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Best Practices for Estimating, Interpreting, and
Presenting Nonlinear Interaction Effects
Trenton D. Mize

Purdue University

Abstract: Many effects of interest to sociologists are nonlinear. Additionally, many effects of interest
are interaction effects—that is, the effect of one independent variable is contingent on the level of
another independent variable. The proper way to estimate, interpret, and present these two types of
effects individually are well known. However, many analyses that combine these two—that is, tests
of interaction when the effects of interest are nonlinear—are not properly interpreted or tested. The
consequences of approaching nonlinear interaction effects the way one would approach a linear
interaction effect are severe and can often result in incorrect conclusions. I cover both nonlinear
effects in the context of linear regression, and—most thoroughly—nonlinear effects in models for
categorical outcomes (focusing on binary logit/probit). My goal in this article is to synthesize an
evolving methodological literature and to provide straightforward advice and techniques to estimate,
interpret, and present nonlinear interaction effects.
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MANY relationships of interest to sociologists are nonlinear. Even within the
context of the linear regression model, nonlinearities of the effects are com-

mon, for example, due to polynomial specifications of independent variables, such
as both age and age2 being included in the model or due to transformations of the
dependent variable (e.g., the log of wages). More commonly, most models for cate-
gorical dependent variables (e.g., binary, nominal, and ordinal logistic and probit
regression models) produce nonlinearities in the predicted probability metric.

Many relationships of interest to sociologists are also interactive in nature.
Interaction effects exist when the effect of one independent variable is contingent on
the level of another independent variable. For example, does the effect of obtaining
more education depend on whether someone is white or black? Does the effect of
aging depend on whether someone is a man or a woman?

The premise of this article is that although correct procedures for modeling
nonlinear effects are generally well established and commonly practiced and that
correct procedures for modeling and interpreting linear interaction effects are also
well established and commonly practiced, analyses that combine nonlinearities and
interaction effects are often estimated, interpreted, and presented incorrectly in
substantive work. Although the methodological literature on nonlinear interaction
effects has advanced rapidly in the last 15 years, there has been far too little change in
the way most social scientists approach these types of analyses. In their assessment
of the economic literature examining nonlinear interaction effects, Ai and Norton
(2003) found that “of the 72 articles published between 1980 and 1999 ... none of the
studies interpreted the coefficient on the interaction term correctly.” My reading of
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the substantive sociological literature does not reveal a more optimistic take of our
discipline’s recent work.

To confirm this intuition, I examined the 53 articles published in the American
Sociological Review (ASR) between 2004 and 2016 examining nonlinear interaction
effects.1 Fifty of the 53 referred only to the coefficient on the product term to
determine the significance of the interaction effect—an improper test of interaction
in terms of the predicted probabilities.2 Perhaps because of this fact, the current ASR
editors recently published “A Few Guidelines for Quantitative Submissions,” with
the editors noting the difficulty of testing for interaction in models for categorical
dependent variables, concluding, “The case is closed: Don’t use the coefficient on
the interaction term to draw conclusions about significance of statistical interaction
in categorical models such as logit, probit, Poisson, and so on” (Mustillo, Lizardo,
McVeigh 2018:1282). However, despite the definitiveness of this statement about
the wrong way to test for interaction, the correct way has not been given a thorough
treatment aimed at improving the practices of applied researchers.

My primary goal in this article is to provide a set of straightforward best prac-
tices for substantive researchers who are interested in estimating, interpreting, and
presenting interaction effects when the effects of interest are nonlinear. Method-
ological advances have provided important frameworks that should guide future
work testing nonlinear interaction effects; however, it is clear that these advances
have not had much of an impact on most applied sociological research. My goal
is to provide a relatively nontechnical overview of the problem and of the current
state of best practices to deal with these issues.

Many of the best practices I advocate for are available in the methodological
literature across sociology, political science, and economics. My goal is to compile
and synthesize these methodological advances in a way that is helpful for applied
researchers and that provides straightforward and helpful recommendations for
how these methodological insights can be implemented in applied research. Those
looking for more statistically oriented overviews of the issues described here can
find important methodological progress in the work of Ai and Norton (2003); Berry,
DeMerrit, and Esarey (2010); Rainey (2016); Long and Mustillo (2018); and others
cited throughout this article.

Scope and Definition of Terms

Definition of Terms

In this article, I define an interaction effect as an effect of one independent variable
being contingent on the level of another independent variable. I distinguish between
the coefficient of the product term and the interaction effect itself. As I will show, the
coefficient on the product (interaction) term is often a misleading representation of
the interaction effect in terms of the predictions. Thus, throughout, any references
to effects are in terms of the model’s predictions.3

Linear effects are those that are constant across the range of a variable (e.g.,
a change from 10 to 12 years of education has an effect equivalent to a change
from 18 to 20 years of education). Nonlinear effects are those that are not constant
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across the range of an independent variable. Effects can be nonlinear because of
the specification of independent variables (e.g., age and age2) or because of the
nature of the dependent variable (e.g., a categorial outcome or a transformation of
a continuous outcome [e.g., logged wages]) or both. Note that effects from linear
regression models can be nonlinear.

Different approaches (especially visualizations) are more or less effective de-
pending on the measurement level of the independent variables that are the con-
stituent pieces of the interaction effect. My terminology follows how the variables
are entered into the regression model, which may or may not directly align with
their true measurement level. Nominal variables have multiple discrete categories
that are not ordered; binary variables are a special case when there are only two
categories. Continuous variables are those that are treated as interval-ratio.

Testing for Interaction in the Natural Metric of the Dependent Variable

The methods I advocate for in this article make one key assumption: The goal of the
analysis is to determine whether an interaction effect exists in terms of the natural
measured metric of the dependent variable (for example, that the interest is in the
effect on wages even when the log of wages is used as the dependent variable).
Most commonly, a distinction between the measured and modeled metric occurs in
models such as binary, nominal, and ordinal logit/probit models (Kaufman 2018).
In this article, my assumption is that the metric of interest from these models is
the predicted probabilities—not the odds, log odds, or latent variable metric (for
details, see Long 1997; Kuha and Mills 2018). A brief example helps motivate my
focus on predicted probabilities as the natural metric of the dependent variable in,
for example, binary logit. Consider the various ways to summarize the hypothetical
data in Table 1 on gender and voting.

The dependent variable (voted in last election) is measured as a binary (voted
= 1; did not vote = 0). When examining the effect of gender, the observed metric
in the data are proportions: 40 percent of men voted; 60 percent of women voted.
The probability that any given man in the sample voted is 0.40; the probability that
any given woman in the sample voted is 0.60. Summarizing the effect of gender in
the natural metric of the dependent variable would be calculating the differences
in these two predicted probabilities (0.60 – 0.40 = 0.20). It is possible to convert
the probabilities to odds (odds = π

1−π ), as row 3 of Table 1 does. Taking the ratio
of women’s odds of voting to men’s odds of voting (OR = Oddswomen

Oddsmen
) produces an

odds ratio (OR): Women’s odds of voting are larger than men’s by a factor of 2.25.
Further, we could take the natural log of men’s and women’s odds and then subtract
the two, as the bottom row of Table 1 demonstrates. Indeed, the OR reported above
is what you would obtain from exponentiating the coefficient from a binary logit
model applied to these data regressing voting on gender (with the difference in log
odds being the raw regression coefficient).

The rest of this article demonstrates how to test for interaction effects in the
natural metric of the dependent variable: in logit/probit models, the predicted
probabilities. I am far from the first to suggest that interpreting the models in this
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Table 1: Various ways to summarize the effect of gender (woman = 1) on voting.

