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Position Automata for Kleene Algebra with Tests

Alexandra SILVA1

Abstract

Kleene algebra with tests (KAT) is an equational system that com-
bines Kleene and Boolean algebras. One can model basic programming
constructs and assertions in KAT, which allows for its application in
compiler optimization, program transformation and dataflow analysis.
To provide semantics for KAT expressions, Kozen first introduced au-
tomata on guarded strings, showing that the regular sets of guarded
strings plays the same role in KAT as regular languages play in Kleene
algebra. Recently, Kozen described an elegant algorithm, based on
“derivatives”, to construct a deterministic automaton that accepts the
guarded strings denoted by a KAT expression. This algorithm gener-
alizes Brzozowski’s algorithm for regular expressions and inherits its
inefficiency arising from the explicit computation of derivatives.

In the context of classical regular expressions, many efficient algo-
rithms for compiling expressions to automata have been proposed. One
of those algorithms was devised by Berry and Sethi in the 80’s (we shall
refer to it as Berry-Sethi construction/algorithm, but in the literature
it is also referred to as position or Glushkov automata algorithm).

In this paper, we show how the Berry-Sethi algorithm can be
used to compile a KAT expression to an automaton on guarded strings.
Moreover, we propose a new automata model for KAT expressions and
adapt the construction of Berry and Sethi to this new model.

Keywords: position automata, Kleene algebra with tests, coalgebra

1Radboud University Nijmegen, The Netherlands. Also affiliated to Centrum Wiskunde
& Informatica, Amsterdam, The Netherlands and HASLab / INESC TEC, Universidade
do Minho, Portugal (this paper has been written while the author was at the Computer
Science Department, Cornell University). Email: alexandra@cs.ru.nl



368 A. Silva

1 Introduction

Efficient algorithms for compiling regular expressions to deterministic and
non-deterministic automata became crucial when regular expressions started
to be widely used for pattern matching. One of the most efficient algorithms
to translate regular expressions into automata was devised by Berry and
Sethi [4].

Kleene algebra with tests (KAT) is an equational system which extends
Kleene algebra, the algebra of regular expressions, with a Boolean algebra
of tests. KAT expressions are simply regular expressions where the alphabet
is two sorted: it contains actions and tests. The latter must satisfy the
axioms of Boolean algebra. This seemingly simple extension allows for a
powerful language where modeling and verification of basic programming
constructs, such as while loops, conditional tests, Hoare triples, and goto
statements, is possible. KAT has successfully been applied in low-level verifi-
cation tasks involving program transformation, compiler optimization and
dataflow analysis [15, 1, 13].

The purpose of this paper is twofold. On the one hand, we observe
that the Berry-Sethi algorithm can be directly applied to compile a KAT

expression into an equivalent automaton on guarded strings, the original
semantic model for KAT proposed by Kozen in [12]. On the other hand, we
propose a new automaton model to provide semantics for KAT and adapt the
Berry-Sethi algorithm to the new model.

The paper is organized as follows. In Section 2, we start with recalling
the main concepts we need from the coalgebraic theory of (non-)deterministic
automata and regular expressions. In Section 3, we recall the Berry-Sethi
algorithm, from classical regular expressions to non-deterministic automata.
In Section 4, we introduce the basics of Kleene algebra with tests (KAT),
an extension of the algebra of regular expressions with Boolean tests, and
automata on guarded strings (both the deterministic and non-deterministic
versions). Section 5 contains the main results of the present paper: we show
that the Berry-Sethi construction can be applied directly to KAT yielding a
non-deterministic automaton on guarded strings. Moreover, we introduce a
new automaton model for KAT which can be regarded as a compromise be-
tween the non-deterministic and deterministic versions of Kozen’s automata,
and adapt the Berry-Sethi construction to compile a KAT expression into
this new automata model. The main advantage of the new model is that
it will have a smaller number of states than the corresponding automaton
on guarded strings. This is important in certain areas of application of KAT,
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such as verification or model checking of properties.

2 Deterministic Automata and Regular Expres-
sions, Coalgebraically

In this section, we introduce basic notions and notation on deterministic au-
tomata and regular expressions. Our presentation is based on the coalgebraic
view on automata [18, 19, 20].

2.1 Coalgebra

We will use three notions from coalgebra which we introduce upfront.
Let Set be the category of sets and functions. An F-coalgebra is a

pair (S, f : S → F(S)), where S is a set of states and F : Set → Set is
a functor. The functor F, together with the function f , determines the
transition structure (or dynamics) of the F-coalgebra [19].

An F-homomorphism h : (S, f) → (T, g), from an F-coalgebra (S, f)
to an F-coalgebra (T, g), is a function h : S → T preserving the transition
structure, i.e., such that the following diagram commutes:

S
h //

f

��

T

g

��

g ◦ h = F(h) ◦ f

F(S)
F(h)

// F(T )

An F-coalgebra (Ω, ω) is said to be final if for any F-coalgebra (S, f) there
exists a unique F-homomorphism behS : (S, f)→ (Ω, ω):

S
behS //

f

��

Ω

ω

��

ω ◦ behS = F(behS) ◦ f

F(S)
F(behS)

// F(Ω)

The notion of finality will play a key role later in providing semantics to
automata and regular expressions. The functor(s) we consider in the rest of
the paper are part of a class for which final coalgebras exist.
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2.2 (Non-)Deterministic Automata, Coalgebraically

Let A be a set of input letters (or symbols). A deterministic automaton
with inputs in A is a pair (S, 〈oS , tS〉) consisting of a set of states S and
a pair of functions 〈oS , tS〉, where o : S → 2 is the output function, which
determines if a state s is final (oS(s) = 1) or not (oS(s) = 0), and t : S → SA

is the transition function2, which, given an input letter a determines the
next state. We will frequently write sa to denote tS(s)(a) and refer to sa
as the derivative of s for input a. Moreover, when depicting deterministic
automata we will draw a single circle around non-final states and a double
circle around final ones.

