 4: Decision procedure for checking asynchronous abstractions
MV1 ✁

φ
A MV2.

6 (where the step terms for global states C and D have been omitted since
they are point attractors and therefore cannot be removed). The decision
procedure then executes the main outer loop three times, as depicted in Fig-

A1

A2

C1

B1

B2

C2

D1

A

B

C

D

(a) State graph for MV2 (b) State graph for abstraction MV1

Figure 5: Abstract state graphs used to illustrate the decision procedure.
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ure 6, each time removing those step terms that have next states that are
not represented in the current set of step terms. At the end of these three
iterations two consistent step terms remain and so the decision procedure
terminates, returning true to indicate that MV1 is a correct asynchronous
abstraction of MV2.

Step Terms Iter 1 Iter 2 Iter 3

[A : {A1} : {B1}, {C1}] Okay Remove
[A : {A2} : {B2}, {C2}] Remove
[A : {A1, A2} : {B1, B2}, {C1, C2}] Okay Okay Okay
[B : {B1} : {A2}, {D1}] Remove
[B : {B1, B2} : {A1, A2}, {D1}] Okay Okay Okay

Figure 6: Table illustrating how the decision procedure for asynchronous
abstractions would process the state graphs given in Figure 5.

The decision procedure given in Figure 4 is clearly inefficient and we
now investigate this further by deriving a worst case performance bound.
Assume MV1 is a Boolean model which has n entities (the size of its state
space is therefore 2n). The worst case occurs when MV1 is not an asyn-
chronous abstraction of MV2. We let k denote the upper bound on the
number of states in MV2 that can be abstracted to a single state in MV1,
i.e. k ≥ |φ−1(S)|, for all S ∈ SMV1 . This value is important as it bounds
the number of step terms, i.e. each abstract state can have at most 2k step
terms and the total number of step terms possible is 2n × 2k = 2n+k. The
value k is calculated from the abstraction mapping being used and cannot
be directly calculated from the size of concrete and abstract state spaces
(to see this, note that we can increase the size of the concrete state space
without affecting k). However, multiplying the size of the abstract state
space by k clearly gives an upper bound on the size of the concrete state
space.

The decision procedure begins with an initialisation phase in which all
the valid step terms are constructed. This has performance O(2n+k × nk):
we have 2n+k potential step terms to consider; and for each one, we have
to calculate the connection sets D(Si) and check its validity, all of which
requires O(nk) work.

The main part of the decision procedure consists of three nested for
loops which have a worst case performance of O(2n × 2k × n), where: 2n is
the size of the abstract state space; 2k is an upper bound on the number of
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potential step terms for an abstract state; and n represents the maximum
number of states that can be connected to a given state. For each of these
iterations we apply the function notRepresented which has performance
O(2k × n), giving an overall peformance of O(2n+2k × n2). Finally, we have
the outer repeat until loop which iterates until one of the step term sets is
empty. It therefore has a worst case performance of O(2n+k). Combining
this with the performance given above for the three nested loops gives an
overall worst case performance of O(22n+3k×n2) for the decision procedure.

The above worst case performance is clearly very poor and means that
in the worst case, the cost of checking an abstraction could be more than
the cost of directly model checking the concrete state space. However, it
is important to remember that the above is the worst case performance.
In practice the decision procedure should perform much better than this,
removing many more than one step term during each main iteration and
terminating much sooner if the check is successful. The above has so far
proved to be the case for the practical examples considered (e.g. the de-
cision procedure worked well for both positive and negative checks made
for the abstraction examples considered in Section 5). It is also important
to remember that facilitating model checking was only one of the motiva-
tions for developing an abstraction theory. The other motivations discussed
in the introduction (see Section 1) mean that having a decision procedure,
however inefficient, is still worthwhile.

It remains to show formally that the above decision procedure correctly
identifies asynchronous abstractions. We begin by showing that the decision
procedure always terminate.

Theorem 16. The decision procedure checkAsynAbs(MV1,MV2,φ) al-
ways terminates.