Men Women Formula for Effect of
Effect Gender

Proportion 0.40 0.60 pwomen − pmen 0.20
Probability 0.40 0.60 πwomen − πmen 0.20
Odds 0.40 / 0.60 0.60 / 0.40

= 0.67 = 1.50 oddswomen/oddsmen 2.25
Log Odds −0.41 0.41 ln(odds)women − ln(odds)men 0.81

metric carries key advantages (e.g., Long 1997; King, Tomz, and Wittenberg 2000;
Mood 2010).

Outline of Article

First, I overview the marginal effects framework for summarizing effects in terms
of a model’s predictions. Next, I illustrate the difficulties of testing nonlinear
interaction effects even in the context of the linear regression model. I then spend
some time demonstrating why testing for interaction in binary logit/probit requires
the techniques advocated for in this article—and why the coefficient on the product
term is not a test of interaction in terms of the predicted probabilities. Next, I
work through a series of applied examples for presenting and testing nonlinear
interaction effects that I hope serve as a guide for researchers. I end with a discussion
of software considerations and with details for extending the framework advocated
for here to nominal, ordinal, and count models.

Marginal Effects As Summaries of Effects in the Natural
Metric of the Dependent Variable

Marginal effects summarize an independent variable’s effect in terms of a model’s
predictions (see Long and Freese 2014 for an overview). Marginal effects have
several advantages over relying on regression coefficients to summarize an indepen-
dent variable’s effect: (1) They allow for one summary measure of an independent
variable’s effect even when multiple linked coefficients are in the model (e.g., income
and income2). (2) They avoid the problematic identification (scaling) issues of the
coefficients in logit/probit-based models (see Long 1997; Long and Freese 2014;
Breen, Karlson, and Holm 2018). (3) As they are based on a model’s predictions,
they can be expressed and interpreted in a different metric than the regression
coefficients.

To explain the various types of marginal effects, I begin with a generic form of a
regression model:

η(x) = G(xβ). (1)
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In this notation, x is a vector of independent variables and β is a vector of
regression coefficients. Throughout, I use η to denote a prediction that is some
function (G) of xβ. In the linear regression model, η = ŷ = xβ. A key benefit
of using predictions and marginal effects to summarize a model is the ability
to transform xβ into a more useful metric when applicable. For example, if the
dependent variable is ln(y) in a linear regression model, the predictions can easily
be transformed back into the original y metric by exponentiating the predictions
(η = exβ). In binary logit, xβ is in terms of log odds; we can easily transform
the predictions into the metric of predicted probabilities with the formula η =

Pr(y=1) = exp(xβ)
1+exp(xβ)

.
The notation η(x) demonstrates that the predictions are contingent on certain

values of the independent variables in x. I use the more detailed notation of
η(xk = x∗k , x=x∗), where independent variable xk is the focal independent variable
and the variables in x are other independent variables, such as the control variables.

At its simplest, a marginal effect can be calculated as the difference between
two predictions, with only xk changing and the variables in x being held constant.
However, there are multiple choices as to what values of both x∗k and x∗ to use
as well as a choice of whether to use representative values to generate only two
predictions for comparison or to average over multiple sets of predictions. I outline
the various options and discuss some pros and cons of each below.

Marginal Effects at the Mean (MEM) or at Other Representative
Values (MER)

One option when using marginal effects is to choose values for both x∗k and x∗ that
are representative of values of interest:

MERxk = η(xk = end, x=x∗)− η(xk = start, x=x∗). (2)

The marginal effect indicates the change in the value of η as the focal variable
xk changes from some starting to some ending value. For example, the mean of
xk (x̄k) and x̄k + 1 are common choices. Any starting and any ending value can
be used; commonly, for continuous independent variables, the mean is used as
the starting value and increases of one unit or a standard deviation are used to
determine the ending value. I focus on discrete changes, which are changes in xk of a
fixed value (e.g., +1, +SD, +15, etc.). Instantaneous changes are also possible, which
represent the first derivative at a given value of xk; however, they are not the focus
here. Importantly, if a model includes multiple linked coefficients, such as those
due to polynomials or product terms, each associated variable must change at the
same time when calculating the marginal effect of xk (e.g., income2 cannot be held
constant while income changes).

For a binary focal variable xk, the ending value is always 1 and the starting value
always 0:

MERbinary = η(xk =1, x=x∗)− η(xk = 0, x=x∗). (3)
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For example, the effect of gender is the difference in the prediction for women
(= 1) and the prediction for men (= 0).

The values in x∗ are commonly held at their sample means, leading to the
terminology of a “marginal effect at the mean” (MEM) and an interpretation as the
effect for the “average person” in the sample (terminology is adapted from Williams
2012; Long and Freese 2014). However, other values of interest can be used, such
as the means for specific subsamples, for example, using the subsample means for
those with college degrees when predictions about individuals with college degrees
are of interest and using the subsample means for those without college degrees for
those predictions.4

An awkward aspect of the MEM with x∗ held at the sample means is that this
“average person” may not be represented in the sample; for example, no observation
may have the mean level of income, mean level of education, and mean level of
age. In addition, nominal variables are held at their sample proportion, with, for
example, the awkward interpretation of making a prediction at woman = 0.55.5

Theoretically, it is more common for the effect on average across the sample to be of
primary interest rather than the effect for the average person (Hanmer and Kalkan
2013). Average marginal effects, which are discussed in the next section, represent
an effect on average across the sample.

Average Marginal Effects (AME)

Average marginal effects are estimated by calculating a marginal effect (ME) for
every observation in the sample and then averaging these effects. First, consider
the marginal effect of xk for a specific observation i:

MExki
= η(xk = endi, x=xi)− η(xk = starti, x=xi). (4)

The subscript i’s are used to indicate that all three of the (1) starting, (2) ending,
and (3) control variable values can be unique to each observation. An average
marginal effect (AME) is the average (mean) of the marginal effects calculated for
each observation in the sample:

AMExk =
1
N

N

∑
i=1

η(xk = endi, x=xi)− η(xk = starti, x=xi). (5)

Equation 5 represents the average effect across the entire sample (all N observa-
tions). However, in the context of interaction effects, it is often of interest to calculate
an average effect across a subsample, for example, an AME for men and an AME
for women for which only the applicable observations are used in the calculation of
each.6 For AMEs, the most common starting value is the observed value for that
observation (starti). As with MERs, for continuous independent variables, discrete
changes of increases of 1, a standard deviation, or any other value can be used
to determine endi. For binary variables, predictions are made at 0 and 1 for each
observation.

An advantage of the AME is that the observed values of the independent vari-
ables are used for each observation-specific prediction; that is, each prediction is
based on actual observed values in the data. The AME can be interpreted as the
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effect of changing xk by a given value on average across the sample. In addition
to this elegant interpretation, AMEs also have some statistical advantages over
MEMs (Hanmer and Kalkan 2013; see also Cameron and Trivedi 2005), although
they rarely differ dramatically in practice. For these reasons, my interpretations for
the examples used in this article are based on AMEs.

Despite my preference for AMEs as a default choice, the correct choice as to
whether to use MERs, MEMs, or AMEs should be guided by which best tests
the substantive research question. In addition, whether to use the entire sample
or a subsample for the calculations of each marginal effect is best guided by the
substantive research question. Long and Freese (2014:280–4) provide additional
guidance for these decisions (in particular, see their discussion of global vs. local
means). Long and Mustillo (2018) provide additional insights about these decisions
in the context of testing for group differences.

