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Abstract

The Shape Calculus is a bio-inspired calculus for describing 3D

shapes moving in a space. A shape forms a 3D process when combined

with a behaviour. Behaviours are speci�ed with a timed CCS-like pro-

cess algebra using a notion of channel that models naturally binding

sites on the surface of shapes. In this paper, the full formal timed

operational semantics of the calculus is provided, together with exam-

ples that illustrate the use of the calculus in a well-known biological

scenario. Moreover, a result of well-formedness about the evolution of

a given network of well-formed 3D processes is proved.

1 Introduction

The language of the Shape Calculus was previously introduced in this volume
[2] with the aim of gently and incrementally present all its features and
their relative semantics. The motivations behind the type and nature of the
calculus operators were discussed and a great variety of scenarios in which
the calculus may be used e�ectively were described. The Shape Calculus is
intended to be a core language providing basic operators to describe a large
variety of biological scenarios. A network of 3D processes, as introduced
in [2], represents a virtual environment in which biological entities with
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their physical 3D shape are placed. The dynamics of the calculus describes
how they can interact through their channels, bumping or binding. In case
of binding, the composed process can exhibit new channels and interact
in a di�erent way. Moreover, a composed process can split weakly - non-
deterministically at any time on one bond - producing two pieces, or strongly
- on a set of bonds as soon as the whole strong-split is possible - producing
several pieces like in a biochemical reaction.

A formal de�nition of the timed operational semantics of the calculus
is needed to integrate and complete the partially informal description given
in [2]. It is also the starting point for constructing both a suitable simulator
for the calculus and several veri�cation tools that can be used to prove prop-
erties of the de�ned model or of an abstraction of it. In this paper, such a
semantics is fully provided. Moreover, we present a �rst fundamental result
of correctness and suitability of the calculus. A concept of well-formedness
is introduced, starting from shapes and porting it to more complex calcu-
lus objects such as 3D processes and, ultimately, networks of 3D processes.
Well-formedness is a standard concept used to avoid strange and unwanted
situations in which a term can be legally written by syntax rules, but that
semantically corresponds to a contradictory situation. In our case, an ex-
ample of such a situation is, for instance, a composed shape whose pieces
move in di�erent directions. We prove that a given well-formed network
of 3D processes always evolves into a well-formed network of 3D processes,
that is to say, no temporal and spatial inconsistencies are introduced by the
dynamics of the calculus.

The reader of this paper is strongly encouraged to read [2] �rst, in order
to get familiar with the fundamental concepts of the calculus and, thus, to
follow more easily the technical de�nitions and results. The proofs of several
results are omitted here. They can be found in [1], an extended version of
this paper that contains also a larger introduction to the general concepts of
the Shape Calculus. The rest of the paper is organized as follows. Section 2
introduces 3D shapes, shape composition, movement, collision detection and
collision response. Section 3 de�nes behaviours and 3D processes giving
them full semantics. Section 4 puts all the pieces together and speci�es
precisely networks of 3D processes and a general result of dynamic well-
formedness is proven.
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2 3D Shapes

Let P,V = R3 be the sets of positions and velocities, respectively, in a global
three dimensional coordinate system. We also assume relative coordinate
systems that will always be w.r.t. a certain shape S. We refer to this relative
system as the local coordinate system of shape S. Using local coordinate
systems we can express parts of a given shape, such as faces and vertexes,
independently from its actual global position. If p ∈ P is a position expressed
in global coordinates, and V ⊆ P is a set of points expressed w.r.t. a local
coordinate system whose origin is p, global(V,p) = V +p = {x+p |x ∈ V }
denotes the set V w.r.t. the global coordinates.

De�nition 1 (Basic Shapes) A basic shape σ is a tuple 〈V,m,p,v〉 where
V ⊆ P is a convex polyhedron (e.g. a sphere, a cone, a cylinder, etc.)2 that

represents the set of shape points; m ∈ R+, p ∈ P and v ∈ V are, resp., the

mass, the centre of mass3 and the velocity of σ. All possible basic shapes are
ranged over by σ, σ′, · · · . We also de�ne the boundary B(σ) of σ to be the

subset of points of V that are on the surface of σ4.

Three dimensional shapes of any form can be approximated - with arbitrary
precision - by �gluing� basic shapes on a common surface. This concept is
generalized by the following de�nition.

De�nition 2 (3D shapes) The set S of the 3D shapes, ranged over by

S, S′, · · · , is generated by the grammar: S ::= σ
∣∣ S 〈X〉S where σ is a

basic shape and X ⊆ P. If S = σ = 〈V,m,p,v〉, we de�ne P(S) = V ,
m(S) = m, R(S) = p, v(S) = {v} to be, resp., the set of points, the

mass, the reference point and the velocity of S. If S = S1 〈X〉S2 is a

compound shape, then: P(S) = P(S1) ∪ P(S2), m(S) = m(S1) + m(S2),
R(S) =

(
m(S1) · R(S1) + m(S2) · R(S2)

)
/
(
m(S1) + m(S2)

)
5 and v(S) =

v(S1) ∪ v(S2). Finally, the boundary of S is de�ned to be the set B(S) =(
B(S1) ∪ B(S2)

)
\ {x ∈ P | x is interior of P(S1 〈X〉S2)}, where a point

x ∈ V ⊆ P is said to be interior if there exists an open ball with centre x
which is completely contained in V .

2From a syntactical representation point of view, we assume that V is �nitely repre-
sented by a suitable data structure, such as a formula or a set of vertices.

3We actually need only a reference point. Thus, any other point in V can be chosen.
4Note that we consider only closed shapes, i.e. they contain their boundary.
5Again for simplicity, we use the centre of mass as the reference point. Any other point

can also be chosen.
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In the following, we only consider shapes that are well-formed according to
the following de�nition.

De�nition 3 (Well-formed shapes) Each basic shape σ is well-formed.

A compound shape S1 〈X〉S2 is well-formed i�:

1. both S1 and S2 are well-formed;

2. the set X = P(S1) ∩ P(S2) is non-empty and equal to B(S1) ∩ B(S2);

3. v(S1 〈X〉S2) is a singleton {v}6 where v = v(S1) = v(S2).