We illustrate the notation we will use in the representation of determin-
istic automata in the following example.

s1
a

++

b
��

s2

b




a
kk

oS(s1) = 0 oS(s2) = 1

(s1)a = s2 (s1)b = s1
(s2)a = s1 (s2)b = s2

Deterministic automata are coalgebras for the functor D(X) = 2 × XA.
The classical notion of automata homomorphism will instantiate precisely
to the definition of coalgebra homomorphism for the functor D: given two
deterministic automata (S, 〈oS , ts〉) and (T, 〈oT , tT 〉), a function h : S → T
is a homomorphism if it preserves outputs and input derivatives, that is
oT (h(s)) = oS(s) and h(s)a = tT (h(s))(a) = hA(tS(s))(a) = h(sa), for all
a ∈ A. These equations correspond to the commutativity of the following
diagram.

S
h //

〈oS ,tS〉
��

T

〈oT ,tT 〉
��

2× SA
id×hA

// 2× TA

The input derivative sa of a state s for input a ∈ A can be extended to the
word derivative sw of a state s for input w ∈ A∗ by defining, by induction on
the length of w, sε = s and saw′ = (sa)w′ , where ε denotes the empty word
and aw′ the word obtained by prefixing w′ with the letter a. This enables an

2Here, and in the sequel, we represent the transition function of an automaton curried.
Alternatively, and equivalently, the function could be represented as t : S × A → S or
t : S → (A → S). The curried representation is more amenable for the coalgebraic
treatment of automata.
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easy definition of the semantics of a state s of a deterministic automaton -
the language L(s) ∈ 2A

∗
of a state s is given by the following characteristic

function:

L(s)(w) = oS(sw) (1)

The language recognized by s contains all words w for which L(s)(w) = 1.
For instance, the language recognized by state s1 of the automaton above
is the set of all words with an odd number of a’s. It is easy to check
that, for example, L(s1)(bab) = oS((s1)bab) = oS(s2) = 1 and L(s1)(aab) =
oS((s1)aab) = oS(s1) = 0.

Given two deterministic automata (S, 〈oS , tS〉) and (T, 〈oT , tT 〉) a rela-
tion R ⊆ S × T is a bisimulation if 〈s, t〉 ∈ R implies

oS(s) = oT (t) and 〈sa, ta〉 ∈ R for all a ∈ A

We will write s ∼ t whenever there exists a bisimulation R containing 〈s, t〉.
This concrete definition of bisimulation can be recovered as a special case of
the general definition of bisimulation for F-coalgebras [19] by instantiating
the functor F to D(X) = 2×XA. The following theorem guarantees that
the definition above is a valid proof principle for language equivalence of
deterministic automata. We omit the proof here, for details see [18].

Theorem 1 (Coinduction) Given two deterministic automata (S, 〈oS , tS〉)
and (T, 〈oT , tT 〉), s ∈ S and t ∈ T :

s ∼ t⇒ L(s) = L(t)

To determine whether two states s and t of two deterministic automata
(S, 〈oS , tS〉) and (T, 〈oT , tT 〉) (over the same alphabet) recognize the same
language we can now use coinduction: it is enough to construct a bisimulation
containing 〈s, t〉.

Example 1 Let (S, 〈oS , tS〉) and (T, 〈oT , tT 〉) be the deterministic automata
over the alphabet {a, b} given by

s1

b
!!

a // s2 a
ll

b

��

t1

a





b
��

s3 a,b
ll

t2 a,b
kk
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The relation R = {〈s1, t1〉, 〈s2, t1〉, 〈s3, t2〉} is a bisimulation:

oS(s1) = oS(s2) = 0 = oT (t1) oS(s3) = 1 = oT (t2)

(s1)a = s2 R t1 = (t1)a (s1)b = s3 R t2 = (t1)b
(s2)a = s2 R t1 = (t1)a (s2)b = s3 R t2 = (t1)b
(s3)a = s3 R t2 = (t2)a (s3)b = s3 R t2 = (t2)b

Thus, L(s1) = L(t1) = L(s2) and L(s3) = L(t3).

The language recognized by a state s is the behavior (or semantics) of
s. Thus, the set of languages 2A

∗
over A can be thought of as the universe

of all possible behaviors for deterministic automata. We now turn 2A
∗

into
a deterministic automaton (with inputs in A) and then show that such an
automaton has the universal property of being final, which will connect the
coalgebraic semantics induced by the functor with the classical language
semantics we have just presented.

For an input letter a ∈ A, the input derivative Ka of a language K ∈ 2A
∗

on input a is defined by Ka(w) = L(aw). The output of K is defined by
K(ε). These notions determine a deterministic automaton (2A

∗
, 〈oL, tL〉)

defined, for K ∈ 2A
∗

and a ∈ A, by oL(K) = K(ε) and tL(K)(a) = Ka.

Theorem 2 The automaton (2A
∗
, 〈oL, tL〉) is final. That is, for any deter-

ministic automaton (S, 〈oS , tS〉), L : S → 2A
∗

is the unique homomorphism
which makes the following diagram commute.

S
L //

〈oS ,tS〉
��

2A
∗

〈oL,tL〉
��

2× SA
id×LA

// 2× (2A
∗
)A

Given a state s, the language L(s) is precisely the language recognized by s
(as defined in equation (1)).

Proof: We have to prove that the diagram commutes and that L is unique.
First the commutativity:

oL(L(s)) = L(s)(ε) = oS(s)
tL(L(s))(a) = L(s)a = λw.L(s)(aw) = λw.L(sa)(w) = L(sa) = L(tS(s))(a)

For the one but last step, note that, by definition of L (equation (1))

L(s)(aw) = oS(saw) = oS((sa)w) = L(sa)(w)
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For the uniqueness, suppose there is another morphism h : S → 2A
∗

such
that, for every s ∈ S and a ∈ A, oL(h(s)) = oS(s) and h(s)a = h(sa).

We prove by induction on the length of words w ∈ A∗ that h(s) = L(s).

h(s)(ε) = oL(h(s)) = oS(s) = L(s)(ε)

h(s)(aw) = (h(s)a)(w) = h(sa)(w)
(IH )
= L(sa)(w) = L(s)(aw)

�
The semantics induced by the unique map L into the final coalgebra coincides,
in the case of deterministic automata, with the bisimulation semantics we
defined above, that is s ∼ t⇔ L(s) = L(t) (the implication in Theorem 1 is
actually an equivalence).

Moore automata are a slight variation on deterministic automata. More
precisely, the codomain of the output function is changed from 2 to B.
Formally, a Moore automaton with inputs in A and outputs in B is a pair
(S, 〈o, t〉) where S is a set of states, o : S → B is the output function and
t : S → SA is the transition function.