Testing the Equality of Marginal Effects: Second Differences

Testing for interaction effects involves testing the equality of multiple effects. For
example, when examining possibly interactive effects of the independent variables
age and gender, we may wish to calculate the difference in the effect of age for men
and the effect of age for women. For linear effects in linear regression, the coefficient
of the product term ageXgender provides this test. For nonlinear effects and/or
effects in a different metric than the coefficients, tests of the equality of marginal
effects can be used. For example, consider a binary logit model regressing voting
behavior on age, gender, and an ageXgender product term.

Let ∆agemen represent an AME of age for men and ∆agewomen be the AME of age
for women. Commonly, these are referred to as first differences. A test of second
difference is a test as to whether two first differences are equal (Berry et al. 2010;
Long and Freese 2014). A Wald test can be used to determine whether the two
effects are equal:

z =
∆̂agewomen − ∆̂agemen√

σ̂2
agewomen + σ̂2

agemen − 2σ̂agewomen ,agemen

. (6)

The numerator of Equation 6 represents the difference in the effect size across
men and women; the denominator represents the standard error of the difference.
Here, σ̂2

kb
is the variance estimate of each marginal effect (σ̂kb

is the standard error)
and σ̂kb=1,kb=0

is the estimate of the covariance between the two effects. The value of
z can then be compared to the critical value to determine whether the difference is
statistically significant (i.e., the null hypothesis can be rejected).

Although the variances and covariances of regression coefficients are obtained
from the variance/covariance matrix of the regression estimates, for marginal effects,
they must be calculated post-model estimation. Commonly, the delta method is
used (Ai and Norton 2003; Agresti 2013; Dowd, Greene, and Norton 2014; Pitblado
2014), although other methods, such as bootstrapping (Efron and Tibshirani 1994;
Dowd et al. 2014) and simulation (King et al. 2000), can also be used.
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Nonlinear Interaction Effects in the Linear
Regression Model

In this section, I outline how marginal effects and tests of second differences can
be used to test for interaction effects in linear regression when the relationship of
interest is nonlinear. Consider the relationship between wages (dependent variable),
age, and gender. Data for this example come from the General Social Survey,
including only employed individuals; typical control variables for respondent
demographics are included but not shown.7 Age likely has a nonlinear relationship
with wages. For example, it is possible that as a person ages his or her wages
tend to increase, but this positive effect of age diminishes at older ages. Indeed, in
models not shown, I found that including both age and age2 improves the fit of the
model (suggesting a nonlinear relationship). We also know from prior work that
there is a gender gap in hourly wages. Of interest here is whether the effect of age
differs for men and women. To examine this question, I fit a linear regression model
regressing hourly wages on age, age2, woman, womanXage, and womanXage2. Note
that all constituent terms are needed (Brambor, Clark, and Golder 2006).8 Note
also that although there has been discussion in the literature about the pros and
cons of mean-centering continuous variables, such as age, before including them in
interaction models, doing so does not affect the predictions or tests of the marginal
effects (Kromrey and Foster-Johnson 1998; Dalal and Zickar 2012); none of the
models presented in this article mean center any variables.

When estimating a model such as this, I tend to ignore the coefficient estimates
because they do not provide any straightforward summary of the effects of interest.
Many questions may be of interest regarding the interaction effect that the coeffi-
cients alone cannot answer: They do not answer what the effect of age is on average
for men, or for women, or whether those effects differ. They do not tell us where
(if anywhere) across the range of age there are significant gender differences. It is
possible that gender differences only exist at certain values of age; alternatively, it is
possible that gender differences exist across all levels of age but that the magnitude of
the difference between men and women is different at various ages. The coefficients
do not answer these question for us. Tests of marginal effects, however, can.

The first thing I recommend when examining nonlinear interaction effects is to
make a plot of the model’s predictions for the focal independent variables. The plot
should then guide further interpretation and testing. Figure 1 presents predicted
hourly wages across the range of age separately for men and women. Note that
as with calculations of marginal effects, the predictions themselves can be made
using group-specific observations or means or with the entire sample observations
or means; for this example, I have used group-specific observations: I have made
the predictions for women using only the women in the sample (and the observed
values of their control variables) and the predictions for men using only the men in
the sample.

The relationships shown in Figure 1 suggest that getting older is associated
with higher wages, but eventually, the additional wage boost of getting even older
begins to diminish. The key here beyond the specific pattern for this example is:
The effect of age is not constant across the range of the variable; the effect of age
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Figure 1: Predicted hourly wages based on age and gender: curvilinear effect of age and interaction effect
between age and gender.

depends on which part of the age range we examine. Further, as we can see from
Figure 1, the effect of age also depends on whether someone is a man or a woman.

Table 2 shows the results for the effects of age calculated at three different
values of age for men and women separately. The top of the table shows that the
average marginal effect of an increase in age from 25 to 30 years for men is about
a $2.628 increase in wages (p < 0.01), whereas the AME for women is an increase
of $1.688 (p < 0.01). We can test the equality of these two AMEs with a test of the
second difference: 2.628 – 1.688 = 0.940, which is significant at the p < 0.01 level.
Substantively, this indicates that getting older has a significantly larger effect for
men than for women if the difference of interest is how changes from 25 to 30 years
old are associated with wages. That is, this statement is limited only to the specific
level of age at which the second difference was calculated.

In contrast, consider how changes from 65 to 70 years old are associated with
wages. For men, this increase in age has a significant negative effect on wages (∆men
= –1.118; p < 0.01), and it has a similar negative effect for women (∆women = –1.165;
p < 0.01). Here, the second difference indicates that the effects of changes from 65
to 70 years old do not differ for men and women (-1.165 – -1.118 = 0.046; p = not
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Table 2: Results for how wages are associated with age and gender: tests of average marginal effects (AMEs)
and second differences (N = 30, 931).

AMEmen AMEwomen Second
Difference

Effect of Age
25→ 30 2.628∗ 1.688∗ 0.940∗

(0.081) (0.085) (0.111)
65→ 70 −1.118∗ −1.165∗ 0.046

(0.109) (0.120) (0.160)
starti + 5 1.149∗ 0.576∗ 0.574∗

(0.035) (0.035) (0.047)

Notes: Standard errors are in parentheses. ∗p < 0.05, two-tailed tests.

significant [ns]). That is, there are no gender differences in the effect of increases in
age at these higher levels of age.

When specific values are of substantive or theoretical interest, it is important
to test for interaction at those values (e.g., if the research question is about gender
differences for men and women in their 20s, the interaction effect should be cal-
culated for those ages). Absent specific values of interest—or in the common case
in which a statement about whether an interaction effect exists or not on average
across the sample—comparisons of average marginal effects or marginal effects
at the means across men and women are recommended. The final row of Table 2
reports such a test for the average effect of a five-year increase in age. On average, a
five-year increase in age is associated with a 1.149 increase in wages for men and
a 0.576 increase in wages for women; the second difference 1.149 – 0.576 = 0.574
(p < .001) indicates that the average effect of aging five years is larger for men than
for women. In other words, an interaction effect between age and gender does exist,
on average, in this sample.

Examining Both Sides of the Interaction

Importantly, there are two sides to the interaction effect, and best practice is to
examine both sides (Berry, Golder, and Milton 2012). The above paragraph describes
the effect of age. However, there are also important insights about the effect of
gender and how it varies across the range of age. Figure 1 suggests the gender gap in
earnings is relatively small at young ages but increases in size over the range of age.
It appears that the 95 percent confidence intervals do not overlap at any age. Here
it is worth noting that when confidence intervals do not overlap across independent
groups, this indicates a significant group difference. However, assessing significance
via confidence intervals alone is a risky enterprise. When confidence intervals do
overlap, this may or may not indicate that the group difference is nonsignificant
across independent groups. Moreover, in the presence of clustering or other sources
of nonindependence, the “confidence interval overlapping” rule will often fail (Belia
et al. 2005). The only way to know for sure whether group differences (e.g., men vs.
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Figure 2: Average marginal effect of gender (woman = 1) across the range of age on predicted wages.

women) are statistically significant is to explicitly test for this difference. Marginal
effects provide one useful way to do so.

