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Abstract

We study arithmetic properties of a new tree-based canonical num-
ber representation, recursively run-length compressed natural numbers,
defined by applying recursively a run-length encoding of their binary
digits.

We design arithmetic and boolean operations with recursively run-
length compressed natural numbers that work a block of digits at a
time and are limited only by the representation complexity of their
operands, rather than their bitsizes.

As a result, operations on very large numbers exhibiting a regular
structure become tractable.

In addition, we ensure that the average complexity of our operations
is still within constant factors of the usual arithmetic operations on
binary numbers.

Arithmetic operations on our recursively run-length compressed are
specified as pattern-directed recursive equations made executable by
using a purely declarative subset of the functional language Haskell.
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1 Introduction

Notations like Knuth’s “up-arrow” [6] have been shown to be useful in
describing very large numbers. However, they do not provide the ability to
actually compute with them, as, for instance, addition or multiplication with
a natural number results in a number that cannot be expressed with the
notation anymore.

The main focus of this paper is a new tree-based numbering system
that allows computations with numbers comparable in size with Knuth’s
“up-arrow” notation. Moreover, these computations have worst and average
case complexity that is comparable with the traditional binary numbers,
while their best case complexity outperforms binary numbers by an arbitrary
tower of exponents factor.

For the curious reader, it is basically a hereditary number system [3],
based on recursively applied run-length compression of the usual binary digit
notation. It favors giant numbers in neighborhoods of towers of exponents of
two, with super-exponential gains on their arithmetic operations. Moreover,
the proposed notation is canonical i.e., each number has a unique represen-
tation (contrary to the traditional one where any number of leading zeros
can be added).

We adopt a literate programming style, i.e. the code described in the
paper forms a self-contained Haskell module (tested with ghc 7.6.3), also
available as a separate file at http://www.cse.unt.edu/~tarau/research/
2014/RCN.hs .

Our literate Haskell program is organized as the module RCN with the
declaration:

module RCN where

import System.Random

The code in this paper can be seen as a compact and mathematically obvious
specification rather than an implementation fine-tuned for performance.
Faster but more verbose equivalent code can be derived in procedural or
object oriented languages by replacing lists with (dynamic) arrays and some
instances of recursion with iteration.

We mention, for the benefit of the reader unfamiliar with Haskell, that a
notation like f x y stands for f(x, y), [t] represents sequences of elements of
type t and a type declaration like f :: s -> t -> u stands for a function
f : s× t→ u.

Our Haskell functions are always represented as sequences of recursive

http://www.cse.unt.edu/~tarau/research/2014/RCN.hs
http://www.cse.unt.edu/~tarau/research/2014/RCN.hs
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equations guided by pattern matching, conditional to constraints (simple
relations following | and before the = symbol). Locally scoped helper
functions are defined in Haskell after the where keyword, using the same
equational style.

The composition of functions f and g is denoted f.g . Note also that
the result of the last evaluation is stored in the special Haskell variable it.

The paper is organized as follows. Section 2 discusses related work.
Section 3 introduces our tree-represented recursively run-length compressed
natural numbers. Section 4 describes constant time successor and predecessor
operations on tree-represented numbers. Section 5 describes novel algorithms
for arithmetic operations taking advantage of our number representation.
Section 6 defines several specialized operations and primality tests. Section
7 introduces bitwise operations taking advantage of our representation and
applies them to boolean evaluation. Section 8 defines a concept of represen-
tation complexity and studies best and worst cases. Section 9 describes an
example of computation with very large numbers using recursively run-length
compressed numbers. Section 10 concludes the paper.

This is an extended and improved version of the paper [18] with most
of the new material concentrated in sections 6 and 7.

2 Related Work

We will briefly describe here some related work that has inspired and facili-
tated this line of research and will help to put our past contributions and
planned developments in context.

The first instance of a hereditary number system, at our best knowledge,
occurs in the proof of Goodstein’s theorem [3], where replacement of finite
numbers on a tree’s branches by the ordinal ω allows him to prove that
a “hailstone sequence” visiting arbitrarily large numbers eventually turns
around and terminates.

Conway’s surreal numbers [2] can also be seen as inductively constructed
trees. While our focus will be on efficient large natural number arithmetic,
surreal numbers model games, transfinite ordinals and generalizations of real
numbers.

Several notations for very large numbers have been invented in the past.
Examples include Knuth’s up-arrow notation [6], covering operations like the
tetration (a notation for towers of exponents). In contrast to the tree-based
natural numbers we propose in this paper, such notations are not closed
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under addition and multiplication, and consequently they cannot be used as
a replacement for ordinary binary or decimal numbers.

This paper is similar in purpose with [19] which describes a more
complex hereditary number system (based on run-length encoded “bijective
base 2” numbers, introduced in [14] pp. 90-92 as “m-adic” numbers). In
contrast to [19], we are using here the familiar binary number system, and
we represent our numbers as the free algebra of ordered rooted multiway
trees, rather than the more complex data structure used in [19].

Another hereditary number system is Knuth’s TCALC program [7]
that decomposes n = 2a + b with 0 ≤ b < 2a and then recurses on a and
b with the same decomposition. Given the constraint on a and b, while
hereditary, the TCALC system is not based on a bijection between N and
N × N. Moreover, the literate C-program that defines it only implements
successor, addition, comparison and multiplication and does not provide
a constant time exponent of 2 and low complexity leftshift / rightshift
operations.

An emulation of Peano and conventional binary arithmetic operations
in Prolog, is described in [5]. Their approach is similar as far as a symbolic
representation is used. The key difference with our work is that our operations
work on tree structures, and as such, they are not based on previously known
algorithms.

In [20] a binary tree representation enables arithmetic operations which
are simpler but limited in efficiency to a small set of “sparse” numbers.

In [22] integer decision diagrams are introduced providing a compressed
representation for sparse integers, sets and various other data types. However
likewise [20] and [16], and in contrast to those proposed in this paper, they
only compress “sparse” numbers, consisting of relatively few 1 bits in their
binary representation.

The tree representation that we will use is an instance of the Catalan
family of combinatorial objects [15], on which, in [17], arithmetic operations
are seen as operating on balanced parenthesis languages. While combinatorial
enumeration and combinatorial generation, for which a vast literature exists
(see for instance [15], [4], [10], [8], [12] and [13]), can be seen as providing
unary Peano arithmetic operations implicitly, we are not aware of any work
enabling arithmetic computations of efficiency comparable to the usual binary
numbers (or better) using an instance of a combinatorial family. In fact, this
is the main motivation and the most significant contribution of this paper.
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3 The Data Type of Recursively Run-length Com-
pressed Natural Numbers

First, we define a data type for our tree-represented natural numbers, that
we call recursively run-length compressed numbers to emphasize that this
encoding is recursively used in their representation. Through the paper,
we assume a “big-endian” notation, with the least significant digit first for
binary strings.