Similarly to the change on the output function, the carrier set of the
final coalgebra for Moore automata is BA∗ (in contrast to 2A

∗
), the coalgebra

structure 〈oM , tM 〉 : BA∗ → B × (BA∗)A is defined similarly

oM (f) = f(ε) tM (f)(a)(w) = f(aw)

and we have the following finality result (proof similar to Theorem 2).

Theorem 3 The automaton (BA∗ , 〈oM , tM 〉) is final. That is, for any
Moore automaton (S, 〈oS , tS〉), there is a unique homomorphism which makes
the following diagram commute.

S
h //

〈oS ,tS〉
��

BA∗

〈oM ,tM 〉
��

B × SA
id×hA

// B × (BA∗)A

A non-deterministic automaton (NDA) is similar to a deterministic automa-
ton but the transition function gives a set of next-states for each input letter
instead of a single state. NDA’s often provide more compact representa-
tions of regular languages than deterministic automata. For that, they are
computationally very interesting and much research has been devoted to
constructions compiling a regular expression into an NDA [2, 8, 4, 21, 16, 7]
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(we will show an example of such construction below). Surprisingly, in what
concerns language acceptance NDA’s are not more powerful than determinis-
tic automata. A state s of an NDA accepts a word if there is a path starting
in s labeled by w which leads to a final state. For every NDA there exists
a deterministic automaton with a state equivalent to a given state of the
NDA. Such deterministic automaton can be obtained from a given NDA by
the so-called subset (or powerset) construction first introduced by Rabin
and Scott [17], which we will show below coalgebraically.

Formally, an NDA over the input alphabet A is a pair (S, 〈o, δ〉), where
S is a set of states and 〈o, δ〉 : S → 2× (Pω(S))A is a function pair with o as
before and where δ determines for each input letter a a finite set of possible
next states.

As an example of the compactness of NDA’s, consider the following
regular language (taken from [11]):

{w ∈ {a, b}∗ | the fifth symbol from the right is a}

One can intuitively construct an NDA with a state s, having two outgoing
a-transitions, which recognizes this language (which could be, for instance,
denoted by the regular expression (a+ b)∗a(a+ b)(a+ b)(a+ b)(a+ b)):

s

a,b

��
a // 5

a,b
// 4

a,b
// 3

a,b
// 2

a,b
// 1

A deterministic automaton recognizing the same language will have at least
25 = 32 states.

In order to formally compute the language recognized by a state x of
an NDA A, it is usual to first determinize it, constructing a deterministic
automaton det(A) where the state space is Pω(S), and then compute the
language recognized by the state {x} of det(A). Next, we describe in
coalgebraic terms how to construct the automaton det(A) [19].

Given an NDA A = (S, 〈o, δ〉), we construct det(A) = (Pω(S), 〈o, δ〉),
where, for all Y ∈ Pω(S), a ∈ A, the functions o : Pω(S)→ 2 and δ : Pω(S)→
Pω(S)A are

o(Y ) =

{
1 if ∃y∈Y o(y) = 1

0 otherwise
δ(Y )(a) =

⋃
y∈Y

δ(y)(a).

The automaton det(A) is such that the language L({x}) recognized by {x}
is the same as the one recognized by x in the original NDA A (more generally,
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the language recognized by state X ∈ Pω(S) of det(A) is the union of the
languages recognized by each state x ∈ X of A).

We summarize the situation above with the following commuting dia-
gram:

S

〈o,δ〉

��

{·}
// Pω(S)

〈o,δ〉
zz

L // 2A
∗

〈oL,tL〉
��

2× Pω(S)A // 2× (2A
∗
)A

We note that the language semantics of NDA’s, presented in the above
diagram, can alternatively be achieved by using λ-coinduction [3, 9].

2.3 Regular Expressions

We will now recall the basic definitions and results on regular expressions.
The set R(A) of regular expressions over a finite input alphabet A is given
by the following syntax:

r, r1, r2:: = 1 | 0 | a ∈ A | r1 + r2 | r1r2 | r∗

The semantics of regular expressions is given in terms of languages3 and it is
defined as a map L : R(A)→ P(A∗) by induction on the syntax as follows:

L(1) = {ε} L(0) = ∅ L(a) = {a}

L(r1 + r2) = L(r1) ∪ L(r2) L(r1r2) = L(r1) · L(r2) L(r∗) = L(r)∗
(2)

where, given languages l, l1 and l2, l1 · l2 = {w1w2 | w1 ∈ l1 and w2 ∈ l2};
l∗ =

⋃
n∈N l

n, and, for n ∈ N, ln is inductively defined by l0 = {ε} and
ln+1 = l · ln.

Here, we have intentionally reused L(r) to represent the language
denoted by a regular expression r ∈ R(A) (recall that we had used L(s) to
represent the language recognized by a state s of a deterministic automaton).
This is because we know from Kleene’s theorem that finite deterministic
automata recognize precisely the languages denoted by regular expressions.

We now equip the set R(A) with a deterministic automaton structure.
This definition was first proposed by Brzozowski in his paper Derivatives of

3Here, we represent languages as subsets of A∗, rather than functions 2A∗
. Although

we prefer the latter view on languages, the traditional semantics of regular expressions
was presented as sets of words and we recall it here unchanged. We will only use the set
interpretation on languages when referring to the classical semantics of regular expressions.
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regular expressions [5] and, for that reason, it is occasionally referred to as
Brzozowski derivatives. We define the output oR(r) of a regular expression
r by

oR(0) = 0 oR(r1 + r2) = oR(r1) ∨ oR(r2)

oR(1) = 1 oR(r1r2) = oR(r1) ∧ oR(r2)

oR(a) = 0 oR(r∗) = 1

and the input derivative tR(r)(a) = ra by

(0)a = 0 (r1 + r2)a = (r1)a + (r2)a

(1)a = 0 (r1r2)a =

{
(r1)ar2 if oR(r1) = 0

(r1)ar2 + (r2)a otherwise

(a)a′ =

{
1 if a = a′

0 if a 6= a′
(r∗)a = rar

∗

In the definition of oR we use the fact that 2 = {0, 1} can be given a lattice
structure ({0, 1},∨,∧, 0, 1) (0 is neutral with respect to ∨ and 1 with respect
to ∧).