Figure 2 plots the average marginal effects of gender (predicted wageswomen –
predicted wagesmen) across the range of age. As this is a direct test of the effect of
gender, the confidence intervals on the test provide appropriate information to judge
the significance of group differences. As is clear from the plot, gender differences are
significant across the range of age, with women always being predicted to earn less
than men; the gender gap starts off relatively small and increases in size at older ages.
For example, the effect of gender at age 55 years (AMEwoman = −6.805; p < 0.01) is
significantly larger than the effect of gender at age 25 years (AMEwoman = −2.841;
p < 0.01); the second difference = -6.805 – -2.841 = -3.964 (p < 0.01).

More Contexts for Nonlinearity in Linear Regression

In this section, I illustrated that even in linear regression models, when the effect
of interest is nonlinear, it is useful to use marginal effects and tests of second
differences at specific values of interest in order to determine whether an interaction
effect exists. There are many other situations in which effects might be nonlinear
even in the context of the linear regression model. For example, a model in which
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a continuous dependent variable has been transformed (e.g., wages have been
logged) will produce effects in terms of the original metric (e.g., wages) that are
nonlinear. In addition, other flexible methods beyond simple quadratic terms (e.g.,
age and age2 in the above example) can be utilized on the right-hand side of the
model to produce nonlinearities in terms of the effect on the predictions. The key
point is that just because linear regression is being used to estimate the model does
not ensure that the effects of interest are linear.

Nonlinearities in Models for Categorical
Dependent Variables

Next, I turn to the necessity of taking the approach outlined above when binary,
nominal, ordinal, or count models are used. In contrast to linear regression models,
the relationships in models for categorical dependent variables are almost always
nonlinear in the natural metric of the dependent variable (e.g., the predicted prob-
abilities in binary logit [Long 1997; Agresti 2013]). For the following section, I
focus only on binary logistic regression for simplicity, but the difficulties I note and
solutions I recommend apply equally to other models, such as binary probit, ordinal
logit, multinomial logit, count models (such as Poisson and negative binomial
regression), and others (I discuss these models briefly at the end of this article).

Nonlinearities in Binary Logit

To illustrate the nonlinearities inherent in binary logit and the limitation of using
the coefficients to summarize effects, consider the following example using data I
simulated. Because the data are simulated, I have specified that the true model is:

ln{ Pr(yi = 1)
1− Pr(yi = 1)

} = −1 + 0.2c + 2b. (7)

I have c as a continuous independent variable and b as a binary independent
variable. The predictions for xβ are in logits, or log-odds units. To transform the
predictions from the log-odds metric to the predicted probability metric, we use the
formula η = Pr(y=1) = exp(xβ)

1+exp(xβ)
. Figure 3 shows the effect across the range of c in

the predicted probability metric. This demonstrates the classic s-shaped curve that
results from the cumulative distribution function of the logistic distribution (Long
1997). Recall that there is only one coefficient estimate for c: βc = 0.20. However,
the effect on the predicted probabilities is clearly not constant. At particularly low
and particularly high values of c, there is almost no effect at all; that is, the curve
is almost flat, indicating a slope in the predicted probability metric of almost zero.
However, in the middle of the range of c, there is a large effect on the predicted
probabilities of a change in c. That is, despite the fact that there is only one coefficient
estimate, there is a great deal of variation in the effect on the predicted probabilities.

To complicate things even further, consider that the relationship observed in a
particular data set for a particular model will vary greatly even when the regression
coefficient estimate is the same. To illustrate this, I have plotted four predicted
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Figure 3: Simulated data: predicted probability of y = 1 across the range of c (a continuous variable).

probability curves in Figure 4. Each of these represent a coefficient estimate of
βc = 0.20. However, depending on where on the full predicted probability curve
the observed data fall, the effect in terms of the predicted probabilities can differ
drastically. In the top-left panel, there is virtually no effect of c on the predicted
probability except for values greater than –20, and even here the effect is small. In
contrast, the top-right panel shows large effects for all values of c but with a highly
nonlinear form: The change in the probability is noticeably larger in the center of
the figure than at the extremes of c. The bottom-left panel shows an effect that
is large and relatively linear in nature. The bottom-right panel shows only small
effects on the probability, with the effect diminishing at larger values of c. The key
point is that knowing the coefficient estimate (βc = 0.20 for all of the probability
curves shown in Figure 4) does not indicate an obvious or consistent effect on the
predicted probabilities.

Note that interpreting these effects as odds ratios does not solve the problem:
We can exponentiate the coefficient for c: e0.20 = 1.22. That is, a one-unit increase
in c is associated with a 1.22-times increase in the odds of y = 1, and this effect is
the same across all four panels of Figure 4. However, it is clear that the substantive
impact on the predicted probabilities varies greatly. If the metric of interest is the
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Figure 4: Simulated data: different effects on the predicted probability of y = 1 despite the same coefficient
estimate of β = 0.20.

predicted probabilities, the regression coefficients do not provide a straightforward
summary of the effects in this metric.

Interaction Effects in Models for Categorical Outcomes

For some of the reasons discussed above—and for others outlined below—it is not
possible to determine the nature of an interaction effect on the predicted proba-
bilities in logit/probit models based on the coefficients alone. As Ai and Norton
note: “The interaction effect...cannot be evaluated simply by looking at the sign,
magnitude, or statistical significance of the coefficient on the interaction term when
the model is nonlinear”(2003:129). An additional consideration is that logit/probit
models are already interactive in one sense before a product term is even introduced
into the model.

To illustrate, consider the effect of an intercept shift for a continuous independent
variable c in binary logit produced by a binary independent variable b (also in the
model). Figure 5 uses the same simulated data from above with the relationships
as specified in Equation 7. From Figure 5, it is clear that the overall shape of the
two curves for the effect of c when b = 0 and when b = 1 are the same. Just as in
linear regression, without a product term in the model, the overall slopes of the two
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Figure 5: Simulated data: effect of an intercept shift in binary logistic regression.

curves are invariant across the levels of b. However, because of the intercept shift,
the effects in terms of the predicted probabilities at certain places on the curves
do differ. For example, consider the marginal effect of c increasing from 15 to 20.
When b = 0, this has a noticeable effect on the predicted probabilities, as the slope
of the red curve in Figure 5 is still quite steep. In contrast, when b = 1, there is
only a very small effect on the predicted probabilities because the curve has almost
reached its maximum of one, and thus, the slope is close to zero. This aspect of logit
and probit is often referred to as “compression”—that is, because the predicted
probability curves are bounded between zero and one, the separate lines for levels
of b in Figure 5 must “compress” at some point because they are bounded at zero
and one (Berry et al. 2010; Rainey 2016). Importantly, this causes the effects on the
predicted probabilities to be interactive: The effect of c is different in some places on
the curve depending on whether b = 0 or b = 1 despite the fact that only a single
coefficient produced the slope for these two curves.

To put this more concretely and to show some real data implications, consider
the effect that education has on the probability of being employed for parents. In
particular, we might want to know whether there are different patterns for mothers
and fathers. Data for this example come from Wave IV of the National Longitudinal
Study of Adolescent to Adult Health, when respondents were about 28.5 years old,
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Figure 6: Predicted probability of being employed for mothers and fathers based on years of education
completed: intercept shift example (no interaction term in the model).

on average. Here, I fit a binary logistic regression model regressing employed (yes
or no) on years of education completed and on the gender of the parent (mothers =
1; childless men and women are excluded from this model; controls for respondent
demographics included but not shown).