We say that two shapes S1 and S2 interpenetrate each other if there exists

a point x that is interior of both P(S1) and P(S2). In other terms, they

interpenetrate i� the set X = P(S1) ∩P(S2) 6= ∅ is not a subset of B(S1) ∩
B(S2). If S = S1 〈X〉S2 is well-formed, X is said to be the surface of contact
between S1 and S2; moreover, each x ∈ X is a point of contact.

Condition (2) guarantees that well-formed compound shapes touch but do
not interpenetrate; the surface of contact X (a single point, a segment or a
surface) is always on the boundary of both S1 and S2. Most of the time X
is a (subset of) a feature of the basic shapes composing the 3D shape, i.e., a
face, an edge or a vertex. Condition (3) imposes that all the shapes forming
a compound shape have the same velocity; thus, the compound shape moves
as a unique body. Since a compound 3D shape S can be represented in a
number of di�erent ways by rearranging its basic shapes and surfaces of
contact, a structural congruence is de�ned to `equate' all these possible
representations.

De�nition 4 (Structural Congruence of 3D Shapes) The structural

congruence relation over S, denoted by ≡S, is the smallest relation that sat-

is�es the following rules:

- S1 〈X〉S2 ≡S S2 〈X〉S1;

- (S1 〈X〉S2) 〈Y 〉S3 ≡S S1 〈X〉 (S2 〈Y 〉S3), where Y ⊆ B(S2) ∩ B(S3).

6With abuse of notation, throughout the paper, we write v(S) also to refer to the
element v of the singleton {v} as this is not ambiguous when S is well-formed.
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2.1 Trajectories of Shapes

The general idea of the Shape Calculus is to consider a three-dimensional
space in which several shapes reside, move and interact. Variations of shape
velocities over time are treated by approximating a continuous trajectory of
a shape with a polygonal chain, i.e. a piecewise linear curve in which each
segment is the result of a movement with a constant velocity and vertices of
the chain corresponds to velocity updates [3].

In detail, a global parameter ∆ ∈ R+, called movement time step, rep-
resents the maximum period of time after which the velocities of all shapes
are updated. The quanti�cation of ∆ depends on the desired degree of ap-
proximation and also on other parameters connected to collision detection.
In some situations, the time of updating can be shorter than ∆ because,
before that time, collisions between moving shapes can occur. These colli-
sions must be resolved and the whole system must re-adapt itself to the new
situation. The time domain T = R+

0 is then divided into an in�nite sequence
of time steps ti such that t0 = 0 and ti ≤ ti−1 + ∆ for all i > 0. The updat-
ing of velocities is performed by exploiting a function steer : T → (S ↪→ V)
that describes how the velocity of all existing shapes (i.e. all shapes that are
currently moving in the space) at each time t is changed. We assume that,
at any given time instant t ∈ T, steer t S is unde�ned i� shape S does not
exist and, hence, its velocity has not to be changed.

De�nition 5 (Evolution of shapes over time) Let S ∈ S and t ∈ T;
S + t, i.e. the shape S after t time units, is de�ned by induction on S:

Basic: 〈V,m,p,v〉+ t = 〈V + (t · v),m,p + (t · v),v〉
Comp: (S1 〈X〉S2) + t = (S1 + t) 〈X + t · v(S)〉 (S2 + t)

De�nition 6 (Updating shape velocity) Let S ∈ S and w ∈ V. We

de�ne the shape S|[w]|, i.e. S whose velocity is updated with w, as follows:

Basic: 〈V,m,p,v〉|[w]| = 〈V,m,p,w〉
Comp: (S1 〈X〉S2)|[w]| = (S1|[w]|) 〈X〉 (S2|[w]|)

The following result comes directly from Def. 3.

Proposition 1 Let S ∈ S, t ∈ T and w ∈ V. If S is well-formed then S+ t
and S|[w]| are well-formed.
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2.2 Collisions: Detection and Response

The intent to represent a lot of shapes moving simultaneously in space
produces inevitably a scenario where collisions among shapes are possible.
There is a rich literature on collision detection systems. For our purposes, it
is su�cient to de�ne an interface between our calculus and a typical collision
detection system pivoting on the notions described in the following.

De�nition 7 (First time of contact) Let I be a non-empty �nite set of

indexes and let {Si}i∈I be a set of well-formed shapes such that for all i, j ∈ I,
Si and Sj do not interpenetrate (see Def. 3). The �rst time of contact of

the shapes Si, denoted Ftoc({Si}i∈I), is a number t ∈ T such that:

1. ∀t′ ∈ T. 0 ≤ t′ ≤ t and ∀i, j ∈ I. Si+t′ and Sj+t′ do not interpenetrate;

2. ∃i, j ∈ I. i 6= j, such that B(Si + t) ∩ B(Sj + t) 6= ∅, i.e., some shapes

are touching at t;

3. ∀ε > 0 ∃δ. 0 < δ < ε and ∃i, j ∈ I. i 6= j, such that Si + (t + δ) and

Sj + (t+ δ) interpenetrate, i.e., in t some shapes are touching and any

further movement makes them to interpenetrate.

Such a de�nition allows shapes that are touching without interpenetrating,
and with velocities that do not make them to interpenetrate (e.g., the same
velocity), to move without triggering a �rst time of contact. This will be
useful in Section 4 when we split previously compound shapes. Indeed, after
the split these shapes have the same velocity and, hence, do not a�ect the
next �rst time of contact.

De�nition 8 (Collision information) Let {Si}i∈I be a set of well-formed

shapes and let t = Ftoc({Si}i∈I) be their �rst time of contact. The set of
colliding shapes after time t is denoted by colliding({Si}i∈I) ⊆ S× S×℘(P).
A tuple 〈Si, Sj , X〉 ∈ colliding({Si}i∈I) i�:

1. P(Si+ t)∩P(Sj+ t) is non-empty and is equal to B(Si+ t)∩B(Sj+ t);

2. ∀ε > 0 ∃δ. 0 < δ < ε, such that Si+(t+δ) and Sj+(t+δ) interpenetrate.