Intuitively, for a regular expression r, oR(r) = 1 if the language denoted
by r contains the empty word ε and oR(r) = 0 otherwise. The regular
expression ra denotes the language containing all words w such that aw is
in the language denoted by r.

Similarly to what happened in deterministic automata, the input deriva-
tive ra of a regular expression r for input a can be extended to the word
derivative rw of r for input w ∈ A∗ by defining rε = r and raw = (ra)w.

We have now defined a deterministic automaton (R(A), 〈oR, tR〉) and
thus, by Theorem 2, we have a unique map L which makes the following
diagram commute.

R(A)
L //

〈oR,tR〉
��

2A
∗

〈oL,tL〉
��

2× (R(A))A
id×LA

// 2× (2A
∗
)A

(3)

We now prove that, for any r ∈ R(A), the semantics defined inductively
in (2) is the same as the one given by the unique map into the final coalgebra
L : R(A)→ 2A

∗
.
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Theorem 4 For all r ∈ R(A) and w ∈ A∗,

w ∈ L(r)⇔ oR(rw) = 1

where L(r) is the inductively defined semantics from equation (2).

Proof: By induction on the structure of r.

L(0) = ∅ and oR((∅)w) = 1

L(1) = {ε} and oR((1)w) = 1⇔ w = ε

L(a) = {a} and oR((a)w) = 1⇔ w = a

w ∈ L(r1 + r2)⇔ w ∈ L(r1) or w ∈ L(r2)

(IH )⇔ oR((r1)w) = 1 or oR((r2)w) = 1⇔ oR((r1 + r2)w) = 1

w ∈ L(r1r2)⇔ w = w1w2, with w1 ∈ L(r1) and w2 ∈ L(r2)

(IH )⇔ oR((r1)w1) = 1 and oR((r2)w2) = 1⇔ oR((r1r2)w) = 1

w ∈ L(r∗)⇔ w ∈ L(r)n, for some n ∈ N⇔ w = w1 . . . wn with wi ∈ L(r)

(IH )⇔ w = w1 . . . wn with oR(rwi) = 1⇔ oR((r∗)w) = 1

�
We have now proved that the classical semantics of both deterministic
automata and regular expressions coincides with the coalgebraic semantics.
In the sequel, we will say that a regular expression r and a state s of a
deterministic automaton are equivalent if L(s) = L(r).

3 From Regular Expressions to Non-Determinis-
tic Automata: the Berry-Sethi Construction

There are several algorithms to construct a non-deterministic automaton
from a regular expression. We will show here the one presented in [4] by
Berry and Sethi. We shall generalize this algorithm in the next section in
order to deal with the expressions of Kleene algebra with tests. The basic
idea behind the algorithm is that of marking: all input letters in a regular
expression are marked (with subscripts) in order to make them distinct. As
an example, a marked version of (ab+ b)∗ba is (a1b2 + b3)∗b4a5, where a1 and
a5 are considered different letters. The choice we made for the subscripts are
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the positions of the letters in the expression. For that reason the Berry-Sethi
construction is often referred to as position automaton.

We will explain the algorithm with an example (taken from [4]) and
then state the results that justify its correctness.

Example 2 Let r = (ab+ b)∗ba and let r = (a1b2 + b3)
∗b4a5 be its marked

version. We define ci = (r)w, for w a prefix of length i of a1b2b3b4a5, and
call it the continuation i of r. We then construct an automaton from r in
the following way:

1. The automaton will have a state i ∈ {1, 2, 3, 4, 5} for each distinct
symbol in r plus an extra state 0 that will be language equivalent4 to r.

2. A state i has a transition to state j, labeled by aj, if (ci)aj = cj. A
state i is final if oR(ci) = 1.

The automaton resulting from r = (a1b2 + b3)
∗b4a5 is the following

0

a1

~~

b3

��

b4

  

1

b2
&&

3
b4 //

a1
oo

b3

mm 4
a5 // 5

2

b4

DD

a1

``

b3

OO

c0 = (r)ε = (a1b2 + b3)
∗b4a5 c1 = (r)a1 = b2(a1b2 + b3)

∗b4a5
c2 = (r)a1b2 = (c1)b2 = (a1b2 + b3)

∗b4a5 c4 = (r)a1b2b3b4 = (c3)b4 = a5
c3 = (r)a1b2b3 = (c2)b3 = (a1b2 + b3)

∗b4a5 c5 = (r)a1b2b3b4a5 = (c4)a5 = 1

Note that to compute the transition structure we had to compute all input
derivatives for each ci. This can be overcome by using some of the properties
of derivatives of expressions with distinct symbols (more below). Now, note
that by deleting all the marks in the labels of the automaton above the state
0 of the resulting NDA accepts precisely the language denoted by (ab+ b)∗ba

4Here, by language equivalent we mean that the state 0 recognizes the same language
that the expression denotes. More precisely, L({0}) = L(r̄).
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(all words that finish with ba and all other occurrences of a are followed by
one or more b’s).

0

a

��

b

��

b

��

1

b
&&

3
b //

a
oo

b

mm 4
a // 5

2

b

EE

a

__

b

OO

(4)

The algorithm above works as expected due to the properties of derivatives
of expressions with distinct letters. We summarize the crucial properties for
the correctness of the algorithm.

Theorem 5 ([4, Proposition 3.2 and Theorem 3.4]) Let r be the reg-
ular expression obtained from r by marking all symbols to make them distinct.
Then, the following holds:

1. If A′ is an automaton with a state s such that L(s) = L(r), then the
state s of the automaton A, obtained from A′ by unmarking all the
labels, is such that L(s) = L(r).

2. Given any symbol a and word w, the derivative (r)aw is either 0 or
unique modulo associativity, commutativity and idempotency.

Starting from a regular expression r ∈ R(A), we can then obtain a non-
deterministic automaton by first marking the symbols, then applying the
algorithm above and finally unmarking the labels. If wanted, a deterministic
automaton can then be obtained via the subset construction (the complexity
of this construction for position automata was studied in [6]).