With linear effects, the effect of education would be equivalent for mothers and
fathers, as there is no product term in the model. However, as Figure 6 illustrates,
the effect that education has on the predicted probability of employment varies
based on both the level of education considered and whether the prediction is
for a mother or father. Included on the plot are +1 discrete changes calculated
at 0, 10, and 20 years of education for mothers and fathers separately. There are
clearly interactive effects in the traditional sense of the term: The effect of education
depends on the level of parental gender. At low levels of education, the effects are
similar in size for mothers and fathers; at higher levels, the effects appear larger for
mothers.

Figure 6 raises the important question of whether a product term is necessary in
logit and probit considering that interactive effects exist even without one. More-
over, is it appropriate to interpret the results shown in Figure 6 as evidence of
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an interactive relationship between education and parental gender? I turn to this
question next.

Is the Product (Interaction) Term Necessary in Models for Categorical
Dependent Variables?

There has been some debate in the methodological literature about the necessity of
including a product term in logit/probit models because these nonlinear models (as
shown above) are already “interactive” in nature to an extent regardless of whether
an interaction term is in the model or not (e.g., Nagler 1991; Ai and Norton 2003;
Brambor et al. 2006; Berry et al. 2010; Berry, DeMerrit, and Esarey 2016; Rainey
2016). On one side, if “compression” effects are of theoretical interest, the inherently
interactive nature of logit and probit models might already handle this type of
relationship. For example, it might be reasonable to expect that at extremely high
levels of education, both mothers’ and fathers’ probabilities of being employed are
almost one, and thus, any further increase in education is unlikely to have much of
an effect for either group.

It is worth laying out two important questions about the implications of includ-
ing or excluding a product term when testing for interaction and considering the
pros and cons. First, what are the consequences of including an unneeded product
term in a logit or probit model? That is, if compression models the data-generating
process well, what harm is there in adding an unnecessary product term to the
model? Second, what are the consequences of omitting a needed product term from
a logit or probit model? That is, if differential slopes are needed in order to model
the data-generating process, what is the harm of leaving out the product term?

To help answer these questions, I first turn to additional simulated data in order
to control the data-generating process. The following examples again focus on
the case of one continuous and one binary independent variable. Here, I have
modified the example first laid out in Equation 7. Equation 8 shows the true model
specification I used to generate the simulated data:

ln{ Pr(yi = 1)
1− Pr(yi = 1)

} = −1 + 0.2c + 2b + 0cXb. (8)

As Equation 8 shows, there is no interaction effect in terms of the coefficients;
that is, the true value of the coefficient on the product term is zero. What effect does
this have on the predicted probabilities? Figure 7 plots the predicted probability
curves from this simulated data set for two separate models. The left panel of
Figure 7 presents a model with a product term excluded from the model; the right
panel presents a model with a cXb product term included. As is clear from Figure 7,
the implications for inference are unaffected when including the product term.
The only loss of including the product term is an additional degree of freedom.
Here, I am arguing that that there is little lost by adding the product term to the
model even if the researcher theorizes that compression should accurately model
the relationships of interest: If there is no interaction effect in the data-generating
process, including a product term in the model will not harm inferences, as the
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Figure 7: Effect of unneeded product term: the true coefficient on the product term is effectively zero.

estimate of the coefficient on the product term will be effectively zero and will not
affect the predictions (see also Brambor et al. 2006).

Importantly, just because the coefficient of the product term is essentially zero,
this does not mean that there is no interaction effect in the predicted probability
metric. If, for example, effects of c from 20 to 30 years old are of interest, the effects
appear larger when b = 0 than when b = 1 (note that tests of marginal effects
and second differences should be used to test this directly if it is of interest). The
coefficient of the product term does not provide a test for whether the effect differs
in the predicted probability metric.

In contrast to the inconsequential effect of including an unneeded product term
in the model, as I will show, the implications of omitting a needed product term
from the model are severe and can lead to incorrect conclusions. Here, I again
simulate data for which the true data-generating process is:

ln{ Pr(yi = 1)
1− Pr(yi = 1)

} = −1 + 0.2c + 2b + 0.2cXb. (9)

Equation 9 specifies that an interaction effect exists in terms of the coefficients
and the log-odds metric. To illustrate the effect of excluding or including an interac-
tion term in the model on the predicted probabilities, Figure 8 plots the predicted

sociological science | www.sociologicalscience.com 98 February 2019 | Volume 6



Mize Nonlinear Interaction Effects

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

y
 =

 1
)

−30 −20 −10 0 10 20 30

c

b=0

b=1

No Product Term in Model

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

y
 =

 1
)

−30 −20 −10 0 10 20 30

c

b=0

b=1

Product Term Included: c X b

Figure 8: Effect of excluding a needed product term: the true coefficient on the product term is not zero.

probability curves from a model excluding a product term (left panel) and a model
including a cXb product term (right panel). Here, the effect of omitting the needed
product term has serious implications. The overall slopes of the curves should be
allowed to vary; omitting the needed product term constrains the slopes of the two
curves to be equal when they should not be. Therefore, a product term must be
included in the model to allow the effect to vary if indeed it should.

Another side of this important question is the consequence of testing for in-
teraction effects in logit and probit models in the absence of a product term in
the model. Rainey (2016) presents a systematic and extended investigation into
this issue. Although the implications vary based on underlying effect and sample
sizes, in extreme circumstances, researchers can find an interaction effect in the
predicted probabilities 100 percent of the time even when an interaction effect does
not exist in the data-generating process if a product term is omitted from the model.
That is, testing for interaction without including a product term can lead to an
almost certain type I error (for an example of a product term being necessary in
the model to avoid a type I error, see the example of ”interactions of one nominal
and one continuous independent variable” later in this article). Encouragingly,
Rainey (2016) shows that adding a product term to the model—thus relaxing the
compression effect if it indeed needs to be relaxed—completely removes this bias,

sociological science | www.sociologicalscience.com 99 February 2019 | Volume 6



Mize Nonlinear Interaction Effects

ME = 0.023

ME = 0.020

ME = 0.022

ME = 0.011

ME = 0.014

ME = 0.005

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

E
m

p
lo

y
ed

)

0 5 10 15 20 25

Years of Education Completed

Fathers

Mothers

No Product Term Included

ME = 0.026

ME = 0.004

ME = 0.026

ME = 0.003

ME = 0.015

ME = 0.002

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

E
m

p
lo

y
ed

)
0 5 10 15 20 25

Years of Education Completed

Fathers

Mothers

Product Term Included: Edyrs X Gender

Figure 9: Effect of excluding a needed product term: interaction effect exists in the data-generating process.

and researchers will find evidence of interaction in the predicted probabilities only
at levels expected by random chance.

Returning to the model predicting employment status for mothers and fathers
illustrates these issues using real data. The left panel of Figure 9 shows the same
model considered before, which includes education and parental gender but omits a
product term; the model presented in the right panel includes an educationXgender
product term. It is is clear that forcing the slopes to be invariant across parental
gender leads to quite different implications in terms of the predicted probabilities.
Once the overall slopes are allowed to vary via the product term (right panel), the
effect of education appears larger for mothers than for fathers; the marginal effects
for fathers are fairly small and similar over the range of education. However, for
mothers, the effect at 10 years of education is large and almost twice that of the
effect for mothers at 20 years of education. A test of the second difference indicates
that the average effect of age is larger for women than for men (p < 0.01).