Definition 1 The data type T of the set of recursively run-length compressed
numbers is defined by the Haskell declaration:

data T = F [T] deriving (Eq,Show,Read)

that automatically derives the equality relation “==”, as well as reading and
string representation. The data type T corresponds precisely to ordered rooted
multiway trees with empty leaves, but for shortness, we will call the objects of
type T terms. The “arithmetic intuition” behind the type T is the following:

• the term F [] (empty leaf) corresponds to zero

• in the term F xs, each x on the list xs counts the number x+1 of
b ∈ {0, 1} digits, followed by alternating counts of 1-b and b digits,
with the convention that the most significant digit is 1

• the same principle is applied recursively for the counters, until the
empty sequence is reached.

One can see this process as run-length compressed base-2 numbers, unfolded
as trees with empty leaves, after applying the encoding recursively. Note
that we count x+1 as we start at 0. By convention, as the last (and most
significant) digit is 1, the last count on the list xs is for 1 digits. For
instance, the first level of the encoding of 123 as the (big-endian) binary
number 1101111 is [1,0,3].

The following simple fact allows inferring parity from the number of
subtrees of a tree.

Proposition 1 If the length of xs in F xs is odd, then F xs encodes an
odd number, otherwise it encodes an even number.

Proof: Observe that as the highest order digit is always a 1, the lowest
order digit is also 1 when length of the list of counters is odd, as counters
for 0 and 1 digits alternate. 2
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This ensures the correctness of the Haskell definitions of the predicates
odd and even .

odd_ :: T → Bool

odd_ (F []) = False

odd_ (F (_:xs)) = even_ (F xs)

even_ :: T → Bool

even_ (F []) = True

even_ (F (_:xs)) = odd_ (F xs)

Note that while these predicates work in time proportional to the length of
the list xs in F xs, with a (dynamic) array-based list representation that
keeps track of the length or keeps track of the parity bit explicitly, one can
assume that they are constant time, as we will do in the rest of the paper.

Definition 2 The function n : T → N shown in equation (1) defines the
unique natural number associated to a term of type T.

n(a) =


0 if a = F [],

2n(x)+1n(F xs) if a = F (x:xs) is even ,

2n(x)+1(1 + n(F xs))− 1 if a = F (x:xs) is odd .

(1)

For instance, the computation of n(F [F [],F [F [],F []]]) using equa-
tion (1) expands to (20+1(2(2

0+1(20+1−1))+1 − 1)) = 14, which, in binary, is
[0,1,1,1] where the first level expansion [0,2], corresponds to F [] → 0

and F [F [],F []] → 2. After defining the type of natural numbers as

type N = Integer

the Haskell equivalent2 of equation (1) is:

n :: T → N

n (F []) = 0

n a@(F (x:xs)) | even_ a = 2^(n x + 1)∗(n (F xs))

n a@(F (x:xs)) | odd_ a = 2^(n x + 1)∗(n (F xs)+1)-1

The following example illustrates the values associated with the first few
natural numbers.

0: F []

1: F [F []])

2: F [F [],F []]

3: F [F [F []]]

2As a Haskell note, the pattern a@p indicates that the parameter a has the same value
as its expanded version matching the patten p.
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One might notice that our trees are in bijection with objects of the Catalan
family, e.g., strings of balanced parentheses, for instance 0 → F [] → (),
1→ F [F []] → (()), 14→ F [F [],F [F [],F []]] → (()(()())).

Definition 3 The function t : N → T defines the unique tree of type T

associated to a natural number as follows:

t :: N → T

t 0 = F []

t k | k>0 = F zs where

(x,y) = split_on (parity k) k

F ys = t y

zs = if x==0 then ys else t (x-1) : ys

parity x = x ‘mod‘ 2

split_on b z | z>0 && parity z == b = (1+x,y) where

(x,y) = split_on b ((z-b) ‘div‘ 2)

split_on _ z = (0,z)

It uses the helper function split on, which, depending on parity b, extracts
a block of contiguous 0 or 1 digits from the lower end of a binary number.
It returns a pair (x,y) consisting of a count x of the number of digits in
the block, and the natural number y representing the digits left over after
extracting the block. Note that div, occurring in both functions, is integer
division.

The following holds:

Proposition 2 Let id denote the identity function λx.x and ◦ function
composition. Then, on their respective domains:

t ◦ n = id, n ◦ t = id . (2)

Proof: By induction, using the arithmetic formulas defining the two
functions. 2

The following example illustrates the correctness of our definitions:

*RCN> map (n.t) [0..15]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
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4 Successor (s) and Predecessor (s’)

We will now specify successor and predecessor on data type T through two
mutually recursive functions, s and s’.

s :: T → T

s (F []) = F [F []] -- 1

s (F [x]) = F [x,F []] -- 2

s a@(F (F []:x:xs)) | even_ a = F (s x:xs) -- 3

s a@(F (x:xs)) | even_ a = F (F []:s’ x:xs) -- 4

s a@(F (x:F []:y:xs)) | odd_ a = F (x:s y:xs) -- 5

s a@(F (x:y:xs)) | odd_ a = F (x:F []:(s’ y):xs) -- 6

s’ :: T → T

s’ (F [F []]) = F [] -- 1

s’ (F [x,F []]) = F [x] -- 2

s’ b@(F (x:F []:y:xs)) | even_ b = F (x:s y:xs) -- 6

s’ b@(F (x:y:xs)) | even_ b = F (x:F []:s’ y:xs) -- 5

s’ b@(F (F []:x:xs)) | odd_ b = F (s x:xs) -- 4

s’ b@(F (x:xs)) | odd_ b = F (F []:s’ x:xs) -- 3

Note that the two functions work on a block of 0 or 1 digits at a time.
They are based on simple arithmetic observations about the behavior of
these blocks when incrementing or decrementing a binary number by 1. The
following holds:

Proposition 3 Denote T+ = T − {F []}. The functions s : T → T+ and
s′ : T+ → T are inverses.

Proof: It follows by structural induction after observing that patterns for
rules marked with the number -- k in s correspond one by one to patterns
marked by -- k in s’ and vice versa. 2

More generally, it can be shown that Peano’s axioms hold and as a
result < T, F[], s > is a Peano algebra.

Note also that if parity information is kept explicitly, the calls to odd

and even are constant time, as we will assume in the rest of the paper.
The following examples illustrate the correctness of our definitions of s

and s’:

*RCN> map (n.s’.s.t) [0..15]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
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Proposition 4 The worst case time complexity of the s and s’ operations
on n is given by the iterated logarithm O(log∗2(n)), where log∗2 counts the
number of times log2 can be applied before reaching 0.