In [4], the authors presented also a more efficient way of computing the
position automaton, based on the fact that each continuation is uniquely
determined by an input symbol. We briefly recall it here, since this is
precisely the version we will later generalize for KAT expressions. Let pos(r)
denote the positions (distinct symbols) in the regular expression r. For any
regular expression r and i ∈ pos(r) we define:

first(r) = {i | piw ∈ L(r), w ∈ A∗, pi ∈ A}
follow(r, i) = {j | upipjv ∈ L(r), u.v ∈ A∗, pi, pj ∈ A}
last(r) = {i | wpi ∈ L(r), w ∈ A∗, pi ∈ A}
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The set first(r) contains all indexes i of the letters pi that can appear in the
beginning of a word in the language L(r̄). For instance, in the expression
r̄ = (a1b2 + b3)

∗b4a5 above first(r) = {1, 3, 4}. Dually, last(r) contains all
indexes of letters that can appear at the end of a word in L(r̄). In the
example, last(r) = {5}. The set follow(r, i) has all the indexes of letters
that can follow letter pi in a word in the language L(r̄). For instance, in our
example, follow(r, 2) = {1, 3, 4}.

These sets can be computed efficiently from the expression: we recall [4,
Proposition 4.3].

Proposition 1 ([4, Proposition 4.3]) Let r be a regular expression with
distinct symbols. F, defined by the rules below, is such that F(r, {!}) yields
a set of pairs of the form 〈ai, follow(r!, i)〉, where ! is a symbol distinct from
all symbols in r. The rules are:

F(r1 + r2, S) = F(r1, S) ∪ F(r2, S)
F(r1r2, S) = F(r1,first(r2) ∪ oR(r2).S) ∪ F(r2, S)
F(r∗1, S) = F(r1,first(r1) ∪ S)
F(a, S) = {〈a, S〉}
F(1, S) = F(0, S) = ∅

Here, for a set S, 1.S = S and 0.S = ∅. Note that in F also the set last(r)
is computed: i ∈ last(r)⇔! ∈ follow(r!, i).

The position automaton corresponding to a given regular expression
r ∈ R(A) is then given by

Apos(r) = ({0} ∪ pos(r), 〈o, δ〉)

where r is the marked version of r and o and δ are defined as follows:

o(0) = oR(r) o(i) =

{
1 if i ∈ last(r)

0 otherwise

δ(0)(a) = {j | j ∈ first(r), unmark(aj) = a}

δ(i)(a) = {j | j ∈ follow(r, i), unmark(aj) = a} i 6= 0



Position Automata for Kleene Algebra with Tests 381

We show an example of the algorithm above. We consider again r =
(ab+ b)∗ba and its marked version r = (a1b2 + b3)

∗b4a5.

first(r) = {1, 3, 4} first(a1b2 + b3) = {1, 3}
first(a1b2) = {1} first(b4a5) = {4}

F(r, {!})
= F((a1b2 + b3)

∗, {4}) ∪ F(b4a5, {!})
= F(a1b2 + b3, {1, 3, 4}) ∪ F(b4, {5}) ∪ F(a5, {!})
= F(a1b2, {1, 3, 4}) ∪ F(b3, {1, 3, 4}) ∪ {〈b4, {5}〉, 〈a5, {!}〉}
= F(a1, {2}) ∪ F(b2, {1, 3, 4}) ∪ {〈b3, {1, 3, 4}〉, 〈b4, {5}〉, 〈a5, {!}〉}
= {〈a1, {2}〉, 〈b2, {1, 3, 4}〉, 〈b3, {1, 3, 4}〉, 〈b4, {5}〉, 〈a5, {!}〉}

The position automaton Apos(r) constructed is the same as the one presented
above in (4).

It should be remarked that the construction of the position automaton
from a regular expression does not always extend to additional operators,
such as intersection or complement. This is a disadvantage when compared,
for instance, to the algorithm based on Brzozowski derivatives.

4 Automata on Guarded Strings and KAT Expres-
sions

Kleene algebra with tests (KAT) is an equational system that combines Kleene
and Boolean algebra. One can model basic programming constructs and
assertions in KAT, which allows for its application in compiler optimization,
program transformation or dataflow analysis [15, 1, 13]. In this section, we
will recall the basic definitions of KAT and we will show how to generalize
the Berry-Sethi construction (Section 3) in order to (efficiently) obtain an
automaton from a KAT expression.

Definition 1 (Kleene algebra with tests) A Kleene algebra with tests
is a two-sorted structure (Σ, B,+, ·, (−)∗, , 0, 1) where

• (Σ,+, ·, (−)∗, 0, 1) is a Kleene algebra,

• (B,+, ·, , 0, 1) is a Boolean algebra, and

• (B,+, ·, , 0, 1) is a subalgebra of (Σ,+, ., (−)∗, 0, 1).

The operator denotes negation.
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Given a set P of (primitive) action symbols and a set B of (primitive)
test symbols, we can define the free Kleene algebra with tests on generators
P ∪ B as follows. Syntactically, the set BExp of Boolean tests is given by:

BExp 3 b:: = b ∈ B | b1b2 | b1 + b2 | b | 0 | 1

The set of KAT expressions is given by

Exp 3 e, f :: = p ∈ P | b ∈ BExp | ef | e+ f | (e)∗

The free Kleene algebra with tests on generators P ∪ B is obtained by
quotienting BExp by the axioms of Boolean algebra and Exp by the axioms
of Kleene algebra. We will use below the natural order on expressions:
e ≤ f ⇐⇒ e + f ≡ f , where ≡ denotes equivalence provable using the
axioms of Kleene/Boolean algebra (these include axioms for idempotency,
associativity and commutativity of +, among others, for more details see,
for instance, [12]).

Guarded strings were introduced in [10] as an abstract interpretation
for program schemes. They are like ordinary strings over an input alphabet
P, but the symbols in P alternate with the atoms of the free Boolean algebra
generated by B. The set At of atoms is given by At = 2B. We define the set
GS of guarded strings by

GS = (At× P)∗At

Kozen [12] showed that the regular sets of guarded strings play the same role
in KAT as regular languages play in Kleene algebra (both sets are actually
the final coalgebra of a given functor). He showed an analogue of Kleene’s
theorem: automata on guarded strings, which are non-deterministic automata
over the alphabet P∪B, recognize precisely the regular sets of guarded strings.