In sum, if an interaction effect is of interest, a product term should be included
in the model. In addition, even when compression is theoretically reasonable, this
should be tested in a model with a product term included—the only loss is a degree
of freedom. If compression fits the data, including a product term will not harm the
ability to find these relationships. However, excluding the product term is likely
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Figure 10: Interaction effect on the predicted probabilities cannot be determined by examining the coefficient
of the product term.

to produce a false positive, indicating interaction when there is no true interaction
effect in the data.

The Coefficient on the Product Term Is Not a Test of Interaction in
the Predicted Probabilities

Above, I went into some depth to defend and promote the inclusion of product
terms when testing for interaction in logit/probit models. It is worth expanding on
why the coefficient on the product term cannot be interpreted as a test of interaction
in the predicted probability metric even though the coefficient itself is needed in
the model (for additional details beyond what is presented here, see Ai and Norton
2003). Consider the two models plotted in Figure 10 from simulated data; both data
sets contain 2,000 simulated observations, and both models include product terms.

For the model in the left panel, the coefficient of the product term is effectively
zero and is nonsignificant (p = 0.84). However, the effects in terms of the marginal
effects on the predicted probabilities are clearly interactive, with the effect of c
varying greatly depending on the level of b. In contrast, the right panel shows the
predictions from a model in which the coefficient of the product term is relatively
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large and statistically significant (p < 0.05). However, the effects in terms of the
predicted probabilities for c are all but identical regardless of the level of b. That
is, in direct contrast to what we would expect to observe based on the coefficients
of the product terms, the effects in terms of the predicted probabilities directly
contradict our naive inferences.

The reason for this seeming contradiction again brings up the importance of
what logit and probit coefficients can and cannot tell us. Recall the examples shown
in Figure 4 in which the effects observed for a single coefficient estimate can be quite
different depending on where the observed data lie on the predicted probability
curve. An interaction effect allows the entire predicted probability curve to vary
across levels of another variable. Combine this fact with the effect of intercept shifts
on the predicted probabilities in logit/probit models illustrated earlier. The key
point is that how these will affect the predicted probabilities observed in your data
is difficult to say without examining the predicted probabilities themselves.

Figure 11 presents predictions from the same models that are shown in Fig-
ure 10. However, I have made the predictions at different values of the continuous
variable c. Now, the inferences of interaction are quite different. There is a clear
interaction effect for the model shown in the right panel of Figure 11 but little to
no interaction effect for the model shown in the left panel. The point of showing
these different places in the data space is to emphasize that the implications in
terms of the predicted probabilities cannot be determined by examining a single
coefficient estimate (for the main effects or for the coefficient of the product term).
The predicted probabilities themselves must be examined to determine whether
an interaction effect exists. The coefficient of the product term—although needed
in the model—can safely be ignored when testing for and interpreting interaction
effects in the predicted probability metric.

Presenting and Interpreting Interaction Effects

In this section, I give examples and advice about presenting interaction effects with
a focus on different techniques that are well suited to a particular type of interaction
effect, which depends on the measurement level of the independent variables that
are included in the interaction (i.e., nominal or continuous). The examples in this
section all use binary logistic regression. I focus on binary logistic regression because
models for categorical outcomes require these types of techniques to test interaction
effects and because the techniques described here extend straightforwardly to other
categorical outcome models, such as those for nominal, ordinal, and count outcomes
(see the discussion section for details on extensions to other models).

Interactions of Two Nominal Independent Variables

Interaction effects of two nominal independent variables are the most straightfor-
ward types of interaction effects to estimate and to interpret. This is because these
produce far fewer possible different values of the focal independent variables at
which to test the interaction effect. As an example, consider how being a parent
might differentially affect a person’s drinking habits depending on whether the
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Figure 11: Interaction effect on the predicted probabilities cannot be determined by examining the coefficient
of the product term: different parts of data space.

person is a man or a woman. Data for this example come from Wave IV of Add
Health. Here, both parental status and gender are coded as binaries. To test for a
possible interactive effect, I fit a binary logistic regression model regressing alcohol
use (any in the last month: yes or no) on woman, parent, womanXparent, and some
standard control variables.

These types of effects (especially in the case of nominal variables with only two
categories [i.e., binary variables]) can sometimes be conveyed via text and tables
alone, although visualizations are always helpful. I recommend researchers make a
plot of the model predictions even if the visualization does not end up in the final
manuscript; at the least, it is helpful as a guide to interpretation for the analyst.
Figure 12 and Table 3 present the same information in different formats. Both show
the predicted probability of alcohol use for the four combinations of the gender and
parental-status variables; Figure 12 includes a bar chart with standard-error bars to
represent uncertainty, and Table 3 presents the same information but also includes
the tests of the first (marginal effects) and second differences.

The results show that men without children have a significantly higher probabil-
ity of drinking alcohol (0.730) than do fathers (0.588; ∆ = 0.142; p < 0.01). Similarly,
women without children have a higher probability of drinking alcohol (0.673) than
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Figure 12: Probability of alcohol use by gender and parental status.

Table 3: Probability of alcohol use by gender and parental status with test of interaction Eeffect (N = 4, 307).

Pr(Alcohol Use) First Differences Second Difference

Childless Men 0.730
(0.012) 0.730 – 0.588 =

Fathers 0.588 0.142∗

(0.020) 0.142 – 0.204 =
Childless Women 0.673 −0.063∗

(0.015) 0.673 – 0.468 =
Mothers 0.468 0.204∗

(0.014)

Notes: Standard errors of the predictions in parentheses. ∗p < 0.05, two-tailed tests.

do mothers (0.468; ∆ = 0.204; p < 0.01). The effect of parenthood—with parents
being less likely to consume alcohol—is larger for women than it is for men (second
difference 0.142− 0.204 = −0.063; p < 0.05).

Interaction effects with nominal independent variables become more cumber-
some as the number of categories of the independent variables increase but only in
the sense that more comparisons are required; the techniques to test the interaction
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Figure 13: Probability of alcohol use by gender and educational attainment.

effects remain the same. As an example, consider that men are more likely to drink
than women. One might be interested in whether this gender gap is bigger or
smaller for individuals with different levels of education (here, entered into the
regression model as a nominal variable of highest educational degree obtained). To
test this, I fit a binary logit model regressing the same alcoholuse binary variable
on the gender and education categories, and product terms between gender and
the education categories (and controls). Figure 13 shows predicted probabilities
of alcohol use for each gender and educational attainment category combination.
Figure 13 utilizes a different type of figure—a horizontal dot plot with 95 percent
confidence intervals—to present the information (Cleveland 1993; Jann 2014); a bar
chart, such as Figure 12, could alternatively be used to present this information.

Figure 13 illustrates the gender gap in alcohol use across the various levels of
educational attainment by comparing the gap between the predictions for men (in
blue) and the predictions for women (in red). With this visual representation, it is
easy to notice that the gender gap appears largest for those without a high school
degree and smallest for those with a college degree. Table 4 presents the same
information along with tests of the gender gap and tests of whether the size of the
gender gap differs across levels of education (second differences [i.e., the test of
interaction]).
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Table 4: Probability of alcohol use by gender and education: marginal effects of gender and differences in
effects of gender across levels of education (N = 4, 307).

Women Men Gender Gap Contrasts
(AME of Gender)

a No High School 0.307 0.618 −0.311∗ b, c, d, e
b High School 0.516 0.643 −0.127∗ a
c Some College 0.538 0.696 −0.157∗ a, d
d College Degree 0.633 0.715 −0.082∗ a, c
e Graduate Degree 0.601 0.747 −0.147∗ a

Notes: The "contrasts" column reports which gender gaps are significantly different across levels of education
(second differences). ∗p < 0.05, two-tailed tests.