Proof. This follows from that fact we can only ever begin with a finite
family of finite sets of step terms, that no step terms can ever be added,
and that we must remove at least on step term in order to continue to
the next iteration. Therefore the algorithm either terminates when no step
terms are removed or continues to iterate until we reach a point where one
set C(S) of step terms is empty, again resulting in termination of the algo-
rithm. ✷

Let [S : Γ : D(S1), . . . , D(Sm)] be a valid step term, let α1 ∈ Γ and
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α2 ∈ D(Si), for some 1 ≤ i ≤ m. Then note that due to the way consecutive

identical states are treated it may not directly hold that α1
Asy
−−→ α2 since

α2 ∈ nextMV2([α1]
φ). We let α1 = α1

Asy
−−→ α1

1
Asy
−−→ · · ·

Asy
−−→ αr

1, for
α
j
1 ∈ [α1]

φ, for 1 ≤ j ≤ r represent the sequence of identical abstracted

states needed such that α1
Asy
−−→ α2 does hold in MV2.

The following lemma considers how step terms can be chained together
and it is needed to prove the main correctness result below.

Lemma 17. Let C = 〈C(S) ⊆ Step(S) | S ∈ SMV1〉 be a family of
sets of valid step terms such that:
i) For each S ∈ SMV1 we have C(S) 6= {};
ii) The family C is closed under step terms, i.e. for each S ∈ SMV1 and
[S : Γ : D(S1), . . . , D(Sm)] ∈ C(S) there exists, for each 1 ≤ i ≤ m, a step
term st(Si,Γi) ∈ C(Si) such that Γi ⊆ D(S1).

Then every path4 γ = γ1
Asy
−−→ . . .

Asy
−−→ γp in the abstraction state graph

SGA(MV1) must have a corresponding path α = α1
Asy
−−→ . . .

Asy
−−→ αr, r ≥ p,

in the original state graph SGA(MV2) such that φ(α) = γ.

Proof.

Let γ = γ1
Asy
−−→ · · ·

Asy
−−→ γp be a path in the state graph SGA(MV1). Then

by assumptions i) and ii) it is straightforward to see there must exist a (not
necessarily unique) chain of step terms

[γi : Γi : . . . , D(γi+1), . . .] ∈ C(γi), st(γp,Γp) ∈ C(γp)

for 1 ≤ i < p, such that for j = 2, . . . , p we have Γj ⊆ D(γj).

We now prove that for any αp ∈ Γp there must exist αi ∈ Γi, for

1 ≤ i < p, such that α = α1
Asy
−−→ · · ·

Asy
−−→ αp−1

Asy
−−→ αp is a path in

SGA(MV2) with φ(α) = γ. We prove this using induction on p ∈ N, p ≥ 2
as follows.

1) Induction Base. Let p = 2 and suppose we have a path γ1
Asy
−−→ γ2.

Then we know there must exist step terms [γ1 : Γ1 : . . . , D(γ2), . . .] ∈ C(γ1)
and st(γ2,Γ2) ∈ C(γ2) such that Γ2 ⊆ D(γ2) (as explained above). Clearly

4We note that a path differs from a trace in that a trace represents a complete run of
an MVN whereas a path is simply a walk through an MVN’s state graph.
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by the definition of step terms we know that for any α2 ∈ Γ2 there must

exist α1 ∈ Γ1 such that α1
Asy
−−→ α2 and

φ(α1
Asy
−−→ α2) = γ1

Asy
−−→ γ2.

2) Induction Step. Let p = q + 1, for some q ∈ N, q ≥ 2. Suppose we have

a path γ = γ1
Asy
−−→ · · ·

Asy
−−→ γq

Asy
−−→ γq+1. Then we know there must exist

step terms

[γi : Γi : . . . , D(γi+1), . . .] ∈ C(γi), st(γq+1,Γq+1) ∈ C(γq+1),

for i = 1, . . . , q such that Γj ⊆ D(γj), for j = 1, . . . , q + 1 (as explained
above). Then by the induction hypothesis we know for each αq ∈ Γq there

must exist αi ∈ Γi, for 1 ≤ i < q, such that α1
Asy
−−→ · · ·

Asy
−−→ αq−1

Asy
−−→ αq

is a path in SGA(MV2) with φ(α1
Asy
−−→ · · ·

Asy
−−→ αq−1

Asy
−−→ αq) = γ1

Asy
−−→

· · ·
Asy
−−→ γq. By the definition of step terms it follows that for any αq+1 ∈

Γq+1 there must exist αq ∈ Γq such that αq
Asy
−−→ αq+1. Combining this with

the induction hypothesis given above shows the existence of the required
path in SGA(MV2). ✷

It now remains to show that checkAsynAbs(MV1,MV2,φ) correctly
acts as a decision procedure for asynchronous abstractions.