Definition 2 (Regular sets of guarded strings) Each KAT expression
e denotes a set G(e) of guarded strings defined inductively on the structure
of e as follows:

G(p) = {αpβ | α, β ∈ At}
G(b) = {α | α ≤ b}
G(e+ f) = G(e) ∪G(f)
G(ef) = G(e) �G(f)
G(e∗) =

⋃
n≥0G(e)n
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where, given two guarded strings x = α0p0 . . . pn−1αn and y = β0q1 . . . qn−1βn,
we define the fusion product of x and y by x�y = α0p0 . . . pnαnq1 . . . qn−1βn,
if αn = β0, otherwise x � y is undefined. Then, given X,Y ⊆ GS, X � Y is
the set containing all existing fusion products x � y of x ∈ X and y ∈ Y and
Xn is defined inductively as X0 = X and Xn+1 = X �Xn.

A set of guarded strings is regular if it is equal to G(e) for some KAT

expression e. Note that a guarded string is itself a KAT expression and
G(x) = {x}.

Example 3 Consider the KAT expression e = b1 + b2p over B = {b1, b2}
and P = {p}. We compute the set G(e):

G(e) = G(b1) ∪ (G(b2) �G(p))
= {α | α ≤ b1} ∪ ({α | α ≤ b2} � {αpβ | α, β ∈ At})
= {α | α ≤ b1} ∪ {αpβ | α ≤ b2, β ∈ At}

We will now show an example of an automaton on guarded strings. As
mentioned above such automaton is just a non-deterministic automaton over
the alphabet A = P∪B, that is (S, 〈oS , tS〉) with o : S → 2 and t : S → Pω(S)A.
State s0 of the following automaton would recognize (we shall explain the
precise meaning of this below) the same set of guarded string as e:

s1

p

��

s0

b2
66

b1 ((
s0

Let us now explain how to compute G(s), the set of guarded strings accepted
by a state s of an automaton A on guarded strings. A guarded string x
is accepted by A if x ∈ G(e) for some e ∈ L(s), where L(s) ⊆ (P ∪ B)∗ is
just the language accepted by s, as defined classically for non-deterministic
automata and explained coalgebraically in Section 2.2. In the example above,
we have L(s) = {b1, b2p} and thus

G(s) = G(b1) ∪G(b2p) = G(b1 + b2p).

Later in [14], Kozen showed that the deterministic version of automata
on guarded strings (already defined in [12]) fits neatly in the coalgebraic
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framework: two expressions are bisimilar if and only if they recognize the
same set of guarded strings.

A deterministic automaton on guarded strings is a pair (S, 〈oS , tS〉)
where o : S → B (recall that B is the free Boolean algebra on B, satisfying
B ∼= 2At) and t : S → SAt×P. Note that formally a deterministic automaton
on guarded strings is a Moore automaton (see Section 2.2).

We can obtain a deterministic automaton by using the following gener-
alization of Brzozowski derivatives for KAT expressions (modulo ACI, as for
classical regular expressions).

Definition 3 (Brzozowski derivatives for KAT expressions) Given an
expression e ∈ Exp, we define E : Exp→ B ∼= 2At and D : Exp→ ExpAt×P by
induction on the structure of e. First, E(e) is given by:

E(p) = ∅ E(b) = {α ∈ At | α ≤ b} E(ef) = E(e) ∩ E(f)
E(e+ f) = E(e) ∪ E(f) E(e∗) = At

Next, we define eαq = D(e)(〈α, q〉) by

pαq =

{
1 if p = q

0 if p 6= q
bαq = 0 (ef)αq =

{
eαqf + fαq if α ∈ E(e)

eαqf if α 6∈ E(e)

(e+ f)αq = eαq + fαq (e∗)αq = eαqe
∗

The functions 〈E,D〉 provide Exp with a deterministic (Moore) automata
structure, which leads, by finality (Theorem 3), to the existence of a unique
homomorphism

Exp
G //

〈E,D〉
��

(2At)(At×P)
∗ ∼= 2GS

〈oGS,tGS〉
��

2At × ExpAt×P // 2At × (2GS)At×P

which assigns to each expression the language of guarded strings that it
denotes. The coalgebra structure on 2GS is an instantiation of 〈oM , tM 〉
as presented before Theorem 3 for the output set B = 2At and input set
A = At× P. More precisely, we have

oGS(f ∈ (2At)(At×P)
∗
) = f(ε)

tGS(f)(〈α, p〉)(w) = f(〈α, p〉w)
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or, alternatively, and equivalently,

oGS(L ∈ 2GS) = {α ∈ At | α ∈ L}
tGS(L)(〈α, p〉) = {w ∈ (At× P)∗) | 〈α, p〉w ∈ L}

The concrete definition of G, which can be deduced from the commutativity
of the diagram above, is precisely the definition which appeared in the
original paper on guarded strings and which we recalled in Definition 2.

Example 4 The deterministic automaton of e = b1 + b2p, which is the
deterministic counterpart of the automaton in Example 3, would be

b1 1

e

KS
〈b1b2,p〉,〈b1b2,p〉

//

〈b1b2,p〉,〈b1b2,p〉
$$

1

KS

〈α,p〉
zz

0

�� 〈α,p〉

kk

0

since, for B = {b1, b2}, At = {b1b2, b1b2, b1b2, b1b2} and

eb1b2,p = 0 + (b2p)b1b2,p = pb1b2,p = 1 eb1b2,p = 0 + (b2p)b1b2,p = pb1b2,p = 1

eb1b2,p = 0 + (b2p)b1b2,p = 0 eb1b2,p = 0

E(e) = {α | α ≤ b1} = {b1b2, b1b2} E(0) = ∅ E(1) = At

Above we represent the output oS(s) of a state by +3 b where b ∈ B is
the element corresponding to the set oS(s) coming from the isomorphism
2At ∼= B.

5 The Berry-Sethi Construction for KAT Expres-
sions

In short, there are two types of automata recognizing regular sets of guarded
strings:

S → 2× (Pω(S))P∪B S → B× SAt×P

The non-deterministic version has the advantage that it is very close to
the expression, that is, one can easily compute the automaton from a
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given KAT expression and back, but its semantics is not coalgebraic. The
deterministic version fits neatly into the coalgebraic framework, but it has the
disadvantage that constructing the automaton from an expression inherits the
same problems as in the Brzozowski construction: the number of equivalences
that need to be decided increases exponentially. We propose here yet another
type of automaton to recognize guarded strings: the construction from an
expression to an automaton will be inspired by the Berry-Sethi construction
presented in Section 3 and it is linear in the size of the expression.