As shown in Table 4, there is a significant gender gap across all educational
levels, with men being more likely to report alcohol use than women (all gender
gaps p < 0.01). Testing whether the effect of gender differs across levels of education
requires a test of second difference, presented in the final column labeled “contrasts.”
For example, the gender gap in the probability of alcohol use is significantly larger
for those without a high school degree (−0.311) than it is for those of any other
educational level (all second differences p < 0.05). Note that these interaction effects
are dependent on each contrast being tested. That is, just because the gender gap
differs across two given categories of education, this does not necessarily indicate
that other contrasts will also differ. Note also that I have only shown one side of the
interaction effect for this example (the effect of gender); generally, it is best practice
to also examine the other side—in this example, the effect of education. I omit
this for space but encourage researchers to examine both sides of the interaction in
applied work.

Interactions of One Nominal and One Continuous
Independent Variable

For interaction effects when at least one focal independent variable is continuous,
a visual presentation of the effects is almost always needed and informative; this
is especially true with nonlinear effects. Many of the suggestions below build
on those of Long and Mustillo (2018), who focus on examining group differences
in nonlinear models. As an example, consider the two well-established findings
that women are more likely to report depressive symptoms than are men and that
those who are more socially integrated by holding more social roles tend to have
better mental health outcomes (for a review, see Thoits 2011). Of interest is whether
the positive mental health effects of holding more social roles differ for men and
women. To test this possibility, using Add Health Wave IV data, I fit a binary logistic
regression model regressing a high level of depressive symptoms (binary: high or
not) on gender (woman = 1), the number of socialroles held, and genderXroles (and
controls).

The results are illustrated in Figure 14. Starting with the social roles side of the
interaction, calculating AMEs is helpful: On average, each additional social role is
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Figure 14: Predicted probability of high depressive symptoms by gender and social roles held: interaction
effect between gender and social roles.

associated with a 0.032 decrease in the predicted probability of depressive symptoms
for men and a similar 0.030 decrease for women (both AME first differences p <

0.01). There is no significant difference in the average effect of social roles for men
and women (second difference p = ns).9

As mentioned above, it is important to test both sides of the interaction—that is,
to consider how the interaction effect operates for both variables in the interaction
(Berry et al. 2012) (for this example, to test whether there are significant group
differences between men and women at different values of social roles held). One
way to present this information is to directly plot the marginal effect of gender
across the range of social roles (see Figure 2 for an example). An alternative strategy
is to incorporate information about the significance of the group difference (men
vs. women) directly into Figure 14; indeed, I have already done so. In Figure 14,
the lines are dashed when the group differences are not significant and solid when
they are significant. That is, the gender gap is significant—with women having a
significantly higher probability of high depressive symptoms—when comparing
someone who holds between three and 10 social roles (all contrasts p < 0.05). There
are no gender differences in the probability of depressive symptoms when someone
holds between zero and two social roles (all contrasts p = ns). This information is
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entirely contained within the figure, a solution I find more elegant than a lengthy
table of statistics (for a different substantive example using this approach to convey
significance of group differences, see Heilman et al. 2011).

Interactions of Two Continuous Independent Variables

The trickiest types of interaction effects to interpret and present are those between
two continuous independent variables. However, visual presentations can greatly
aid the ability to convey these interaction effects. As an example, consider that
30 years ago, U.S. residents almost universally viewed same-sex relationships as
morally wrong; however, public opinion has shifted substantially, with increasing
moral approval of same-sex relationships seen over time. Of interest is whether
these shifts toward greater social acceptance have been broad based or whether they
have been concentrated among individuals with certain political views. To test this,
using data from the General Social Survey, I fit a binary logistic regression model
predicting views toward same-sex relationships (binary: wrong = 0; not wrong at all
= 1) with conservative political views, the year public opinion was measured (every
two years from 1976 to 2016), and political_viewsXyear. The measure of conservative
political views is a standardized scale, with 0 representing neutral, negative values
representing more liberal views, and positive values representing more conservative
views.

The first method of presenting a continuous-by-continuous interaction is to
choose “ideal types” for one of the two continuous independent variables (Weber
1922; Long and Freese 2014). By ideal types, I am referring to particular values of
the independent variables of interest that are representative of something either
theoretically or substantively interesting. Sometimes, there are clear choices for
substantively interesting values of one variable to choose; other times, no particular
values may present themselves as obvious ideal types of interest. One solution for
any continuous variable is to choose values at systematic percentiles of the variable’s
distribution (e.g., the 25th and 75th percentile or the 10th and 90th percentile). As
the conservative political views scale is standardized, I choose one standard deviation
below the mean and term it “liberal” and one standard deviation above the mean
and term it “conservative.”

Figure 15 illustrates this ideal-type approach to presenting continuous-by-
continuous interaction effects. The effect of the passage of time is represented
on the x axis, and the effect of political views is represented with two different
lines: one for “liberals” (predictions made at conservative political views = −1; in
blue) and one for “conservatives” (predictions made at conservative political views
= 1; in red). First, both variables have a clear effect: Conservatives are less likely
to view same-sex relationships as acceptable (AMEconservative_views + SD = −0.078;
p < 0.01); U.S. residents have become more accepting of same-sex relationships
over time (AMEyear + SD = 0.150; p < 0.01). Second, the gap between liberals
and conservatives appears to have grown over time. Third, the change in opinion
appears slightly larger for liberals than for conservatives. Although I find Figure 15
a clear, intuitive, and helpful way to summarize these effects, it is also important
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Figure 15: Probability of viewing same-sex relationships as acceptable by political views and survey year:
interaction effect between political views and year.

to substantiate these intuitions with additional analyses and tests of statistical
significance.

A second method of presenting continuous-by-continuous interaction effects
is to plot the marginal effects of one independent variable across the range of the
second independent variable—that is, to illustrate how the effect of one variable
differs at various levels of the second variable. Figure 16 plots the average marginal
effect of conservative political views across the range of survey years (i.e., how the
impact of political views on opinions has changed over time).10 From the plot, we
can see that political views have a significant effect in every survey year because
the 95 percent confidence intervals on the effects never overlap zero; because the
effects are negative, this indicates that the more conservative someone is, the less
likely that person is to view same-sex relationships as acceptable.11

In terms of the interaction effect, Figure 16 shows that political views have a
larger (more negative) effect on opinions in later years. We can test this directly,
for example: The effect of political views in 2016 (AME2016 = −0.159; p < 0.01) is
significantly larger than the effect of political views in 1976 (AME1976 = −0.044;
p < 0.01) with a second difference of −0.115 (p < 0.01).12
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Figure 16: Average marginal effect of conservative political views on the probability of viewing same-sex
relationships as acceptable across GSS survey years.

It is good practice to present both sides of a continuous-by-continuous interac-
tion. Here, it is how the effect of the passage of time has differentially impacted the
opinions of those with differing political views. Figure 17 illustrates this side of the
interaction. Here, the effect that time has had on opinions is presented across the
range of political views. All effects are positive and significant; that is, individuals
of all political stripes have become more likely over time to state that they view
same-sex relationships as acceptable. However, it is clear that this change is larger
for more-liberal individuals than for more-conservative individuals. For example,
the average effect of a two-year increase in time for liberals (0.026; p < 0.01) is
significantly larger than the effect for conservatives (0.015; p < 0.01) with a second
difference of 0.011 (p < 0.01).