The problem of collisions response [4], i.e. how collisions, once detected,
are resolved, is treated by distinguishing between elastic collisions (those
in which there is no loss in kinetic energy) and perfectly inelastic ones (in
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which kinetic energy is fully dissipated)7. After an elastic collision, the two
shapes will proceed independently to each other but their velocities will be
changed according to the laws for conservation of linear momentum and
kinetic energy - Equations (1)-(2) in Def. 9. On the contrary, two shapes
that collide inelastically will bind together and will move as a unique body
whose velocity is given by the law for conservation of linear momentum only
- Equation (3), in Def. 9.

De�nition 9 (Collision Response) Let S1, S2 ∈ S and let X ⊆ P be a

surface of contact. If X is neither an edge nor a vertex of S1, the velocities

w1 and w2 of these shapes after an elastic collision in X are given by:

(1) w1 = v(S1)− λ

m(S1)
· n (2) w2 = v(S2) +

λ

m(S2)
· n

where n is the normal of contact away from X ⊆ B(S1), i.e. the unit vector

perpendicular to the face of S1 that contains X, and

λ = 2
m(S1)m(S2)

m(S1) +m(S2)

v(S1) · n− v(S2) · n
n · n

If X is either an edge or a vertex of S1, n is the normal of contact away from

the shape S2 and velocities w1 and w2 are obtained by means of symmetric

equations. In both cases, we write S1
X←→e S2 to denote the pair of velocities

(w1,w2). If S1 and S2 collide inelastically in X, they will bind together as

a unique body whose velocity (denoted with S1
X←→i S2) is given by:

(3) v =
m(S1)

m(S1) +m(S2)
· v(S1) +

m(S2)

m(S1) +m(S2)
· v(S2)

3 3D Processes

Now we introduce the timed process algebra whose terms describe the in-

ternal behaviour of our 3D shapes. We brie�y recall the de�nitions of shape
behaviours, as well as the associated temporal and functional semantics.

De�nition 10 (Shape behaviours) The set of shape behaviours, denoted
by B, is generated by the grammar:

7Other di�erent kinds of collisions can be easily added to the calculus provided that
the corresponding collision response laws are given.
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Nilt

nil
t
 nil

Preft

µ ∈ C ∪ ω(C)

µ.B
t
 µ.B

Strt

ρ(L).B
t
 ρ(L).B

Sumt

B1
t
 B′1 B2

t
 B′2

B1 +B2
t−→ B′1 +B′2

Delt

t′ ≥ t

ε(t′).B
t
 ε(t′ − t).B

Deft

B
t
 B′ K

def
= B

K
t
 B′

Table 1: Temporal behaviour of B's terms

Prefa

µ ∈ C ∪ ω(C)

µ.B
µ−→ B

Dela

B
µ−→ B′

ε(0).B
µ−→ B′

Suma

B1
µ−→ B′

B1 +B2
µ−→ B′

Defa

B
µ−→ B′ K

def
= B

K
µ−→ B′

Str1

L = {〈α,X〉}

ρ(L).B
ρ(α,X)−−−−→ B

Str2

L = {〈α,X〉} ∪ L′ L′ 6= ∅

ρ(L).B
ρ(α,X)−−−−→ ρ(L′).B

Str3

B
ρ(α,X)−−−−→ B′

ρ(L).B
ρ(α,X)−−−−→ ρ(L).B′

Table 2: Functional behaviour of B-terms

B ::= nil
∣∣ 〈α,X〉.B ∣∣ ω(α,X).B

∣∣ ρ(L).B
∣∣ ε(t).B ∣∣ B +B

∣∣ K
where 〈α,X〉 ∈ C, L ⊆ C (non-empty) whose elements are pairwise incom-

patible (i.e. for each pair 〈α,X〉, 〈β, Y 〉 ∈ L it is 〈α,X〉 6∼ 〈β, Y 〉), t ∈ T
and K is a process name in K.

De�nition 11 (Operational semantics of shape behaviours) The

SOS-rules that de�ne the temporal transition relations
t
 ⊆ (B × B) for

t ∈ T, that describe how shape behaviours evolve by letting time t pass, are

provided in Table 1. We write B
t
 B′ if (B,B′) ∈ t

 and B
t
 if there is

B′ ∈ B such that (B,B′) ∈ t
 8. Rules in Table 2 de�ne the action transition

relations
µ−→⊆ (B × B) for µ ∈ Act, describing which basic actions a shape

behaviour can perform.

Now we are ready to de�ne 3D processes, i.e. simple or compound
shapes whose behaviour is expressed by a process in B.

8Similar conventions will apply later on.
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De�nition 12 (3D processes) The set 3DP of 3D processes is generated
by the following grammar: P ::= S[B]

∣∣ P 〈a,X〉P where S ∈ S, B ∈ B,
a ∈ Λ and X is a non-empty subset of P. The shape of each P ∈ 3DP is

de�ned by induction on P as follows:

Basic: shape(S[B]) = S
Comp: shape(P 〈a,X〉Q) = shape(P ) 〈X〉 shape(Q)

We also de�ne v(P ) = v(shape(P )) and B(P ) = B(shape(P )). Below we of-

ten write P
X←→i Q and P

X←→e Q as shorthand for shape(P )
X←→i shape(Q)

and shape(P )
X←→e shape(Q), resp. Finally, P |[v]| is the 3D process we ob-

tain by updating P 's velocity as follows:

Basic: (S[B])|[v]| = (S|[v]|)[B]
Comp: (P 〈a,X〉Q)|[v]| = (P |[v]|) 〈a,X〉 (Q|[v]|)

We �nally write steer t P to denote P |[steer t shape(P )]|. We say that a

basic process S[B] is well-formed i� the shape S is well-formed and, for each

X ⊆ P that occurs in B, global(X,R(S)) ⊆ B(S). A compound process

P 〈a,X〉Q is well-formed i� P and Q are well-formed, v(P ) = v(Q) and

the site X expressed w.r.t. a global coordinate system is a non-empty subset

of B(P )∩B(Q). This also means that P(P )∩P(Q) is non-empty and equal

to B(P ) ∩ B(Q).