Proof: Note that calls to s and s’ in s or s’ happen on terms at most
logarithmic in the bitsize of their operands. The recurrence relation counting
the worst case number of calls to s or s’ is: T (n) = T (log2(n)) + O(1),
which solves to T (n) = O(log∗2(n)). 2

Note that this is much better than the logarithmic worst case for binary
umbers (when computing, for instance, binary 111...111+1=1000...000).

Proposition 5 s and s’ are constant time, on the average.

Proof: Observe that the average size of a contiguous block of 0s or 1s in a
number of bitsize n has the upper bound 2 as

∑n
k=0

1
2k

= 2− 1
2n < 2. As on

2-bit numbers we have an average of 0.25 more calls, we can conclude that the
total average number of calls is constant, with upper bound 2 + 0.25 = 2.25.
2

A quick empirical evaluation confirms this. When computing the suc-
cessor on the first 230 = 1073741824 natural numbers, there are in total
2381889348 calls to s and s’, averaging to 2.2183 per computation. The
same average for 100 successor computations on 5000 bit random numbers
oscillates around 2.22.

5 Arithmetic Operations

Clearly one could use the successor and predecessor operations s and s’ to
implement unary Peano arithmetic. However, that would be exponentially
less efficient than the usual binary arithmetic.

The interesting thing about our representation and our successor/pre-
decessor definitions is that we can do much better.

We will now describe algorithms for basic arithmetic operations that
take advantage of our number representation and provide equivalent or better
performance than the usual binary numbers.

5.1 A few Other Average Constant Time Operations

Doubling a number db and reversing the db operation (hf) are quite simple.
For instance, db proceeds by adding a new counter for odd numbers and
incrementing the first counter for even ones.
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db :: T → T

db (F []) = F []

db a@(F xs) | odd_ a = F (F []:xs)

db a@(F (x:xs)) | even_ a = F (s x:xs)

hf :: T → T

hf (F []) = F []

hf (F (F []:xs)) = F xs

hf (F (x:xs)) = F (s’ x:xs)

Note that such efficient implementations follow directly from simple
number theoretic observations.

For instance, exp2, computing an exponent of 2 , has the following
definition in terms of s’.

exp2 :: T → T

exp2 (F []) = F [F []]

exp2 x = F [s’ x,F []]

As log2 shows, exp2 is also easy to invert with a similar amount of work:

log2 :: T → T

log2 (F [F []]) = F []

log2 (F [y,F []]) = s y

Note that this definition works on powers of 2, see Subsection 5.4 for a
general version.

The following examples illustrate these operations:

*RCN> map (n.db.t) [0..15]

[0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30]

*RCN> map (n.hf.db.t) [0..15]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

*RCN> map (n.exp2.t) [0..15]

[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]

*RCN> map (n.log2.exp2.t) [0..15]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

Proposition 6 The operations db, hf, exp2 and log2 are average constant-
time and iterated logarithm in the worst case.

Proof: At most 1 call to s or s’ is made in each definition. Therefore
these operations have the same worst and average complexity as s and s’.
2
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5.2 Optimizing Addition and Subtraction for Numbers with
Few Large Blocks of 0s and 1s

We derive efficient addition and subtraction that work on one run-length
compressed block at a time, rather than by individual 0 and 1 digit steps.
The functions leftshiftBy, leftshiftBy’ and respectively leftshiftBy”
correspond to 2nk, (λx.2x+ 1)n(k) and (λx.2x+ 2)n(k).

leftshiftBy :: T → T → T

leftshiftBy (F []) k = k

leftshiftBy _ (F []) = F []

leftshiftBy x k@(F xs) | odd_ k = F ((s’ x):xs)

leftshiftBy x k@(F (y:xs)) | even_ k = F (add x y:xs)

leftshiftBy’ :: T → T → T

leftshiftBy’ x k = s’ (leftshiftBy x (s k))

leftshiftBy’’ :: T → T → T

leftshiftBy’’ x k = s’ (s’ (leftshiftBy x (s (s k))))

The last two are derived from the identities:

(λx.2x+ 1)n(k) = 2n(k + 1)− 1 (3)

(λx.2x+ 2)n(k) = 2n(k + 2)− 2 (4)

They are part of a chain of mutually recursive functions as they are
already referring to the add function, to be implemented later. Note also
that instead of naively iterating, they implement a more efficient algorithm,
working “one block at a time”. For instance, when detecting that its
argument counts a number of 1s, leftshiftBy’ just increments that count.
As a result, the algorithm favors numbers with relatively few large blocks of
0 and 1 digits.

The following examples illustrate these operations:

*RCN> n (leftshiftBy (t 5) (t 3))

96

*RCN> n (leftshiftBy’ (t 5) (t 3))

127

*RCN> n (leftshiftBy’’ (t 5) (t 3))

158

We are now ready for defining addition. The base cases are
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add :: T → T → T

add (F []) y = y

add x (F []) = x

In the case when both terms represent even numbers, the two blocks add up
to an even block of the same size.

add x@(F (a:as)) y@(F (b:bs)) |even_ x && even_ y = f (cmp a b) where

f EQ = leftshiftBy (s a) (add (F as) (F bs))

f GT = leftshiftBy (s b)

(add (leftshiftBy (sub a b) (F as)) (F bs))

f LT = leftshiftBy (s a)

(add (F as) (leftshiftBy (sub b a) (F bs)))

In the case when the first term is even and the second odd, the two blocks
add up to an odd block of the same size.

add x@(F (a:as)) y@(F (b:bs)) |even_ x && odd_ y = f (cmp a b) where

f EQ = leftshiftBy’ (s a) (add (F as) (F bs))

f GT = leftshiftBy’ (s b)

(add (leftshiftBy (sub a b) (F as)) (F bs))

f LT = leftshiftBy’ (s a)

(add (F as) (leftshiftBy’ (sub b a) (F bs)))

In the case when the second term is even and the first odd the two blocks
also add up to an odd block of the same size.

add x y |odd_ x && even_ y = add y x

In the case when both terms represent odd numbers, we use the identity (5):

(λx.2x+ 1)k(x) + (λx.2x+ 1)k(y) = (λx.2x+ 2)k(x+ y) (5)

add x@(F (a:as)) y@(F (b:bs)) | odd_ x && odd_ y = f (cmp a b) where

f EQ = leftshiftBy’’ (s a) (add (F as) (F bs))

f GT = leftshiftBy’’ (s b)

(add (leftshiftBy’ (sub a b) (F as)) (F bs))

f LT = leftshiftBy’’ (s a)

(add (F as) (leftshiftBy’ (sub b a) (F bs)))

Note the presence of the comparison operation cmp, to be defined later,
also part of our chain of mutually recursive operations. Note also the local
function f that in each case ensures that a block of the same size is extracted,
depending on which of the two operands a or b is larger. The code for the
subtraction function sub is similar:
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sub :: T → T → T

sub x (F []) = x

sub x@(F (a:as)) y@(F (b:bs)) | even_ x && even_ y = f (cmp a b) where

f EQ = leftshiftBy (s a) (sub (F as) (F bs))

f GT = leftshiftBy (s b)