A final option for presenting continuous-by-continuous interaction effects is a
contour plot (see Huber 2017 for additional examples). Contour plots present the
predictions from a continuous-by-continuous interaction with each independent
variable on an axis and the value of the prediction as a third dimension of color
and/or shade. When color graphics are possible, different colors across the range of
predicted probabilities are effective, as they allow the reader to easily differentiate
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Figure 17: Average marginal effect of time (GSS survey year) on the probability of viewing same-sex relation-
ships as acceptable across political views.

each level of the predictions; for black-and-white graphics, grayscale is generally
the most effective choice for displaying a gradient.

Figure 18 plots the predicted probabilities of viewing same-sex relationships as
morally acceptable. The x axis is the year of the survey; the y axis is the scale of
political views. The colors on the plot represent the predicted probability (scale is
defined in the legend on the right side of the plot). An exact predicted probability
for any given combination of year and political views can be found by finding
the color at the intersection of those two independent variables on the plot. For
example, the only individuals with very high (greater than or equal to 0.70; in blue)
probabilities of thinking same-sex relationships are acceptable are those who are
liberal or very liberal and answered the survey from around 2004 to 2016 (bottom
right of the plot). The interaction effect is also clear from the plot. Skim across
the very top of the plot (very conservative individuals): The probabilities have
changed over time (left to right) but much less (cycling through many fewer colors)
compared to the change for very liberal individuals (bottom of the plot). Similarly,
political views have a much larger effect in more recent years (right side of the plot)
than in prior years (left side). Although contour plots, such as Figure 18, necessitate
some space dedicated to explaining the plot, they contain a wealth of information.
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Figure 18: Contour plot of predicted probabilities of viewing same-sex relationships as acceptable at the
intersections of political views and survey year.

Summary of Recommendations

Estimating, interpreting, and presenting nonlinear interaction effects requires more
effort and consideration than doing the same for linear interaction effects. However,
the current methodological literature and statistical software provide the guidance
and ability to fully investigate these types of effects. In an effort to summarize the
key things to consider:

1. Include a product (interaction) term in the model if you want to investigate
whether the effect of one independent variable is contingent on the level of a
second independent variable.

2. Ignore the coefficient of the product term: It does not necessarily provide
accurate information about the significance, magnitude, or even the direction
of the underlying interaction effect on the predictions.

3. Plot the predictions to determine the nature of the underlying interaction
effect on the metric of interest.

4. Determine the size and significance of the effects of interest using marginal
effects, not regression coefficients.

5. Use tests of second differences (whether two marginal effects are equal) to
determine whether an interaction effect is significant for specific values of
interest of your independent variables.
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6. Absent substantive or theoretically interesting values of the focal independent
or control variables to test the interaction effect, use average marginal effects
to summarize whether there is an interaction effect present on average in the
data.

Software Considerations and Example Code

Replication files to recreate all analyses in this article are available on the author’s
website at (trentonmize.com/research). Simplified and annotated template files
to recreate the key examples in Stata are also available on the same website; I
encourage researchers to examine the template files as starting points for conducting
analyses similar to those I recommend here. Stata currently has the most robustly
implemented procedures for testing nonlinear interaction effects due to the wide-
ranging implementation of the margins command, which primarily uses the delta
method for calculating variances and covariances of predictions and marginal effects
(Pitblado 2014). In the example files, I use Long and Freese’s (2014) SPost13 package
in many places to simplify the calculations of the marginal effects (SPost13 is a free,
user-written program for Stata). I also use Jann’s (2014) coefplot command for
some of the figures. All of the figures presented throughout the article use my own
Stata graphics scheme cleanplots, which is freely available at trentonmize.com/
software/cleanplots.

Discussion and Conclusion

Extensions to Ordinal, Nominal, and Count Models

Although I have focused on nonlinear interaction effects in linear and binary re-
gression models, the topics I cover here extend straightforwardly to other models
for categorical outcomes, such as nominal, ordinal, and count regression models.
In each of these models, the effects on the predictions in the natural metric of the
dependent variable are not linear, making the tools I advocate here necessary (for
details on these models, see Long 1997; Agresti 2013; Long and Freese 2014).

Testing for interaction effects in the predicted probability metric (for example,
for ordinal and multinominal logit models) is accomplished as it is described in this
article for binary logit/probit models; there are simply more outcome categories for
which to test the interaction. For example, for a nominal or ordinal model with four
outcome categories, this would necessitate testing for interaction across all four
outcome categories.

For count models, analyses of the predicted probability of a specific count (e.g.,
probability that y = 0) can be tested as I outlined for binary logit/probit models.
For analyses of predictions of the rate (expected count), these can be tested similarly
to nonlinear effects in the linear regression model. The key is to remember that the
effects are nonlinear, and thus, the considerations outlined here apply equally.
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Conclusion

Getting interaction effects right is important to many sociological inquiries. Many
of the topics sociologists study require an analysis of an interaction effect. For
example, any theory that predicts that something will operate differently based on a
person’s gender, race, or class is proposing an interaction effect. There are of course
many other types of interaction effects of interest to sociologists beyond these few
examples; many social processes are moderated by other factors. Similarly, many
relationships of interest to sociologists are nonlinear in nature.

My reading of the substantive sociological literature suggests that although
each of these topics individually are well understood, most applied researchers
do not treat the combination of these two properly. That is, interaction effects
when the relationship of interest is nonlinear are rarely tested in line with current
methodological recommendations. I hope it is clear that my intent in this article is
not criticism of past work. Instead, my goal is to provide a synthesis of an evolving
methodological literature, presented in a way that is helpful for those interested in
using these methods in their own substantive work.

Notes

1 For this count, I focus on the specific case of logit- or probit-based models (e.g., binary
probit, ordinal logit, etc.). I conducted the search in November 2016 by searching the
ASR archives for “interaction” and “logit” or “probit” and examined all articles that
report the results of a test of an interaction from a logit- or probit-based model. These
articles vary greatly as to the centrality of the interaction effect to the substance of the
question at hand.

2 Only five provided the needed statistical test of the interaction effect in terms of the
predicted probabilities either explicitly in text or by implication in a visual representation
of the effects. Moreover, even putting aside the presence of the appropriate statistical test,
fewer than half reported any information about the predictions or predicted probabilities,
which are necessary to assess the substantive nature of the interaction effect (i.e., the
direction and magnitude of the effect on the predictions).

3 Throughout, the term ”effect” does not imply causality.

4 This can be easily accomplished in Stata by combining the “over(group)” option with the
“atmeans” option when calculating the marginal effects with margins.

5 From a statistical standpoint, this represents that nominal variable’s effect being weighted
to represent the observed proportions in the sample. Therefore, the difficulty is with the
interpretation, not with the statistical properties of the predictions themselves.

6 Stata’s margins command easily incorporates this with the “over(group)” option.

7 Tables of regression coefficients for all of the examples presented in this article are
included in the online supplement. I do not present the tables in text, as one of the key
points of this article is that the coefficient estimates do not necessarily provide useful or
accurate information about an interaction when the effects are nonlinear. However, I do
consider it good practice to include the regression results as supplementary materials, as
this helps readers understand what is included in the model. Appendices and online
supplements are particularly helpful for this.
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8 Stata handles the higher-order and constituent terms elegantly when using factor syntax.
For example, c.age##c.age##i.woman is automatically interpreted by Stata to indicate
each of the five coefficients listed in text.

9 Interestingly, the product term is necessary in this example for the effect to not be
interactive. Without the product term in the model, this second difference is significant
(i.e. a type I error).

10 The effect plotted is an instantaneous change (first derivative), which is calculated by
margins in Stata with the dydx( ) option.

11 Note that as this is a plot of a marginal effect; a confidence interval that does not overlap
zero indicates that the effect is statistically significant.

12 Norton, Wang, and Ai (2004) provide an alternative way of testing for the overall
interaction effect via cross derivatives.
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