Later on we only consider well-formed processes. The following proposition
is an easy consequence of well-formedness of shapes and 3D processes.

Proposition 2 For each P ∈ 3DP well-formed, shape(P ) is well-formed.

Let us recall a running example, taken from [2], based on the well-
known biochemical pathway of glycolysis. We consider only one reaction,
catalyzed by the Hexokinase enzyme (HEX). GLC, G6P, ATP and ADP are
metabolites. The transformation of a metabolite (GLC) into another (G6P)
depends on the meeting (collision in binding sites) of the right enzyme (HEX)
with the right metabolites (GLC and ATP). After this binding the reaction
takes place and the products (G6P and ADP) are released. A special case
occurs when the enzyme has bound one metabolite and an environmental
event makes it release the metabolite and not proceed to the completion of
the reaction. We denote by Sh, Sg and Sa the shape of HEX, GLC (and
G6P) and ATP (and ADP), respectively.
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Example 1 (3D Processes for HEX, GLC and ATP ) An Hexokinase

molecule can be modelled as HEX = Sh[HEX] where HEX = 〈atp, Xha〉.HA+
〈glc, Xhg〉.HG, HA = ω(atp, Xha).HEX + ε(th).〈glc, Xhg〉.
ρ({〈atp, Xha〉, 〈glc, Yhg〉}).HEX, HG = ω(glc, Xhg).HEX + ε(th).〈atp, Xha〉.
ρ({〈atp, Xha〉, 〈glc, Yhg〉}).HEX, and Xha, Yhg are proper surfaces of contact.

ATP = Sa[ATP] models an ATP molecule where ATP = 〈atp, Xah〉.
(ε(ta).ρ({〈atp, Xah〉}).ADP + ω(atp, Xah).ATP) and the surface of contact

Xah is the whole boundary B(Sa). The process modelling a molecule of glu-

cose is similar: GLC = Sg[GLC] where GLC = 〈glc, Xgh〉.(ε(tg).
ρ({〈glc, Xgh〉}).G6P + ω(glc, Xgh).GLC. We leave unspeci�ed the behaviours

G6P and ADP.
HEX has two binding capabilities along the channels 〈atp, Xha〉 and

〈glc, Yhg〉 to bind, resp., with an ATP and a GLC molecule. By performing

an action 〈atp, Xha〉, HEX evolves in HA. HA can perform either a weak-

split action ω(atp, Xha) to come back to HEX, or can wait at most th units of

time, perform 〈glc, Yhg〉 and then evolve in ρ({〈atp, Xha〉, 〈glc, Yhg〉}).HEX.
Now, two strong-split actions are enabled after which we come back to HEX.
Note that, after an action 〈glc, Yhg〉, HEX becomes HG that behaves symmet-

rically. An ATP molecule performs a 〈atp, Xah〉-action, waits tr units of

time, and then can release the bond established on the channel 〈atp, Xah〉 �
and thus return free as ATP � or can participate in the reaction and become

an ADP. As we will see in Section 4, the result is the split of the complex

in the three original shapes whose behaviours are HEX, ADP and G6P, resp.

We omit the description of the behaviour of GLC since it is similar to that

of ATP.

The timed operational semantics of 3D processes is de�ned below.

De�nition 13 (Transitional semantics of 3D processes) Rules in Ta-

ble 3 de�ne the transition relations
t
 ⊆ (3DP × 3DP) for t ∈ T, and

µ−→⊆ 3DP × 3DP for µ ∈ Act. Two 3D processes P and Q are said to

be compatible, written P ∼ Q, if P 〈α,X〉−−−→ and Q
〈α,Y 〉−−−→ for some compatible

channels 〈α,X〉 and 〈α, Y 〉; otherwise, P and Q are incompatible, written

P 6∼ Q. We often write P 6 ρ−→ and P 6 ω−→ as shorthand for P 6 ρ(α,X)−−−−→ and

P 6 ω(α,X)−−−−→, resp., for any 〈α,X〉.

The following proposition shows that 3D processes well-formedness is closed

w.r.t. transitions
t
 and

µ−→.
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Basict

B
t
 B′

S[B]
t
 (S + t)[B′]

Compt

P
t
 P ′ Q

t
 Q′ ∧X ′ = X + (t · v(P ))

P 〈a,X〉Q t
 P ′ 〈a,X ′〉Q′

Basicc

B
〈α,X〉−−−−→ B′ Y = global(X,R(S))

S[B]
〈α,Y 〉−−−−→ S[B′]

Comps

P
ρ(α,Y )−−−−→ P ′

P 〈a,X〉Q ρ(α,Y )−−−−→ P ′ 〈a,X〉Q

Basics

B
ρ(α,X)−−−−→ B′ Y = global(X,R(S))

S[B]
ρ(α,Y )−−−−→ S[B′]

Compw

P
ω(α,Y )−−−−→ P ′

P 〈a,X〉Q ω(α,Y )−−−−→ P ′ 〈a,X〉Q
Compc

P
〈α,Y 〉−−−−→ P ′ Y ⊆ B(P 〈a,X〉Q)

P 〈a,X〉Q 〈α,Y 〉−−−−→ P ′ 〈a,X〉Q

Table 3: Functional and temporal behaviour of 3DP-terms

Proposition 3 Let P ∈ 3DP well-formed. Either P
t
 Q or P

µ−→ Q implies

Q ∈ 3DP well-formed.

Notice that the operational rules in Table 3 do not allow synchroniza-
tion between components of compound process that proceed independently
to each other. Consider, as an example, P = Sp[ρ({a,Xp}).Bp], Q =
Sq[ρ({a,Xq}).Bq], and P 〈a,X〉Q where X = X ′p ∩ X ′q and, for each i ∈
{p, q}, X ′i = global(Xi,R(Si)), i.e. X

′
i is the site Xi w.r.t. the global co-

ordinate system. As stand-alone processes, P and Q can perform two
compatible strong-split actions, namely ρ(a,X ′p) and ρ(a,X ′q) and evolve,
resp., in Sp[Bp] and Sq[Bq]. As a consequence, P 〈a,X〉Q becomes either
Sp[Bp] 〈a,X〉Q or P 〈a,X〉Sp[Bq].