(sub (leftshiftBy (sub a b) (F as)) (F bs))

f LT = leftshiftBy (s a)

(sub (F as) (leftshiftBy (sub b a) (F bs)))

The case when both terms represent 1 blocks the result is a 0 block

sub x@(F (a:as)) y@(F (b:bs)) | odd_ x && odd_ y = f (cmp a b) where

f EQ = leftshiftBy (s a) (sub (F as) (F bs))

f GT = leftshiftBy (s b)

(sub (leftshiftBy’ (sub a b) (F as)) (F bs))

f LT = leftshiftBy (s a)

(sub (F as) (leftshiftBy’ (sub b a) (F bs)))

The case when the first block is 1 and the second is a 0 block:

sub x@(F (a:as)) y@(F (b:bs)) | odd_ x && even_ y = f (cmp a b) where

f EQ = leftshiftBy’ (s a) (sub (F as) (F bs))

f GT = leftshiftBy’ (s b)

(sub (leftshiftBy’ (sub a b) (F as)) (F bs))

f LT = leftshiftBy’ (s a)

(sub (F as) (leftshiftBy (sub b a) (F bs)))

Finally, when the first block is 0 and the second is 1 an identity dual to (5)
is used:

sub x@(F (a:as)) y@(F (b:bs)) | even_ x && odd_ y = f (cmp a b) where

f EQ = s (leftshiftBy (s a) (sub1 (F as) (F bs)))

f GT =
s (leftshiftBy (s b)

(sub1 (leftshiftBy (sub a b) (F as)) (F bs)))

f LT =
s (leftshiftBy (s a)

(sub1 (F as) (leftshiftBy’ (sub b a) (F bs))))

sub1 x y = s’ (sub x y)

Note that these algorithms collapse to the ordinary binary addition and
subtraction most of the time, given that the average size of a block of con-
tiguous 0s or 1s is 2 bits (as shown in Prop. 5), so their average performance
is within a constant factor of their ordinary counterparts. On the other
hand, the algorithms favor deeper trees made of large blocks, representing
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giant “towers of exponents”-like numbers by working (recursively) one block
at a time rather than 1 bit at a time, resulting in possibly super-exponential
gains.

5.3 Comparison

The comparison operation cmp provides a total order (isomorphic to that
on N) on our type T. It relies on bitsize computing the number of binary
digits constructing a term in T. It is part of our mutually recursive functions,
to be defined later.

We first observe that only terms of the same bitsize need detailed com-
parison, otherwise the relation between their bitsizes is enough, recursively.
More precisely, the following holds:

Proposition 7 Let bitsize count the number of digits of a base-2 number,
with the convention that it is 0 for 0. Then bitsize(x) <bitsize(y) ⇒
x < y .

Proof: Observe that their lexicographic enumeration ensures that the
bitsize of base-2 numbers is a non-decreasing function. 2

The comparison operation also proceeds one block at a time, and it also
takes some inferential shortcuts, when possible.

cmp :: T → T → Ordering

cmp (F []) (F []) = EQ

cmp (F []) _ = LT

cmp _ (F []) = GT

cmp (F [F []]) (F [F [],F []]) = LT

cmp (F [F [],F []]) (F [F []]) = GT

cmp x y | x’ /= y’ = cmp x’ y’ where

x’ = bitsize x

y’ = bitsize y

cmp (F xs) (F ys) =
compBigFirst True True (F (reverse xs)) (F (reverse ys))

The function compBigFirst compares two terms known to have the same
bitsize. It works on reversed (highest order digit first) variants, computed
by reverse and it takes advantage of the block structure using the following
proposition:

Proposition 8 Assuming two terms of the same bitsizes, the one with its
first before its highest order digit 1 is larger than the one with its first before
its highest order digit 0.
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Proof: Observe that “highest order digit first” numbers are lexicographi-
cally ordered with 0 < 1. 2

As a consequence, cmp only recurses when identical blocks lead the
sequence of blocks, otherwise it infers the LT or GT relation.

The function compBigFirst is driven by two boolean arguments encod-
ing the parity of the alternating blocks, initially set to True, as the highest
order block is always made of 1s.

compBigFirst :: Bool → Bool → T → T → Ordering

compBigFirst _ _ (F []) (F []) = EQ

compBigFirst False False (F (a:as)) (F (b:bs)) = f (cmp a b) where

f EQ = compBigFirst True True (F as) (F bs)

f LT = GT

f GT = LT

compBigFirst True True (F (a:as)) (F (b:bs)) = f (cmp a b) where

f EQ = compBigFirst False False (F as) (F bs)

f LT = LT

f GT = GT

compBigFirst False True x y = LT

compBigFirst True False x y = GT

Note that when parities are distinct, False and True results in LT indicating
that the first term (headed by 0s) is smaller than the second. Conversely,
True and False results in GT indicating that the first term (headed by 1s) is
greater than the second. The following examples illustrate the comparison
operation cmp:

*RCN> cmp (t 100) (t 200)

LT

*RCN> cmp (t 300) (t 200)

GT

*RCN> cmp (t 200) (t 200)

EQ

5.4 Bitsize

The function bitsize computes the number of digits, except that we define
it as F [] for F [], corresponding to 0. It concludes the chain of mutually
recursive functions starting with the addition operation add. It works by
summing up (using Haskell’s foldr) the counts of 0 and 1 digit blocks
composing a tree-represented natural number.

bitsize :: T → T

bitsize (F []) = (F [])
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bitsize (F (x:xs)) = s (foldr add1 x xs)

add1 x y = s (add x y)

It follows that the base-2 integer logarithm is then computed as

ilog2 :: T → T

ilog2 = s’ . bitsize

The iterated logarithm log∗2 can be also defined as

ilog2star :: T → T

ilog2star (F []) = F []

ilog2star x = s (ilog2star (ilog2 x))

The following examples illustrate these operations:

*RCN> map (n.ilog2.t) [1..15]

[0,1,1,2,2,2,2,3,3,3,3,3,3,3,3]

*RCN> (n.bitsize.exp2.exp2.exp2.exp2.t) 2

65537

*RCN> (n.ilog2star.exp2.exp2.exp2.exp2.t) 2

6

5.5 Multiplication, Optimized for Large Blocks of 0s and 1s

Devising a similar optimization as for add and sub for multiplication is
actually easier.