Theorem 18. checkAsynAbs(MV1,MV2,φ) returns true if, and only
if, MV1 ✁

φ
A MV2.

Proof.

Part 1) ⇒ Suppose checkAsynAbs(MV1,MV2,φ) returns true. By inspect-
ing the decision procedure we can see this means that a family {C(S) ⊆
Step(S) | S ∈ SMV1} of non–empty sets of valid step terms must have
been found which is closed under step terms. Consider any abstract trace
σ ∈ TrA(MV1); then by Lemma 17 and since any trace can be interpreted as
a path in SGA(MV1) we have that there must exist a path α in SGA(MV2)
such that φ(α) = σ. It is straightforward to see that α must be a well–
defined trace for MV2, i.e. α ∈ TrA(MV2), by the definition of valid step
term. This shows that TrA(MV1) ⊆ φ(TrA(MV2)) and so by Definition 9

we have MV1 ✁
φ
A MV2.
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Part 2) ⇐ Suppose MV1 ✁
φ
A MV2 then by Definition 9 we know

TrA(MV1) ⊆ φ(TrA(MV2)) (1)

Then we show that there must exist a non–empty family of sets of valid step
terms which are closed under step term inclusion and thus that the decision
procedure checkAsynAbs(MV1,MV2,φ) must terminate returning true.

Let X ⊆ TrA(MV2) be the set of traces that abstractly correspond to
TrA(MV1):

X = {σ′ | σ′ ∈ TrA(MV2), ∃σ ∈ TrA(MV1).φ(σ
′) = σ}

For each S ∈ SMV1 , let X〈S〉 denote the set of all states that abstract to S

which occur at the start of a trace in X:

X〈S〉 = {σ′(1) | σ′ ∈ X, φ(σ′(1)) = S}

where σ′(1) represents the first state of trace σ′.
Let nextMV1(S) = {S1, . . . , Sm}, then using Definition 15 we can define

the step term

st(S,X〈S〉) = [S : X〈S〉 : D(S1), . . . , D(Sm)]

Clearly, st(S,X〈S〉) must be valid by (1) above. We can now recursively
define a set of step terms closed under step term inclusion from st(S,X〈S〉)
as follows. Define H(X〈S〉) =

⋃
i∈NH(X〈S〉)i, where H(X〈S〉)i is defined

recursively: H(X〈S〉)0 = {st(S,X〈S〉)} and

H(X〈S〉)i+1 = {st(Vj , D(Vj) ∩X〈Vj〉) |

[V : Γ : D(V1), . . . , D(Vr)] ∈ H(X〈S〉)i, Vj ∈ {V1, . . . , Vr}}.

Clearly, the set H(X〈S〉) is closed under step term inclusion by construc-
tion. It can also be shown that H(X〈S〉) only contains valid step terms
(the proof makes use of fact 1) above and is based on using induction on
i ∈ N to show all step terms in H(X〈S〉)i are valid). It therefore follows
that for each S ∈ SMV1 we know that each step term st(Si,Γ) ∈ H(X〈S〉)
must occur in the initial family C of sets of step terms used in the decision
procedure, i.e. st(Si,Γ) ∈ C(Si). Since none of these step terms can be re-
moved from C by the closure property it follows that the decision procedure
checkAsynAbs(MV1,MV2,φ) must terminate returning true. ✷
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5 Case Studies

In this section we illustrate the techniques we have developed by presenting
two detailed case studies. Each case study takes an existing biologically
inspired MVN from the literature and considers identifying asynchronous
abstractions using the decision procedure presented in Section 4.

5.1 Regulation of Tryptophan Biosynthesis in E. coli

Tryptophan is an amino acid which is essential for the development of E. coli.
However, the synthesis of tryptophan is resource intensive and for this reason
is carefully controlled to ensure it is only synthesised when no external
source is available. The regulatory network that controls the biosynthesis of
tryptophan by E. coli has been extensively studied (see for example [29, 27]).