Note that since KAT expressions can be interpreted as regular expressions
over the extended alphabet B ∪ P, the Berry-Sethi construction could be
applied directly.

Theorem 6 Let e be a KAT expression and Apos(e) be the corresponding
position automaton. Then, G(e) = G(Apos(e)).

Proof: We know that L(Apos(e)) = L(e). Now the result follows by using
Kozen’s observation in [12] that given a guarded string e and an automaton
A such that L(A) = L(e), one has G(e) = G(A). �

The resulting automaton would have precisely the same type as the
non-deterministic version of automata on guarded strings. However, there
would be one state for each input symbol in P ∪ B.

Example 5 As an example take the expression bp+c, whose marked version
is b1p2 + c3. The resulting position automaton will have 4 states and the
transition function will be given by the following table

follow

0 {1, 3}
1 {2}
2 {!}
3 {!}

which results in the following automaton:

0 1

23

b1

c3 p2



Position Automata for Kleene Algebra with Tests 387

Let us now present a more involved example. Consider the expression
saq(araq)∗az. The automaton will have 10 states, one for each symbol in
the expression.

follow

0 {1}
1 {2}
2 {3}
3 {4, 8}
4 {5}
5 {6}
6 {7}
7 {8, 4}
8 {9}
9 {!}

0 1 2 3 4

5 6

7 8 9
s1 a2 q3 a4

a8

r5

a6

q7

a8

a4

z9

As this last example shows, if we just apply the Berry-Sethi algorithm directly
to a KAT expression, without distinguishing between tests and actions, the
number of states increases very fast.

The construction we will show next includes only states for each atomic
action in P, yielding smaller automata. From a given KAT expression e, we will
construct an automaton (S, t) where t : S → B× Pω(S)B×P. This automaton
type can be regarded as a compromise between the non-deterministic and
deterministic versions of Kozen’s automata.

We will start with generalizing the sets first , follow and last .

first(e) = {〈b, p〉 | b1b2 . . . bnpx ∈ L(e) , b =
∨

(b1 ∧ b2 ∧ . . . bn)}

follow(e, p) = {〈b, q〉 | xpb1b2 . . . bnpqy ∈ L(e) , b =
∨

(b1 ∧ b2 ∧ . . . bn)}

last(e) = {〈b, p〉 | xpb1b2 . . . bn ∈ L(e) , b =
∨

(b1 ∧ b2 ∧ . . . bn)}

Note that the empty disjunction is 1 (and the empty conjunction is 0).
Below, we will use expressions of the form e!, where ! is a special end-marker,
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to avoid the computation of the last symbols that can be generated in e:
〈b, p〉 ∈ last(e)⇔ 〈b, !〉 ∈ follow(e!, p).

Given a KAT expression e with all action symbols distinct we construct
the automaton Ae = (Pos(e) ∪ {0}, 〈oS , tS〉) where Pos(e) is the number of
distinct action symbols in e and

oS(i) =


E(e) if i = 0

b if i > 0 and 〈b, !〉 ∈ follow(e!, pi)

0 otherwise

and t is given by the following rules

0
〈b,pj〉

// j iff 〈b, pj〉 ∈ first(e)

i
〈b,pj〉

// j iff 〈b, pj〉 ∈ follow(e!, pi)

The way the automaton is defined, state i will only have incoming transitions
labeled by 〈b, pi〉. Moreover, the fact that e has distinct symbols implies
that the constructed automaton is deterministic, that is, t : S → B× SB×P.
Only after unmarking the labels pi non-determinism will be introduced, as
we will observe in an example below.

The guarded strings recognized by a state s ∈ S of the automaton (S, t)
where t : S → B× Pω(S)B×P are now defined by the following rule

x ∈ G(s) ⇔ x = α with α ≤ E(s)
or x = αpx′ with x′ ∈ G(s′) for some s′ ∈ tS(s)(〈b, p〉)

and for some b s.t.α ≤ b

Theorem 7 Let e be a guarded string, with all action symbols distinct, and
let Ae = (Pos(e)∪ {0}, 〈oS , tS〉) be the corresponding automaton constructed
as above. Then, G(e) = G(0).

Proof: By induction on the structure of e.
If e = b then GS(b) = {α | α ≤ b} and Ae is a one state automaton

with no transitions. Thus, G(0) = {α | α ≤ E(b)} = {α | α ≤ b} = G(b).
If e = p then GS(p) = {αpβ | α, β ∈ At} and Ae is a two state

automaton with only one transition from state 0 (with output E(p) = 0) to
state 1 (with output 1) labeled by 〈1, p〉. Thus,

G(0) = {α | α ≤ E(p)} ∪ {αpβ | α ≤ 1, β ≤ 1} = {αpβ | α, β ∈ At} = G(p)
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For e = e1 + e2, we have

G(0)

= {α | α ≤ E(e1 + e2)} ∪ {αpx′ | x′ ∈ G(tS(0)(〈b, p〉)), α ≤ b}

= {α | α ≤ E(e1)} ∪ {α | α ≤ E(e1)} ∪
{αpx′ | x′ ∈ tS(0)(〈b, p〉), α ≤ b, b1b2 . . . bnpx ∈ L(e1 + e2) ,

b =
∨

(b1 ∧ b2 ∧ . . . bn)}

= {α | α ≤ E(e1)} ∪ {α | α ≤ E(e1)} ∪
{αpx′ | x′ ∈ tS(0)(〈b, p〉), α ≤ b, b1b2 . . . bnpx ∈ L(e1) ,

b =
∨

(b1 ∧ b2 ∧ . . . bn)} ∪
{αpx′ | x′ ∈ tS(0)(〈b, p〉), α ≤ b, b1b2 . . . bnpx ∈ L(e2) ,

b =
∨

(b1 ∧ b2 ∧ . . . bn)}
IH
= G(e1) ∪G(e2)

= G(e1 + e2)

Note that b1b2 . . . bnpx ∈ L(ei), for i = 1, 2, if and only if the state 0 of the
automaton Aei has a transition labeled by 〈b, p〉 into some state.