When the first term represents an even number we apply the leftshiftBy
operation and we reduce the other case to this one.

mul :: T → T → T

mul x y = f (cmp x y) where

f GT = mul1 y x

f _ = mul1 x y

mul1 (F []) _ = F []

mul1 a@(F (x:xs)) y | even_ a = leftshiftBy (s x) (mul1 (F xs) y)

mul1 a y | odd_ a = add y (mul1 (s’ a) y)

Note that when the operands are composed of large blocks of alternating 0
and 1 digits, the algorithm is quite efficient as it works (roughly) in time
depending on the number of blocks in its first argument rather than the
number of digits. The following example illustrates a blend of arithmetic
operations benefiting from complexity reductions on giant tree-represented
numbers:
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*RCN> let term1 = sub (exp2 (exp2 (t 12345))) (exp2 (t 6789))

*RCN> let term2 = add (exp2 (exp2 (t 123))) (exp2 (t 456789))

*RCN> bitsize (bitsize (mul term1 term2))

F [F [],F [],F [],F [F [],F []],F [F [],F [],F []],F [F []]]

*RCN> n it

12346

This hints toward a possibly new computational paradigm where arithmetic
operations are not limited by the size of their operands, but only by their
representation complexity. We will make this concept more precise in section
8.

5.6 Power

After specializing our multiplication for a squaring operation,

square :: T → T

square x = mul x x

we can implement a simple but efficient “power by squaring” operation for
xy, as follows:

pow :: T → T → T

pow _ (F []) = F [F []]

pow a@(F (x:xs)) b | even_ a = F (s’ (mul (s x) b):ys) where

F ys = pow (F xs) b

pow a b@(F (y:ys)) | even_ b = pow (superSquare y a) (F ys) where

superSquare (F []) x = square x

superSquare k x = square (superSquare (s’ k) x)

pow x y = mul x (pow x (s’ y))

It works well with fairly large numbers, by also benefiting from efficiency
of multiplication on terms with large blocks of 0 and 1 digits:

*RCN> n (bitsize (pow (t 10) (t 100)))

333

*RCN> pow (t 32) (t 10000000)

F [F [F [F [],F [F []]],F [F [F []],F []],F [F [F []]],

F [],F [],F [],F [F [F []],F []],F [],F []],F []]

5.7 Division Operations

We start by defining an efficient special case.
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5.7.1 A Special Case: Division by a Power of 2

The function rightshiftBy x y goes over its argument y one block at
a time, by comparing the size of the block and its argument x that is
decremented after each block by the size of the block. The local function f

handles the details, irrespectively of the nature of the block, and stops when
the argument is exhausted. More precisely, based on the result EQ, LT, GT

of the comparison, f either stops or, calls rightshiftBy on the the value of
x reduced by the size of the block a’ = s a.

rightshiftBy :: T → T → T

rightshiftBy (F []) y = y

rightshiftBy _ (F []) = F []

rightshiftBy x (F (a:xs)) = f (cmp x a’) where

b = F xs

a’ = s a

f LT = F (sub a x:xs)

f EQ = b

f GT = rightshiftBy (sub x a’) b

5.7.2 General division

An integer division algorithm is given here, but it does not provide the same
complexity gains as, for instance, multiplication, addition or subtraction.

div_and_rem :: T → T → (T, T)

div_and_rem x y | LT == cmp x y = (F [],x)

div_and_rem x y | y /= F [] = (q,r) where

(qt,rm) = divstep x y

(z,r) = div_and_rem rm y

q = add (exp2 qt) z

The function divstep implements a step of the division operation.

divstep n m = (q, sub n p) where

q = try_to_double n m (F [])

p = leftshiftBy q m

The function try to double doubles its second argument while smaller than
its first argument and returns the number of steps it took. This value will
be used by divstep when applying the leftshiftBy operation.

try_to_double x y k =
if (LT==cmp x y) then s’ k

else try_to_double x (db y) (s k)
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Division and remainder are obtained by specializing div and rem.

divide :: T → T → T

divide n m = fst (div_and_rem n m)

remainder :: T → T → T

remainder n m = snd (div_and_rem n m)

The following examples illustrate these operations:

*RCN> n (rightshiftBy (t 3) (t 50))

6

*RCN> n (divide (t 100) (t 9))

11

*RCN> n (remainder (t 100) (t 9))

1

6 Specialized Arithmetic Operations and Primal-
ity Tests

We describe in this section a number of special purpose arithmetic operations
showing the practical usefulness of our number representation.

6.1 Integer Square Root

A fairly efficient integer square root, using Newton’s method, is implemented
as follows:

isqrt :: T → T

isqrt (F []) = F []

isqrt n = if cmp (square k) n==GT then s’ k else k where

two = F [F [],F []]

k=iter n

iter x = if cmp (absdif r x) two == LT

then r

else iter r where r = step x

step x = divide (add x (divide n x)) two

absdif x y = if LT == cmp x y then sub y x else sub x y

6.2 Modular Power

The modular power operation xy(mod m) can be optimized to avoid the
creation of large intermediate results, by combining “power by squaring”
and pushing the modulo operation inside the inner function modStep.
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modPow :: T → T → T → T

modPow m base expo = modStep expo (F [F []]) base where

modStep(F [F []]) r b = (mul r b) ‘remainder‘ m

modStep x r b | odd_ x =
modStep (hf (s’ x)) (remainder (mul r b) m)

(remainder (square b) m)

modStep x r b = modStep (hf x) r (remainder (square b) m)

The following examples illustrate the correctness of these operations:

*RCN> n (isqrt (t 103))

10

*RCN> modPow (t 10) (t 3) (t 4)

F [F []]

*RCN> n it

1

6.3 Lucas-Lehmer Primality Test for Mersenne Numbers

The Lucas-Lehmer primality test has been used for the discovery of all
the record holder largest known prime numbers of the form 2p − 1 with p
prime in the last few years. It is based on iterating p− 2 times the function
f(x) = x2 − 2, starting from x = 4. Then 2p − 1 is prime if and only if the
result modulo 2p− 1 is 0, as proven in [1]. The function ll iter implements
this iteration.

ll_iter :: T → T → T → T

ll_iter (F []) n m = n

ll_iter k n m = fastmod y m where

x = ll_iter (s’ k) n m

y = s’ (s’ (square x))

It relies on the function fastmod which provides a specialized fast computa-
tion of k modulo (2p − 1).

fastmod :: T → T → T

fastmod k m | k == s’ m = F []

fastmod k m | LT == cmp k m = k

fastmod k m = fastmod (add q r) m where

(q,r) = div_and_rem k m

Finally the Lucas-Lehmer primality test is implemented as follows:

lucas_lehmer :: T → Bool

lucas_lehmer p | p == s (s (F [])) = True

lucas_lehmer p = F [] == (ll_iter p_2 four m) where



Arithmetic and Boolean Operations on Recursively
Run-Length Compressed Natural Numbers 307

p_2 = s’ (s’ p)

four = F [F [F []],F []]

m = exp2 p

We illustrate its use for detecting a few Mersenne primes:

*RCN> map n (filter lucas_lehmer (map t [3,5..31]))

[3,5,7,13,17,19,31]

*RCN> map (\p->2^p-1) it

[7,31,127,8191,131071,524287,2147483647]

Note that the last line contains the Mersenne primes corresponding to 2p+ 1.