Trp

TrpRTrpE

TrpExt

2

TrpE TrpExt Trp [Trp]

0 0 0,1 0
0 0 2 1
0 1 0,1,2 1
0 2 0 1
0 2 1,2 2
1 0,1 0,1,2 1
1 2 0 1
1 2 1,2 2

Trp [TrpR]

0,1 0
2 1

Trp TrpR [TrpE]

0 0 1
0 1 0
1,2 0,1 0

Figure 7: An MVN model MTRP of the regulatory mechanism for the
biosynthesis of tryptophan in E. coli (from [30]). The state transition table
for TrpExt has been omitted as this is a simple input entity. Note that the
state transition tables use a shorthand notation where an entity is allowed
to be in any of the states listed for it in a particular row.

Consider the MVNmodelMTRP for tryptophan biosynthesis presented
in Figure 7 which is taken from [30]. It consists of four regulatory entities:
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TrpE – a Boolean input entity indicating the presence of the activated en-
zyme required for synthesising tryptophan; TrpR – a Boolean entity indi-
cating if the repressor gene for tryptophan production is active; TrpExt –
a ternary entity indicating the level of tryptophan in the external medium;
and Trp – a ternary entity indicating the level of tryptophan within the bac-
teria. Note the above entity order is used when displaying global states for
MTRP. We can see from the model that the presence of tryptophan in the
external medium TrpExt directly affects the level of tryptophan within the
bacteria Trp and that the activated enzyme TrpE is required to synthesise
tryptophan. The presence of tryptophan within the bacteria deactivates the
enzyme TrpE and at higher-levels also activates the repressor TrpR which
then acts to inhibit the production of the enzyme TrpE.

The state space for MTRP consists of 36 global states and for this
reason we do not reproduce its state graph here. Instead we simply note
that the asynchronous state graph forMTRP comprises three disjoint graphs

based on the following three attractors: 0000
Asy
−−→ 1000

Asy
−−→ 1001

Asy
−−→

0001
Asy
−−→ 0000; 0011; and 0122. To identify abstractions for MTRP we

begin by defining appropriate state mappings for the non-Boolean entities
TrpExt and Trp as follows:

φ(Trp) = {0 7→ 0, 1 7→ 1, 2 7→ 1}, φ(TrpExt) = {0 7→ 0, 1 7→ 1, 2 7→ 1}.

These can then be combined into an abstraction mapping

φ = 〈ITrpE, ITrpR, φ(TrpExt), φ(Trp)〉.

Following the approach discussed in Section 3 (see Theorem 14) we
first apply this abstraction mapping to MTRP to produce a set φ(MTRP)
of candidate abstraction models. By analysing φ(MTRP) we are able to es-
tablish that there are 8 possible candidate abstraction models (we have
4 choices for next-state of TrpR and 2 choices for Trp). After investi-
gating these candidate models we were able to identify one valid asyn-
chronous abstraction ATRP (which is presented in Figure 8) for MTRP
under φ using the decision procedure checkAsynAbs(ATRP, MTRP, φ).
Note that since TrA(ATRP) and φ(TrA(MTRP)) are finite trace sets in

this case we were able to verify the result ATRP ✁
φ
A MTRP, by checking

that TrA(ATRP) ⊆ φ(TrA(MTRP)) holds.
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Trp [TrpR]

0,1 0

TrpE TrpExt Trp [Trp]

0 0 0,1 0
0 1 0,1 1
1 0,1 0,1 1

Trp TrpR [TrpE]

0 0 1
0 1 0
1 0,1 0

Figure 8: The asynchronous abstraction ATRP identified for MTRP under
the state mappings φ(Trp) = {0 7→ 0, 1 7→ 1, 2 7→ 1} and φ(TrpExt) = {0 7→
0, 1 7→ 1, 2 7→ 1}.

The state graph for ATRP consists of two disjoint graphs and has two

attractors: 0000
Asy
−−→ 1000

Asy
−−→ 1001

Asy
−−→ 0001

Asy
−−→ 0000; and 0011. It

therefore successfully captures two of the three attractors present in MTRP.