Being these actions compatible, P and Q have to synchronize on their
execution in order to split the bond 〈a,X〉 (i.e., a strong-split operation
is enabled). Such an operation must be performed before time can pass
further and must produce as a result two independent 3D processes, i.e.
the network of 3D processes (see Section 4) that contains both Sp[Bp] and
Sq[Bq]. Similarly, we would allow synchronizations between compatible
weak-split action in order to perform a weak-split operation. To properly
deal with this kind of behaviours some technical details are still needed.
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We �rst allow synchronization on compatible split actions by introduc-

ing the transition relations
ρ(a,X)⇒ and

ω(a,X)⇒ . Intuitively, we want that

P 〈a,X〉Q ρ(a,X)⇒ Sp[Bp] 〈a,X〉Sq[Bq]. Now, we can `physically' remove the
bond 〈a,X〉 (this will be done by exploiting the function split over 3D pro-
cesses we provide in the next section) and obtain the network of processes
we are interested in.

De�nition 14 (Semantics of strong and weak splits) The SOS-rules

that de�ne the transition relations
ρ(a,X)⇒ ⊆ 3DP× 3DP where ρ(α,X) ∈ ρ(C)

are given in Table 4. We omit symmetric rules and those ones de�ning the

transition relations
ω(a,X)⇒ ⊆ 3DP× 3DP for ω(a,X) ∈ ω(C), since these can

be obtained from those in Table 4 by replacing each action ρ(-) with the

corresponding action ω(-).

StrSync
P

ρ(α,Xp)−−−−−→ P ′ Q
ρ(α,Xq)−−−−−→ Q′ α ∈ {a, a} X = Xp ∩Xq

P 〈a,X〉Q ρ(a,X)⇒ P ′ 〈a,X〉Q′

StrPar
P

ρ(b,Y )⇒ P ′

P 〈a,X〉Q ρ(b,Y )⇒ P ′ 〈a,X〉Q

Table 4: Transitional semantics for strong-split actions

Recall that strong-split operations require simultaneous split of multiple
bonds. In this case, all the components involved in the reaction must all

together be ready to synchronize on a proper set of compatible strong-split
actions. This concept is formalized by the de�nition below.

De�nition 15 (Bonds of 3DP-terms) The function bonds : 3DP→ ℘(C)
returns the set of bonds that are currently established in P . It is de�ned by

induction on P ∈ 3DP:
Basic: bonds(S[B]) = ∅
Comp: bonds(P 〈a,X〉Q) = bonds(P ) ∪ bonds(Q) ∪ {〈a,X〉}

By induction on P we can prove that P
ρ(a,X)⇒ implies 〈a,X〉 ∈ bonds(P ).

Moreover, we say that P ∈ 3DP is able to complete a reaction, written P ↘,

i� either (1) P 6 ρ−→, or (2) P
ρ(a,X)⇒ Q for some ρ(a,X) and Q such that Q↘.
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Finally, if P is able to complete a reaction and there is at a least a bond
that has to be strongly split (i.e. if P 6 ρ−→ does not hold), a reaction can
actually take place and, as a consequence, time cannot pass further. Below
we restrict the timed operational semantics of 3D processes as it has been
de�ned in Def. 13 in order to take this aspect into account.

De�nition 16 Let P ∈ 3DP. We say that P
t−→ Q if P

t
 Q and either

P 6 ρ−→ or P is not able to complete a reaction.

Proposition 4 states that the function split is well-de�ned up to structural
congruence over 3D processes we de�ne below.

De�nition 17 (Structural congruence over 3D processes) We de�-

ne the structural congruence over processes in 3DP, which we denote by ≡P ,
as the smallest relation that satis�es the following axioms:

- S[B] ≡P S′[B] provided that S ≡S S′;

- P 〈a,X〉Q ≡P Q 〈a,X〉P ;

- P ≡P Q implies P 〈a,X〉R ≡P Q 〈a,X〉R;

- Y ⊆ B(Q) ∩ B(R) implies (P 〈a,X〉Q) 〈b, Y 〉R ≡P P 〈a,X〉 (Q 〈b, Y 〉R).

Proposition 4 Let P ∈ 3DP well-formed. If 〈a,X〉 ∈ bonds(P ) there is a

well-formed 3D process Q 〈a,X〉R ≡P P .

We also need the following closure result.

Proposition 5 Let P,Q ∈ 3DP and µ ∈ ω(C) ∪ ρ(C). Then:
1. P

µ⇒ Q implies shape(Q) = shape(P );

2. P well-formed and P
µ⇒ Q implies Q well-formed.

4 Networks or 3D processes

In the following, we recall the de�nition of a 3D network, i.e. a collection of
3D processes moving in the same 3D space.

De�nition 18 (Networks of 3D processes) The set N of networks of
3D processes (3D networks, for short) is generated by the grammar:

N ::= Nil
∣∣ P ∣∣ N ‖N where P ∈ 3DP. Given a �nite set of indexes I,

we often write (‖Pi)i∈I to denote the network that consists of all Pi with
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i ∈ I. We assume that I = ∅ implies (‖Pi)i∈I = Nil. For N = (‖Pi)i∈I
we let Si = shape(Pi), for i ∈ I, and de�ne colliding(N) as the set of all

tuples 〈Pi, Pj , X〉 such that 〈Si, Sj , X〉 ∈ colliding({Si}i∈I) (see Def. 8). A

network N = (‖Pi)i∈I is said to be well-formed i� each Pi is well-formed

and, for each pair of distinct processes Pi and Pj, the shapes Si and Sj do
not interpenetrate. Moreover, steer t (‖Pi)i∈I = (‖ steer t Pi)i∈I .