6.4 Miller-Rabin Probabilistic Primality Test

Let ν2(x) denote the dyadic valuation of x, i.e., the largest exponent of 2
that divides x. The function dyadicSplit defined by equation (6)

dyadicSplit(k) = (k,
k

2ν2(k)
) (6)

can be implemented as an average constant time operation as:

dyadicSplit :: T → (T, T)

dyadicSplit z | odd_ z = (F [],z)

dyadicSplit z | even_ z = (s x, s (g xs)) where

F (x:xs) = s’ z

g [] = F []

g (y:ys) = F (y:ys)

After defining a sequence of k random natural numbers in an interval

randomNats :: Int → Int → T → T → [T]

randomNats seed k smallest largest = map t ns where

ns :: [N]

ns = take k (randomRs

(n smallest,n largest) (mkStdGen seed))

we are ready to implement the function oddPrime that runs k tests and con-
cludes primality with probability 1− 1

4k
if all k calls to function strongLiar

succeed.

oddPrime :: Int → T → Bool

oddPrime k m = all strongLiar as where

m’ = s’ m

as = randomNats k k (F [F [],F []]) m’
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(l,d) = dyadicSplit m’

strongLiar a = (x == F [F []] | | (any (== m’)

(squaringSteps l x))) where

x = modPow m a d

squaringSteps (F []) _ = []

squaringSteps l x = x:squaringSteps (s’ l)

(remainder (square x) m)

Note that we use dyadicSplit to find a pair (l,d) such that l is the largest
power of t 2 dividing the predecessor m’ of the suspected prime m. The
function strongLiar checks, for a random base a, a condition that primes
(but possibly also a few composite numbers) verify.

Finally isProbablyPrime handles the case of even numbers and calls
oddPrime with the parameter specifying the number of tests, k=42.

isProbablyPrime :: T → Bool

isProbablyPrime (F [F [],F []]) = True

isProbablyPrime x | even_ x = False

isProbablyPrime p = oddPrime 42 p

The following example illustrates the correct behavior of the algorithm on a
the interval [2..100].

*RCN> map n (filter isProbablyPrime (map t [2..100]))

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,

59,61,67,71,73,79,83,89,97]

7 Boolean Operations on Tree-represented Bitvec-
tors

We implement bitvector operations (also seen as efficient bitset operations)
to work “one block of binary digits at a time”, to facilitate their use on
large but sparse boolean formulas involving a large numbers of variables.
One will be able to evaluate such formulas “all value-combinations at a
time” when represented as bitvectors of size 22

n
. Note that such operations

will be tractable with our trees, provided that they have a relatively small
representation complexity, despite their large bitsize.
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7.1 Bitwise Operations One Block of Digits at a time

We implement a generic bitwise operation that takes a boolean function
bf as its first parameter.

First, when an argument is F [], corresponding to 0 the behavior is
derived from that of the boolean function bf.

bitwise :: (Bool → Bool → Bool) → T → T → T

bitwise bf (F []) (F []) = F []

bitwise bf (F []) y = if bf False True then y else F []

bitwise bf x (F []) = if bf True False then x else F []

Next, the parities of the arguments px and py are used to derive the
parity of the result pz, by applying the boolean function bz.

bitwise bf x@(F (a:as)) y@(F (b:bs)) = f (cmp a b) where

px = odd_ x

py = odd_ y

pz = bf px py

Based on the parity pz the local function f (also parameterized by the result
of the comparison between arguments x and y) is called.

f EQ = fApply bf pz (s a) (F as) (F bs)

f GT = fApply bf pz (s b) (fromB px (sub a b) (F as)) (F bs)

f LT = fApply bf pz (s a) (F as) (fromB py (sub b a) (F bs))

The function f calls fromB to derive from the parities px and py the appro-
priate left-shifting operation.

fromB False = leftshiftBy

fromB True = leftshiftBy’

Finally, the function f calls the helper function fApply, which, de-
pending on the expected parity of the result pz, applies the appropriate
left-shift operation to the result of the recursive application of bitwise to
the remaining blocks of digits u and tt v.

fApply bf False k u v = leftshiftBy k (bitwise bf u v)

fApply bf True k u v = leftshiftBy’ k (bitwise bf u v)

The actual bitwise operations are obtained by parameterizing the generic
bitwise function with the appropriate Haskell boolean functions:

bitwiseOr :: T → T → T

bitwiseOr = bitwise ( | |)

bitwiseXor :: T → T → T
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bitwiseXor = bitwise (/=)

bitwiseAnd :: T → T → T

bitwiseAnd = bitwise (&&)

Bitwise negation (requiring the additional parameter k to specify the
intended bitlength of the operand) corresponds to the complement w.r.t. the
“universal set” of all natural numbers up to 2k − 1. It is defined as usual, by
subtracting from the “bitmask” corresponding to 2k − 1:

bitwiseNot :: T → T → T

bitwiseNot k x = sub y x where y = s’ (exp2 k)

The function bitwiseAndNot combines bitwiseOr, bitwiseNot the usual
way, except that it uses the helper function bitsOf to ensure enough mask
bits are made available when negation is applied.

bitwiseAndNot :: T → T → T

bitwiseAndNot x y = bitwiseNot l d where

l = max2 (bitsOf x) (bitsOf y)

d = bitwiseOr (bitwiseNot l x) y

The function max2 is defined in terms of comparison operation cmp as follows:

max2 :: T → T → T

max2 x y = if LT==cmp x y then y else x

The function bitsOf adapts our definition for bitsize to compute the
number of bits of a bitvector (considering 0 to be 1 bit).

bitsOf :: T → T

bitsOf (F []) = s (F [])

bitsOf x = bitsize x

The following example illustrates that our bitwise operations can be efficiently
applied to giant numbers:

*RCNx> bitwiseXor (s (exp2 (exp2 (t 12345))))

(s’ (exp2 (exp2 (t 6789))))

F [F [],F [F [],F [F [F []],F [F [F []],F []],F [],F [],F [],F [],

F [F []]]],F [F [F [F []],F [],F [F [F []]],F [],F [],F [],F [],

F [F []]],F [],F [F [],F [],F [F []],F [F []],F [],F [F []],F [],

F [],F [],F []]],F []]

Note that while the size of the term representing this result is 46 F nodes
the bitsize of the result is 212346 showing clearly that such an operation is
intractable with a bitstring representation.
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7.2 Boolean Formula Evaluation

Besides definitions for the bitwise boolean functions, we also need definitions
of the projection variables var(n, k) corresponding to column k of a truth
table, for a function with n variables. A compact formula for them, as given
in [9] or [21], is

var(n, k) = (22
n − 1) / (22

n−k−1
+ 1) (7)

However, instead of doing the division, one can compute them as a concate-
nation of alternating blocks of 1 and 0 bits to take advantage of our efficient
block operations.