5.2 The Lysis–Lysogeny Switch in Bacteriophage λ

The temperate bacteriophage λ is a virus which infects the bacteria E. coli
[34, 23]. Once the bacteriophage λ has infected a cell it chooses between
two very different methods of reproduction, known as the lytic and lysogenic
cycles [34]. In most cases, λ enters the lytic cycle; it generates as many new
viral particles as the host cell resources allow before producing an enzyme to
lyse the cell wall and release the new phage into the environment. However,
λmay choose to integrate its DNA into the host DNA and enter the lysogenic
cycle. If this occurs, then the genes expressed in the λ DNA synthesize
a repressor which blocks expression of other phage genes including those
involved in its own excision, thus providing the cell with immunity from
further infection. The phage λ is able to lie dormant, replicating with each
subsequent cell division of the host but may at a later date enter the lytic
cycle.

The core regulatory model PL2 presented in Figure 1 (taken from [32])
was based on the cross–regulation between two regulatory genes, CI (the
repressor gene) and Cro. This was extended in [32] by adding two further
regulatory genes, CII and N . The result is a four entity MVN model PL4,
presented in Figure 9, which contains two entities with non-Boolean state
spaces, namely CI with states {0, . . . , 2} and Cro with states {0, . . . , 3}.
The MVN PL4 consists of 48 global states and its asynchronous behaviour
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results in an infinite set of traces. It has one point attractor 2000 (where a
global state has the order CI Cro CII N ) which corresponds to the lysogenic
cycle and a range of cyclic attractors, the most important one of which is

0200
Asy
−−→ 0300, corresponding to the lytic cycle.
We begin by looking to abstract the non-Boolean entities CI and Cro

by defining appropriate state mappings. After considering the model, we
define the following state mappings

φ(CI ) = {0 7→ 0, 1 7→ 1, 2 7→ 1}, φ(Cro) = {0 7→ 0, 1 7→ 1, 2 7→ 1, 3 7→ 1},

which form the abstraction mapping φ = 〈φ(CI ), φ(Cro), ICII , IN 〉. Again,

3CroCI

CII N

2

2

2

3

2 CI Cro N [CII ]

0,1,2 0,1,2,3 0 0
0 0,1,2 1 1
0 3 1 0
1 0,1,2 1 1
1 3 1 0
2 0,1,2,3 1 0

CI Cro [N ]

0 0,1 1
0 2,3 0
1,2 0,1,2,3 0

CI Cro CII [CI ]

0 0 0,1 1
0 1,2,3 0,1 0
1 0 0,1 2
1 1,2,3 0,1 0
2 0 0,1 2
2 1,2,3 0,1 1

CI Cro [Cro]

0,1 0 1
0,1 1 2
0,1 2 3
0,1,2 3 2
2 0,1 0
2 2 1

Figure 9: An extended MVN model PL4 of the control mechanism for the
lysis-lysogeny switch in bacteriophage λ (taken from [32]).

we begin by restricting our search space for abstractions by first applying
this abstraction mapping to PL4. This results in the set φ(PL4) which con-
tains 256 possible candidate abstraction models (we have 4 choices for CI ,
4 choices for Cro, 8 choices for CII , and 2 choices for N ). By investigating
these candidate models and applying the decision procedure checkAsynAbs
we were able to identify two abstractions for PL4 under φ. The abstractions,
APL41 ✁

φ
A PL4 and APL42 ✁

φ
A PL4, are presented in Figure 10. These ab-

stractions have been carefully validated by hand, as have the other candidate
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models considered that were correctly identified as not being abstractions.
Interestingly, both abstractions appear to capture the key behaviour of PL4
in the sense that both contain the point attractors 1000 and 0100 which
correspond to the two attractors presented above for PL4.

CI Cro [N ]

0 0 1
0 1 0
1 0,1 0

CI Cro [Cro]

0 0,1 1
1 0 0
1 1 1

CI Cro CII [CI ]

0 0 0,1 1
0 1 0,1 0
1 0 0,1 1
1 1 0,1 0

CI Cro N [CII ]

0,1 0,1 0 0
0 0 1 1
0 1 1 1 or 0

1 0 1 0
1 1 1 1

Figure 10: The transition tables for the two abstractions APL41 and APL42
identified for PL4 under φ, where all the transition tables are the same
except for CII where 011 → 1 for abstraction APL41 but 011 → 0 for
abstraction APL42.