De�nition 19 (Splitting bonds) The function split : 3DP × ℘(C) → N
is de�ned as follows: If 〈a,X〉 ∈ bonds(P ) ∩ C and P ≡P Q 〈a,X〉R then

split(P,C) = split(Q,C) ‖ split(R,C); if, otherwise, bonds(P ) ∩ C = ∅, then
split(P,C) = P .

It is worth noting that split shapes maintain the same velocity until the next
occurrence of a movement time step. As we mentioned above, this is not a
problem because they will not trigger a collision and, thus, a shorter �rst
time of contact.

Proposition 6 Let P ∈ 3DP well-formed and C ⊆ C. Then split(P,C) is a

well-formed network of 3D processes.

De�nition 20 (Semantics of weak- and strong-split operation) Let

P ∈ 3DP a 3D process. If P ↘, we write that P
ρ−→ N ∈ N i� there

is a non empty set C = {〈a1, X1〉, · · · , 〈an, Xn〉} ⊆ bonds(P ) such that

P = P0
ρ(a1,X1)⇒ P1 · · ·

ρ(an,Xn)⇒ Pn, Pn 6
ρ−→ and N = split(Pn, C). Sim-

ilarly, P
ω−→ N i� ∃〈a,X〉 ∈ bonds(P ) such that P

ω(a,X)⇒ Q and N =
split(Q, {〈a,X〉}).

Since weak-split operations are due to a synchronization between just a pair
of 3D processes, condition `P is able to complete a reaction' is not needed,

but `P
ω(a,X)⇒ Q' su�ces to our aim.

Example 2 Let us consider the 3D process P = H 〈atp, X〉 (A 〈glc, Y 〉 G)
where H = Sh[ ρ({〈atp, Xha〉, 〈glc, Yhg〉}).HEX ], A = Sa[ ρ({〈atp, Xah〉}).
ADP + ω(atp, Xah).ATP ],G = Sg[ρ({〈glc, Ygh〉}).G6P + ω(glc, Ygh).GLC],
X ′ha ∩ X ′ah = X (here X ′ha and X ′ah are the sites Xha and Xah expressed

w.r.t. a global coordinate system; this convention will be applied later on)

and Y ′hg ∩ Y ′gh = Y . According to the de�nitions given so far, P is able to
complete a reaction since:

P
ρ(atp,X)⇒ Sh[ρ({〈glc, Yhg〉}).HEX] 〈atp, X〉 (Sa[ADP] 〈glc, Y 〉 G)
ρ(glc,Y )⇒ Sh[HEX] 〈atp, X〉 (Sa[ADP] 〈glc, Y 〉Sg[G6P]) = R
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Moreover, R 6 ρ−→ and

split(R,C) = Sa[HEX] ‖ split(Sa[ADP] 〈glc, Y 〉Sg[G6P], C)
= Sh[HEX] ‖ (Sa[ADP] ‖Sg[G6P]) = N,

where C = {〈atp, X〉, 〈glc, Y 〉}, implies P
ρ−→ N . Moreover, let us note that,

for each t ∈ T, P t
 P but P 6 t−→ since P is able to complete a reaction and

P 6 ρ−→ does not hold.

Below we recall the temporal and functional behaviour of 3D networks. Sym-
metric rules have been omitted.

De�nition 21 (Temporal and Functional Behaviour of N-terms)

The following rules de�nes the transition relations
t−→⊆ N×N for t ∈ T and

ν−→⊆ N× N for ν ∈ {ω, ρ}:

Emptyt

Nil
t−→ Nil

Part

N
t−→ N ′ M

t−→M ′

N ‖M t−→ N ′ ‖M ′
Para

N
ν−→ N ′

N ‖M ν−→ N ′ ‖M

A timed trace from N is a �nite sequence of steps of the form N = N0
ν1−→

N1 · · ·
νn−→ Nn = M . We also write that N

t⇒ M if there is a timed trace

N = N0
ν1−→ N1 · · ·

νn−→ Nn = M such that t =
n∑
i=0
{νi | νi ∈ T}.

Proposition 7 Let t ∈ T, P ∈ 3DP, N ∈ N, with P and N well-formed.

1. P
ω−→ N and P

ρ−→ N implies N ∈ N well-formed.

2. N
t−→M implies M well-formed;

3. N
t⇒M implies M well-formed.

4.1 Collision response

In this section we describe the semantics of collisions response. The notion of
compatibility between channels (and, hence, processes) has been introduced
to distinguish between elastic and inelastic collision. In particular, collisions

among compatible processes are always inelastic. So, if P
〈a,Xp〉−−−−→ P ′ and

Q
〈a,Xq〉−−−−→ Q′, with 〈a,Xp〉 and 〈a,Xq〉 compatible, and P and Q collide in the

non-empty site X = Xp ∩Xq we get a compound process (P ′ 〈a,X〉Q′)|[v]|
where the velocity v is provided by Equation (3) in Def. 9. Vice versa, a
collision between two incompatible processes P and Q is treated as an elastic
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one. After such a collision, P and Q (actually the processes we obtain by
updating their velocities according to Equations (1) and (2) in Def. 9) will
proceed independently to each other. To resolve collisions, we introduce two

di�erent kinds of reduction relations over 3D networks, namely
〈P,Q,X〉−−−−−→e and

〈P,Q,X〉−−−−−→i, where P,Q are 3D processes and X is a surface of contact (see

Table 5). Intuitively, if N
〈P,Q,X〉−−−−−→e M (N

〈P,Q,X〉−−−−−→i M), then M is the 3D
network we obtain once an elastic (inelastic, resp.) collision between P and
Q in the surface of contact X has been resolved. These reduction relations
also use the structural congruence over 3D networks.

De�nition 22 (Structural congruence over 3D networks)

The structural congruence over terms in N, that we denote with ≡, is the

smallest relation that satis�es the following axioms:

- Nil ‖N ≡ N , N ‖M ≡M ‖N and N ‖ (M ‖R) ≡ (N ‖M) ‖R;

- P ‖N ≡ Q ‖N provided that P ≡P Q.