For e = e1e2, things get slightly more complicated. Let us start with
the easy bit:

α ∈ G(0)⇔ α ≤ E(e1e2)⇔ α ≤ E(e1) and α ≤ E(e2)⇔ α ∈ G(e1e2)

Now take α1p1 . . . pn−1αn ∈ G(0). This means that there exists a sequence
of transitions:

0
〈b1,p1〉 // •

〈b2,p2〉 // . . .
〈bn−1,pn−1〉

// •
��

bn

such that αi ≤ bi, for all i = 1, . . . , n. Because all the symbols in e1e2 are
distinct we can divide the above sequence of transitions as follows. Let pk
be the last action symbol in belonging to e1. We have

0
〈b1,p1〉 // •

〈b2,p2〉 // . . .
〈bk,pk〉 // •

〈bk+1,pk+1〉

rr•
〈bk+2,pk+2〉

// •
〈bk+3,pk+3〉

// . . .
〈bn−1,pn−1〉

// •
��

bn
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and we observe that bk+1 is such that xpkbk+1pk+1y ∈ L(e1e2). Thus,
bk+1 = b1k+1b

2
k+1 such that xpkb

1
k+1 ∈ L(e1) and b2k+1pk+1y ∈ L(e2) and, as

a consequence,

〈b1k+1, pk〉 ∈ last(e1) and 〈b2k+1, pk+1〉 ∈ first(e2)

Now we can conclude using the induction hypothesis since α1p1 . . . αkpkαk+1 ∈
G(01), where 01 is the state 0 of Ae1 , and αk+1pk+1 . . . αn−1pn−1αn ∈ G(02),
where 02 denotes the state 0 of Ae2 , and therefore:

α1p1 . . . αkpkαk+1 ∈ G(e1) and αk+1pk+1 . . . αn−1pn−1αn ∈ G(e2)
⇔ α1p1 . . . αkpkαk+1pk+1 . . . αn−1pn−1αn ∈ G(e1e2)

The case e∗ follows a similar reasoning as in e1e2 and is left to the reader. �
This theorem refers to marked expressions. Note, however, that un-

marking the labels of the automaton only changes the action symbols and it
will also yield G(0) = G(0), where G(0) denotes the set of guarded strings
recognized by state 0 of the unmarked automaton and G(0) the unmarking
of the set of guarded strings recognized by state 0 of the marked automaton.

Next, we present an algorithm to compute the sets first , follow and
last for KAT expressions.

Proposition 2 Let e be a KAT expression with distinct symbols. F, defined
by the rules below, is such that F(e, {〈1, !〉}) yields a set of pairs of the form
〈pi, follow(e!, pi)〉. The rules are:

F(e1 + e2, S) = F(e1, S) ∪ F(e2, S)
F(e1.e2, S) = F(e1,first(e2) ∪ E(e2).S) ∪ F(e2, S)
F(e∗1, S) = F(e1,first(e1) ∪ S)
F(p, S) = {〈p, S〉}
F(b, S) = ∅

where
first(e1 + e2) = first(e1) ∪ first(e2)
first(e1.e2) = first(e1) ∪ E(e1).first(e2)
first(e∗1) = first(e1)
first(p) = {〈1, p〉}
first(b) = ∅

Note the similarities between Propositions 2 and 1 (the proofs are also
similar and hence we do not include them here). The fact that the Boolean
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algebra B generalizes the two element Boolean algebra of classical regular
expressions is reflected in the clause for the concatenation in the following
way. The test for empty word oR is replaced by the Boolean value of a KAT

expression e and the multiplication is now redefined to propagate the tests:

b.S =

{
∅ if b = 0

{〈bb′, p〉 | 〈b′, p〉 ∈ S} otherwise

Example 6 We show now two examples of the algorithm above. We start
with applying to the expression e = b1 + b2p, which we already used in
Examples 3 and 4. This expression already has all action symbols distinct so
no marking is needed. First, we compute F(e, {〈1, !〉}):

F(b1 + b2p, {〈1, !〉}) = F(b1, {〈1, !〉}) ∪ F(b2p, {〈1, !〉})
= F(p, {〈1, !〉})
= {〈p, {〈1, !〉}〉}

Thus, because first(e) = {〈b2, p〉} and E(e) = b1, then Ae is given by

e

��

〈b2,p〉
// 1

��
b1 1

Next, we consider the expression e1 = b1(pqb2 + ppb3 + b4). We have
E(e1) = b1b4, e1 = b1(p1q2b2 + p3p4b3 + b4) and

first(e1)
= first(b1) ∪ E(b1).first((p1q2b2 + p3p4b3 + b4))
= b1.{〈1, p1〉, 〈1, p3〉} = {〈b1, p1〉, 〈b1, p3〉}

F(e1, {〈1, !〉})
= F(p1q2b2 + p3p4b3 + b4, {〈1, !〉})
= F(p1q2b2, {〈1, !〉}) ∪ F(p3p4b3, {〈1, !〉})
= F(p1, {〈q2, 1〉}) ∪ F(q2, E(b2).{〈1, !〉}) ∪ F(p3, {〈1, p4〉})
∪F(p4, E(b3).{〈1, !〉})

= {〈p1, {〈1, q2〉}〉, 〈q2, {〈b2, !〉}〉, 〈p3, {〈1, p4〉}〉, 〈p4, {〈b3, !〉}〉}
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The automaton Ae1, after unmarking, is then given by:

0 b1b4 0

1

KS

〈1,q〉
��

0
〈b1,p〉
oo

〈b1,p〉
//

KS

3

KS

〈1,p〉
��

2

��

4

��
b2 b3

The non-deterministic version of Kozen’s automata on guarded strings would
have 7 states and 8 transitions, whereas the (minimal) deterministic version
would have 5 states (same as the automaton above), but 8×8 = 64 transitions
since for B = {b1, b2, b3} the set At has 8 elements.

6 Conclusion

This paper contains an exercise on KAT expressions. First, we show that
one can compile a non-deterministic automaton (on guarded strings) from
a KAT expression by directly applying the Berry-Sethi construction, a very
efficient algorithm for classical regular expressions. Secondly, we present a
new automata model for KAT expressions, which can be seen as a compromise
between Kozen’s deterministic and non-deterministic models. We then adapt
the Berry-Sethi construction to the new model. Compiling KAT expressions
into the new model will yield automata with fewer states, which is an
important feature for certain applications on program verification. The
constructed automata have however more transitions and it remains to be
explored how in practice this affects the efficiency of the construction.
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