6 Conclusions

In this paper we have developed an abstraction theory for asynchronous
MVNs by extending the ideas developed for synchronous MVNs [5] based
on trace set inclusion. In particular, we defined what it means for an MVN
to be correctly abstracted by a simpler MVN with the same network struc-
ture but smaller state space. The abstraction approach used is based on
an under–approximation approach [9, 24] in which an abstraction captures
a subset of the behaviour of the original MVN. We showed that this ap-
proach allows positive reachability properties of an MVN to be inferred
from a corresponding asynchronous abstraction and that all attractors of
an asynchronous abstraction correspond to attractors in the original MVN.
An alternative approach would be to use an over–approximation approach
[9, 24, 10] in which false positive reachability results can arise. However, the
construction of an abstraction model which over–approximates an MVN’s
behaviour appears to be problematic if we wish to remain within the MVN
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framework (see Section 3 for a discussion of this).

Directly checking asynchronous abstractions turned out to be problem-
atic since an asynchronous MVN may have an infinite set of traces making it
infeasible to carry out a simple trace inclusion check. To address this we de-
veloped a decision procedure for checking asynchronous abstractions based
on using the finite state graph of an asynchronous MVN. We introduced the
notion of step terms to denote possible ways to use sets of concrete states
to represent abstract states. The decision procedure worked by iteratively
pruning the set of step terms until either a consistent abstract represen-
tation has been found or the set of remaining step terms is too small to
make it feasible to continue. Importantly, we provided a detailed proof of
correctness for the decision procedure.

Note that as it stands, the decision procedure is inefficient and we
derived a worst case complexity of O(22n+3k × n2). This poor worst case
behaviour means that the cost of checking an abstraction could be more
than the cost of directly model checking the concrete state space. However,
it is important to remember that in practice the decision procedure should
perform much better than this worst case. Indeed, practical experience
so far has shown this to be the case; for example, the decision procedure
worked well for all the positive and negative checks made for the abstraction
examples considered in Section 5. It is also important to remember that fa-
cilitating model checking was only one of the motivations for developing an
asynchronous abstraction theory. Other important motivations (see Section
1) included: formally relating MVN models at different levels of abstraction;
aiding the visualisation and comprehension of an MVN; and providing the
basis for a refinement theory. The above motivations mean that having
a formally proved correct decision procedure, however inefficient, is still a
substantial step forward. Work is now on going to refine the decision proce-
dure and to efficiently implement it as part of a tool for MVN abstraction
checking. Such a tool will provide the support needed to carry out more
complex case studies, for example supporting the work currently underway
to investigate abstractions for the relatively complex MVN model of the
carbon starvation response in E. coli presented in [3].

We illustrated the abstraction theory and techniques developed by con-
sidering two detailed case studies based on identifying Boolean abstractions
for existing asynchronous MVN models of biological systems. The abstrac-
tions found in both cases proved to faithfully represent the behaviour of the
original MVNs and in particular, captured key attractors known to exist in
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the original MVNs. The case studies illustrate the potential for the abstrac-
tion theory presented and in particular, how it allows the balance between
the level of abstraction used and the tractability of analysis to be explored.

An alternative approach for abstracting MVNs is to reduce the num-
ber of regulatory entities in an MVN while ensuring the preservation of key
properties (see [21, 37, 22]). This approach seems to be complimentary to
the one developed here and we are currently investigating combining these
ideas. Another possible abstraction approach would be to make use of re-
sults on modelling MVNs using Petri nets [11, 3, 4, 8] and to then apply
Petri net abstraction techniques (see for example [31, 19, 38]). Such an ap-
proach appears promising from an analysis point of view but problematic in
that the resulting Petri net abstraction may not be interpretable as an MVN
and so force the modeller to explicitly use a different modelling formalism.

One interesting area for future work is to investigate automatically
constructing abstractions for a given MVN and abstraction mapping. Some
initial work on restricting the search space for such abstractions was pre-
sented at the end of Section 3 but more work is needed here. One idea is
to consider developing refinement techniques similar to those of CEGAR
(Counterexample Guided Abstraction Refinement) [10] and other abstrac-
tion refinement techniques [24]. Closely linked to this idea is the notion of
a maximal abstraction, that is an abstraction which captures the largest
possible behaviour of the original MVN with respect to all other possible
abstractions for the given abstraction mapping. In future work we intend
to investigate developing such a notion and in particular, consider how to
automate the construction of such maximal abstractions.
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