Rule elas in Table 5 simply changes velocities of two colliding but incom-
patible processes guided by Equations (1) and (2) in Def. 9, while rule inel
joins two compatible processes P and Q to obtain a compound process whose
velocity is given by Equation (3) in Def. 9. We force P and Q to synchronize
on the execution of two compatible actions 〈α,Xp〉 and 〈α,Xq〉 before joining
them. In rules elas≡ and inelas≡ we also consider structural congruence
over nets of processes. In Def. 23 we collect together all the reduction-steps
needed to solve collisions listed in a given set of collisions colliding(N); clearly
N is a generic 3D network.

De�nition 23 (Resolving collisions) Let N ∈ N and 〈P,Q,X〉 a tuple

in colliding(N). N
〈P,Q,X〉−−−−−→ M if either P ∼ Q and N

〈P,Q,X〉−−−−−→i M or

P 6∼ Q and N
〈P,Q,X〉−−−−−→e M . Moreover, we write that N

κ−→ M if either

colliding(N) = ∅ and N = M or colliding(N) 6= ∅ and there is a �nite

sequence of reduction steps N = N0
〈P1,Q1,X1〉−−−−−−−→ N1 · · ·

〈Pk,Qk,Xk〉−−−−−−−→ Nk = M
such that:

1. 〈Pi, Qi, Xi〉 ∈ colliding(Ni−1) for each i ∈ [1, k];

2. colliding(Nk) = ∅.
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elas
P

X←→e Q = (vp,vq)

(P ‖Q) ‖N 〈P,Q,X〉−−−−−→e (P |[vp]| ‖Q|[vq]|) ‖N

inel
P
〈α,Xp〉−−−−→ P ′ Q

〈α,Xq〉−−−−→ Q′ α ∈ {a, a} P
Xp ∩Xq←→ i Q = v

(P ‖Q) ‖N 〈P,Q,Xp ∩Xq〉−−−−−−−−−→i ((P ′ 〈a,Xp ∩Xq〉Q′)|[v]|) ‖N

elas≡
N ≡ N ′ N ′

〈P,Q,X〉−−−−−→e M

N
〈P,Q,X〉−−−−−→e M

inel≡
N ≡ N ′ N ′

〈P,Q,X〉−−−−−→i M

N
〈P,Q,X〉−−−−−→i M

Table 5: Reaction rules for elastic and inelastic collisions

Let also note that, at any given time t, colliding(N) can be obtained from
the set of all the pairs of processes in N that are touching at that time.
This set and hence colliding(N) is surely �nite and changes only when we
resolve some inelastic collision (this is because, after an inelastic collision one
or more binding sites can possibly become internal points of a compound
process, and hence are not available any more). Moreover a collision between
pairs of processes with the same shape can not be resolved twice. This is
either because two processes P and Q have been bound in a compound
process as a consequence of an inelastic collision, or because P and Q collide
elastically and their velocities have been changed according to Equations (1)
and (2) in Def. 9 in order to obtain two processes that do not collide any
more. Thus, we can always decide if there is a �nite sequence of reduction
steps that allows us to resolve all collisions listed in colliding(N) and hence
obtain a network M with colliding(M) = ∅.

Proposition 8 Let N ∈ N, P,Q ∈ 3DP and X a non-empty subset of P.
Then N well-formed and N

〈P,Q,X〉−−−−−→M implies M well-formed.

Iterating Proposition 8 it is also:

Lemma 1 Let N ∈ N well-formed and N
κ−→M . Then M is well-formed.

We are now ready to de�ne how a network of 3D processes evolves by per-
forming an in�nite number of movement time steps.
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De�nition 24 (System evolution) Let N,M ∈ N and t, t′ ∈ T. We say

that (N, t)
t′⇒ (M, t+ t′) i� one of the following conditions holds:

1. t′ = Ftoc(N) ≤ ∆ and N
t′⇒ N ′

κ−→ N ′′ and M = steer (t+ t′) N ′′;

2. t′ = ∆ < Ftoc(N) and N
t′⇒ N ′ and M = steer (t+ t′) N ′.

A system evolution is any in�nite sequence of time steps of the form:

(N0, 0)
t1⇒ (N1, t1)

t2⇒ (N2, t1 + t2) · · · (Ni−1,
i−1∑
j=1

tj)
ti⇒ (Ni,

i∑
j=1

tj)
ti+1⇒ · · ·

Note that, for each i ≥ 1, ti = min{Ftoc(Ni−1),∆}. Moreover, in order to
make sure that processes will never interpenetrate during a system evolution,
if Ftoc(Ni−1) ≤ ∆, we �rst resolve all the collisions that happen after time
ti = Ftoc(Ni−1) (by means of transition

κ−→) and then apply the changes
suggested by the function steer as described in Section 2.1.

Example 3 This example shows a possible evolution of the 3D network

N0 = (HEX ‖ATP ) ‖GLC where HEX, ATP and GLC are the 3D pro-

cesses of Example 1. Below we use the following notation:

- H(t) = (Sh + t)[HEX], A(t) = (Sa + t)[ATP] and G(t) = (Sg + t)[GLC]
for each t ∈ T. Note that HEX = H(0), ATP = A(0) and GLC =
G(0);

- C = ρ({〈atp, Xha〉, 〈glc, Xhg〉}).HEX and, for any t ≤ th, HA(t) =
ω(atp, Xha).HEX + ε(th − t).〈glc, Xhg〉.C;

- AH(t) = ω(atp, Xah).ATP + ε(ta − t).ρ({atp, Xah}).ADP for any t ∈ T
with t ≤ ta;

- GH(t) = ω(glc, Xgh).GLC + ε(tg − t).ρ({glc, Xgh}).G6P for any t ≤ tg.