var :: T → T → T

var n k = repeatBlocks nbBlocks blockSize mask where

k’ = s k

nbBlocks = exp2 k’

blockSize = exp2 (sub n k’)

mask = s’ (exp2 blockSize)

The alternating blocks are put together by the function repeatBlocks that
shifts to the left by the size of a block, at each step, and adds the mask made
of 2n−k ones, at each even step.

repeatBlocks (F []) _ _ = F []

repeatBlocks k l mask =
if odd_ k then r else add mask r where

r = leftshiftBy l (repeatBlocks (s’ k) l mask)

The following examples illustrate these operations:

*RCN> map n (map (var (t 3)) (map t [0..2]))

[15,51,85]

*RCN> map n (map (var (t 4)) (map t [0..3]))

[255,3855,13107,21845]

*RCN> map n (map (var (t 5)) (map t [0..4]))

[65535,16711935,252645135,858993459,1431655765]

The following example illustrates the evaluation of a boolean formula
in conjunctive normal form (CNF). The mechanism is usable as a simple
satisfiability or tautology tester, for formulas resulting in possibly large but
sparse or dense, low structural complexity bitvectors.

cnf :: T

cnf = andN (map orN cls) where
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cls = [[v0’,v1’,v2],[v0,v1’,v2],

[v0’,v1,v2’],[v0’,v1’,v2’],[v0,v1,v2]]

v0 = var (t 3) (t 0)

v1 = var (t 3) (t 1)

v2 = var (t 3) (t 2)

v0’ = bitwiseNot (exp2 (t 3)) v0

v1’ = bitwiseNot (exp2 (t 3)) v1

v2’ = bitwiseNot (exp2 (t 3)) v2

orN (x:xs) = foldr bitwiseOr x xs

andN (x:xs) = foldr bitwiseAnd x xs

The execution of the function cnf evaluates the formula, the result corre-
sponding to bitvector 88 = [0,0,0,1,1,0,1,0].

*RCN> cnf

F [F [F [],F []],F [F []],F [],F []]

*RCN> n it

88

8 Representation Complexity

While a detailed analysis of all our algorithms is beyond the scope of this
paper, arguments similar to those about the average behavior of s and s’

can be carried out to prove that their average complexity matches their
traditional counterparts, using the fact, shown in the proof of Prop. 5, that
the average size of a block of contiguous 0 or 1 bits is at most 2.

8.1 Complexity as Representation Size

To evaluate the best and worst case space requirements of our number
representation, we introduce here a measure of representation complexity,
defined by the function tsize that counts the nodes of a tree of type T

(except the root).

tsize :: T → T

tsize (F xs) = foldr add1 (F []) (map tsize xs)

It corresponds to the function c : T→ N defined as follows:

c(t) =

{
0 if t = F [],∑

x∈xs (1 + c(x)) if t = F xs.
(8)
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The following holds:

Proposition 9 For all terms t ∈ T, tsize t ≤ bitsize t.

Proof: By induction on the structure of t, observing that the two
functions have similar definitions and corresponding calls to tsize return
terms inductively assumed smaller than those of bitsize. 2

The following example illustrates their use:

*RCN> map (n.tsize.t) [0,100,1000,10000]

[0,7,9,13]

*RCN> map (n.tsize.t) [2^16,2^32,2^64,2^256]

[5,6,6,6]

*RCN> map (n.bitsize.t) [2^16,2^32,2^64,2^256]

[17,33,65,257]

8.2 Best and Worst Cases

Next we define the higher order function iterated that applies k times the
function f.

iterated :: (T → T) → T → T → T

iterated f (F []) x = x

iterated f k x = f (iterated f (s’ k) x)

We can exhibit, for a given bitsize, a best case

bestCase :: T → T

bestCase k = iterated wTree k (F []) where wTree x = F [x]

and a worst case

worstCase :: T → T

worstCase k = iterated f k (F []) where f (F xs) = F (F []:xs)

The function bestCase computes the iterated exponent of 2 and then
applies the predecessor to it. For k = 4 it corresponds to

(2(2
(2(2

0+1−1)+1−1)+1−1)+1 − 1) = 22
22 − 1 = 65535.

Given the time complexity of s (Props. 4 and 5) and the k applications
of function iterated, the terms bestCase k and worstCase k are built in
average time proportional to k and worst case time O(k ∗ log∗k).

The following examples illustrate these functions:
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*RCN> bestCase (t 4)

F [F [F [F [F []]]]]

*RCN> n it

65535

*RCN> n (bitsize (bestCase (t 4)))

16

*RCN> n (tsize (bestCase (t 4)))

4

*RCN> worstCase (t 4)

F [F [],F [],F [],F []]

*RCN> n it

10

*RCN> n (bitsize (worstCase (t 4)))

4

*RCN> n (tsize (worstCase (t 4)))

4

Note that the worst case corresponds to alternation of 0 and 1 bits while
the best case corresponds to a tower of exponents of 2 minus 1 resulting in
a large block of 1s that are recursively described the same way.

Our concept of representation complexity is only a weak approximation
of Kolmogorov complexity [11]. Kolmogorov complexity is given by the
size of the smallest program that computes a given bitstring. As such,
it is uncomputable but it is often approximated by incompressibility - a
property that can also be used to test the quality of randomly generated
bitstrings. For instance, the reader might notice that our worst case example
is computable by a program of relatively small size. However, as bitsize

is an upper limit to tsize, we can be sure that we are within constant
factors from the corresponding bitstring computations, even on random data
of high Kolmogorov complexity. Note also that an alternative concept of
representation complexity can be defined by considering the (vertices+edges)
size of the DAG obtained by folding together identical subtrees.

8.3 A Concept of Duality

We will discuss here a concept of “duality” that connects our worst and best
cases. We will define it through a simple transformation between “shallow”
and “deep” trees representing our numbers.

Looking back at the worst and best cases for n = 4, t 10 = F [F

[],F [],F [],F []] and t 65535 = F [F [F [F [F []]]]], note that
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the shallow (1-level) tree corresponding to 10 shares the same tree size
with the deep (4-level) tree corresponding to 65535. We will generalize this
observation by defining a tree transformation that puts such trees into a
bijection.

As our multiway trees with empty leaves are members of the Catalan
family of combinatorial objects, they can be seen as binary trees with empty
leaves, as defined by the bijection toBinView and its inverse fromBinView.

toBinView :: T → (T, T)

toBinView (F (x:xs)) = (x,F xs)

fromBinView :: (T, T) → T

fromBinView (x,F xs) = F (x:xs)

Therefore, we can transform the tree-representation of a natural number by
swapping left and right branches under a binary tree view, recursively. The
corresponding Haskell code is:

dual :: T → T

dual (F []) = F []

dual x = fromBinView (dual b, dual a) where (a,b) = toBinView x

As clearly dual is an involution (i.e., dual ◦ dual is the identity of T),
the corresponding permutation of N will put in bijection huge and small
natural numbers sharing representations of the same size, as illustrated by
the following example.

*RCN> map (n.dual.t) [0..20]

[0,1,3,2,4,15,7,6,12,31,65535,16,8,255,127,5,11,8191,

4294967295,32,65536]

For instance, 18 and 4294967295 have dual representations of the same size,
except that the wide tree associated to 18 maps to the tall tree associated to
4294967295, as illustrated by Fig. 1, with trees folded to DAGs by merging
together shared subtrees. As a result, significantly different bitsizes can
result for a term and its dual.

*RCN> t 18

F [F [],F [],F [F []],F []]

*RCN> dual (t 18)

F [F [F [F [F []],F []]]]

*RCN> n (bitsize (t 18))

5

*RCN> n (bitsize (dual (t 18)))

32
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It follows immediately from the definitions of the respective functions, that
as an extreme case, the following holds:

Proposition 10 ∀ x dual (bestCase x) = worstCase x.

0

1

0

18

3 1 0

2

(a) t 18

0

1

0

4

1

0

31

0

4294967295

0

(b) dual (t 18)

Figure 1: Duals, with trees folded to DAGs, with numbers on edges indicating
their order

The following example illustrates this equality, with a tower of exponents
1000 tall, reached by bestCase.

*RCN> dual (bestCase (t 10000)) == worstCase (t 10000)

True

Note that these computations run easily on objects of type T, while their
equivalents would dramatically overflow memory on bitstring-represented
numbers.

Another interesting property of dual is illustrated by the following
examples:

*RCN> [x|x<-[0..2^5-1],cmp (t x) (dual (t x)) == LT]

[2,5,6,8,9,10,11,13,14,17,18,19,20,21,22,23,25,26,27,28,29,30]

*RCN> [x|x<-[0..2^5-1],cmp (t x) (dual (t x)) == EQ]

[0,1,4,24]
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*RCN> [x|x<-[0..2^5-1],cmp (t x) (dual (t x)) == GT]

[3,7,12,15,16,31]

The discrepancy between the number of elements for which x is smaller than
(dual x) and those for which it is greater or equal, is growing as numbers
get larger, contrary to the intuition that, as dual is an involution, the grater
and smaller sets would have similar sizes for an initial interval of N. For
instance, between 0 and 216 − 1 one will find only 68 numbers for which the
dual is smaller and 11 for which it is equal.

Note that random elements of N tend to have relatively shallow (and
wide) multiway tree representations, given that the average size of a con-
tiguous block of 0s or 1s is 2. Consequently, dual provides an interesting
bijection between “incompressible” natural numbers (of high Kolmogorov
complexity) and their deep, highly compressible, duals.

9 A Case Study: Computing the Collatz/Syra-
cuse Sequence for Huge Numbers

An application that achieves something one cannot do with traditional
arbitrary bitsize integers is to explore the behavior of interesting conjectures
in the “new world” of numbers limited not by their sizes but by their
representation complexity. The Collatz conjecture states that the function

collatz(x) =

{
x
2 if x is even,

3x+ 1 if x is odd.
(9)

reaches 1 after a finite number of iterations. An equivalent formulation, by
grouping together all the division by 2 steps, is the function:

collatz′(x) =

{
x

2ν2(x)
if x is even,

3x+ 1 if x is odd.
(10)

where ν2(x) denotes the dyadic valuation of x, i.e., the largest exponent of
2 that divides x. One step further, the Syracuse function is defined as the
odd integer k′ such that n = 3k + 1 = 2ν2(n)k′. One more step further, by
writing k′ = 2m+ 1 we get a function that associates k ∈ N to m ∈ N.

The function tl computes efficiently the equivalent of

tl(k) =
k

2ν2(k)
− 1

2
(11)
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Together with its hd counterpart, it is defined as

hd :: T → T

hd = fst . decons

tl :: T → T

tl = snd . decons

decons :: T → (T, T)

decons a@(F (x:xs)) | even_ a = (s x,hf (s’ (F xs)))

decons a = (F [],hf (s’ a))

where the function decons is the inverse of

cons :: (T, T) → T

cons (x,y) = leftshiftBy x (s (db y))

corresponding to 2x (2y + 1). Then our variant of the Syracuse function
corresponds to

syracuse(n) = tl(3n+ 2) (12)

which is defined from N to N and can be implemented as

syracuse :: T → T

syracuse n = tl (add n (db (s n)))

The function nsyr computes the iterates of this function, until (possibly)
stopping:

nsyr :: T → [T]

nsyr (F []) = [F []]

nsyr n = n : nsyr (syracuse n)

It is easy to see that the Collatz conjecture is true if and only if nsyr
terminates for all n, as illustrated by the following example:

*RCN> map n (nsyr (t 2014))

[2014,755,1133,1700,1275,1913,2870,1076,807,1211,1817,2726,1022,383,

575,863,1295,1943,2915,4373,6560,4920,3690,86,32,24,18,3,5,8,6,2,0]

The next examples will show that computations for nsyr can be efficiently car-
ried out for giant numbers, that, with the traditional bitstring-representation,
would easily overflow the memory of a computer with as many transistors
as the atoms in the known universe.

And finally something we are quite sure has never been computed before,
we can also start with a tower of exponents 100 levels tall:

*RCN> take 100 (map(n.tsize) (nsyr (bestCase (t 100))))

[100,199,297,298,300,...,440,436,429,434,445,439]
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Note that we have only computed the decimal equivalents of the represen-
tation complexity tsize of these numbers, that obviously would not fit
themselves in a decimal representation.
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10 Conclusion

We have provided in the form of a literate Haskell program a specification
of a tree-based number system where trees are built by recursively applying
run-length encoding on the usual binary representation until the empty
leaves corresponding to 0 are reached.

The resulting numbering system, based on a bijection between natural
numbers and trees, is canonical - each natural number is represented as
a unique object. Besides unique decoding, such canonical representations
ensure that equality testing reduces to syntactic equality.

We have shown that arithmetic computations like addition, subtraction,
multiplication, bitsize, exponent of 2, that favor giant numbers with low
representation complexity, are performed in constant time, or time propor-
tional to their representation complexity. We have also studied the best and
worst case representation complexity of our representations and shown that,
as representation complexity is bounded by bitsize, computations and data
representations are within constant factors of conventional arithmetic even
in the worst case.

We have shown that realistic computations (e.g.; advanced primality
tests) can be performed with our numbers and that bitvector boolean
operations can benefit from our representation when they contain large
contiguous blocks of 0 and 1 digits.

The conditions for lower time and space complexity for algorithms
working on numbers consisting of large contiguous blocks of 0s and 1s are
also likely to apply to several practical data representations ranging from
quad-trees to audio/video encoding formats.
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