Let t1 = Ftoc(N0) and assume t1 ≤ ∆. By the operational rules, it is

N0
t1⇒ H(t1) ‖A(t1) ‖G(t1) = N ′0. We also assume that colliding(N ′0) =

{〈H(t1), A(t1), X〉} where X = X ′ha ∩X ′ah 6= ∅, X ′ha = global(Xha,R(Sh +

t1)) and X ′ah = global(Xah,R(Sa + t1)). Then: N ′0
κ−→ P (t1) ‖G(t1) = N ′′0

where P (t1) =
(
(Sh + t1)[HA(0)]〈atp, X〉(Sa + t1)[AH(0)]

)
|[vha]| and vha =

H(t1)
X←→i A(t1).
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Finally: (N0, 0)
t1⇒ (N1, t1) where N1 = steer t1N

′′
0 = steer t1 P (t1) ‖

steer t1G(t1) = P (t1)|[v1]| ‖G(t1)|[v2]|. Note that:

P (t1)|[v1]| =
(
(Sh + t1)[HA(0)]〈atp, X〉(Sa + t1)[AH(0)]

)
|[v1]|

=
(
S1
h[HA(0)]〈atp, X〉S1

a[AH(0)]
)

where S1
h = ((Sh+t1)|[v1]|) and S1

a = ((Sa+t1)|[v1]|). Moreover, G(t1)|[v2]| =
((Sg + t1)|[v2]|[GLC] = S1

g [GLC].
Let t2 = Ftoc(N1) and assume t2 = th ≤ min{ta,∆}9. Below we write

G′(t2) and P ′(t2) to denote, respectively, the 3D processes (S1
g+t2)[GLC] and(

(S1
h+t2)[HA(th)]〈atp, X+t2 ·v1〉(S1

a+t2)[AH(t2)]
)
. Again by the operational

rules, N1
t2⇒ P ′(t2) ‖G′(t2) = N ′1.

Let colliding(N ′1) = {〈P ′(t2), G′(t2), Y 〉} where Y = X ′hg ∩ X ′gh 6=
∅, X ′hg = global(Xhg,R(S1

h + t2)) and X ′gh = global(Xgh,R(S1
g + t2)) ⊆

B(P ′(t2)). If vgh = P ′(t2)
Y←→i G

′(t2), then

N ′1
κ−→
(
P (t2) 〈glc, Y 〉G(t2)

)
|[vgh]| = N ′′1 where G(t2) = (S1

g + t2)[GH(0)] and
P (t2) =

(
(S1
h + t2)[C]〈atp, X + t2 · v1〉(S1

a + t2)[AH(t2)]
)
.

Finally: (N1, t1)
t2⇒ (N2, t1 + t2) where N2 = steer (t1 + t2) N ′′1 =(

P (t2) 〈glc, Y 〉G(t2)
)
|[v3]|. Observe that:(

P (t2) 〈glc, Y 〉G(t2)
)
|[v3]| =

(
P (t2)|[v3]|

)
〈glc, Y 〉

(
G(t2)|[v3]|

)
=(

(S2
h[C] 〈atp, X + t2 · v1〉S2

a[AH(t2)]
)
〈glc, Y 〉S2

g [GH(0)]
where S2

h = (S1
h + t2)|[v3]|, S2

a = (S1
a + t2)|[v3]| and S2

g = (S1
g + t2)|[v3]|.

At this stage the network contains just one process and, as a consequence,

no collisions are possible. Thus, Ftoc(N2) =∞. Assume tg = ta− t2 ≤ ∆10.

If we let Xg = (X + t2 · v1) + tg · v3 and Yg = Y + tg · v3, then:

N2
tg⇒ ((S2

h + tg)[C] 〈atp, Xg〉 (S2
a + tg)[AH(ta)]

)
〈glc, Yg〉(S2

g + tg)[GH(tg)]
ρ−→

((S2
h + tg)[HEX] ‖ (S2

a + tg)[ADP]
)
‖ (S2

g + tg)[G6P]
∆−tg⇒

((S2
h + ∆)[HEX] ‖ (S2

a + ∆)[ADP]
)
‖ (S2

g + ∆)[G6P] = N ′2.

Thus: (N2, t1 + t2)
∆⇒ (N3, t1 + t2 + ∆) where N3 = steer (t1 + t2 +

∆) N ′2 = (S3
h[HEX] ‖S3

a[ADP]
)
‖S3

g [G6P], S3
i = (S2

i + ∆)|[vi]| and vi =
steer (t1 + t2 + ∆) (S2

i + ∆) for each i ∈ {h, a, g}.
9If were t2 < th. the 3D processes HA(t2) and GLC would be no more compatible, and

a collision between them would be treated as elastic. On the other hand, if were t2 = ta
the idling time for AH(ta) would be over. As a consequence, time would pass further only
after the execution of a weak-split operation that splits the bond between the Hexokinases
and the Atp molecules

10If were tg 6= ta−t2 the reaction could never proceed since the involved molecules would
never be able to release - all together - the bonds. Thus the system would deadlock.
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We can prove the following basic property stating that any system evo-
lution does not introduce space inconsistencies like interpenetration of 3D
processes or not well-formed processes.

Theorem 1 (Closure w.r.t. well-formedness) Let N ∈ N well-formed.

If (N, t)
t′⇒ (M, t+ t′) then M is well-formed.

Proof: Assume that (N, t)
t′⇒ (M, t + t′) because of N

t′⇒ N ′
κ−→ N ′′ and

M = steer (t + t′) N ′′ (the other case � see Def. 24 � is similar). Then, by

Proposition 7 (item 3) and Lemma 1, N well-formed and N
t′⇒ N ′

κ−→ N ′′

implies N ′′ and hence M = steer (t+ t′) N ′′ well-formed.

5 Conclusions and Future Work

We have formally de�ned the full timed operational semantics of the Shape
Calculus. Moreover, a result of well-formedness has been proven: any well-
formed 3D network will evolve in a well-formed 3D network. Several tech-
nical proofs of the results are omitted in this paper, but they can be found
in the extended version [1]. On top of this formal framework, we intend to
de�ne abstractions of the semantics in order to be able to prove, statically,
properties of a given 3D network. Moreover, we intend to add information
to the basic calculus, for instance by equipping any process with a steer
component, rather than having an abstract function for movements.
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