
doi:10.14311/APP.2018.18.0015
Acta Polytechnica CTU Proceedings 18:15–19, 2018 © Czech Technical University in Prague, 2018

available online at http://ojs.cvut.cz/ojs/index.php/app

MULTI-CHANNEL CONTROL SYSTEM FOR IN-SITU
LABORATORY LOADING DEVICES

Václav Radaa,b,∗, Tomáš Fílaa,b, Petr Zlámala,b, Daniel Kytýřa,
Petr Koudelkab

a Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics, Prosecká 76, 190 00 Prague 9,
Czech Republic

b Czech Technical University in Prague, Faculty of Transportation Sciences, Konviktská 20, 110 00 Prague 1,
Czech Republic

∗ corresponding author: rada@itam.cas.cz

Abstract. In recent years, open-source applications have replaced proprietary software in many fields.
Especially open-source software tools based on Linux operating system have wide range of utilization.
In terms of CNC solutions, an open-source system LinuxCNC can be used. However, the LinuxCNC
control software and the graphical user interface (GUI) could be developed only on top of Hardware
Abstraction Layer. Nevertheless, the LinuxCNC community provided Python Interface, which allows
for controlling CNC machine using Python programming language, therefore whole control software
can be developed in Python. The paper focuses on a development of a multi-process control software
mainly for in-house developed loading devices operated at our institute. The software tool is based on
the LinuxCNC Python Interface and Qt framework, which gives the software an ability to be modular
and effectively adapted for various devices.

Keywords: CNC, controlling, LinuxCNC, Python Interface, Python, parallel programming, Qt, PyQt,
Qwt, PythonQwt, LabJack.

1. Introduction
Computer numerical control (CNC) is used for au-
tomation of a broad range of machines e. g. milling
machines, lathes, 3D printers etc. CNC allows for very
effective and precise manufacturing of parts with com-
plex shape and has many other advantageous applica-
tions in various industrial fields [1]. There are many
CNC software solutions, which vary in price, perfor-
mance or closed-source commercial (Siemens, FANUC,
LabVIEW) and open-source solutions (LinuxCNC, Ar-
duino - primarily for hobby operation). Our research
group tends to use open-source solutions, because our
needs are different from conventional industrial CNC
applications [2]. Therefore, some properties of the
software has to be operationally modified according
to our requirements. For this purpose, closed-source
commercial CNC software is not suitable for use with
our devices. In our applications, several types of ac-
tuators are used including stepper, servo-motors and
linear voice coil actuator. Purpose of the designs can
be divided into three groups:
• mechanical loading machines (e. g. in-situ loading
devices for X-ray computed tomography)

• positioning machines (e. g. optics and sample
positioning)

• sample preparation devices (e. g. automatic
grinders)

Each machine type is equipped with common parts
such as actuator, encoder, limit switches and with

application specific equipment such as load cell, ther-
mometer etc. The software package introduced in this
paper allows for controlling of both the common and
application specific equipment and user the interface
can be tailored for the specific application owing to
LinuxCNC [3] Python Interface [4].

2. Approach
In Python, parallel programming [5] is a complex
task, particularly due to Python global interpreter
lock (GIL). GIL prevents multiple threads to access
interpreter internals at the same time by serializing
the requests. Python threads share all types of vari-
ables natively which makes them easy to use, but these
threads cannot effectively bring any performance in-
crease by utilizing multiple CPU cores. In order to
force Python interpreter to perform multiple tasks
in parallel and utilize multiple CPU cores, separated
Python processes must be used, which allows for exe-
cuting tasks of each process simultaneously. To demon-
strate Python multithreading and multiprocessing per-
formance, a computational test of prime factorization
was performed on 10 million integers. The testing
scripts [6] was run on a 4-core, 8-thread (Intel Core
i7-4790K @4.4 GHz) machine. The computation time
results are shown in figure 1. The results confirm
that Python multiprocessing threads do not bring
any performance increase. In fact, multiprocessing
threads decrease the script performance substantially
due to overhead caused by thread switches made by

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201467261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.14311/APP.2018.18.0015
http://ojs.cvut.cz/ojs/index.php/app

V. Rada, T. Fíla, P. Zlámal et al. Acta Polytechnica CTU Proceedings

Figure 1. Comparison of multithreading and multi-
processing performance

Figure 2. Inter-process communication scheme

Python interpreter. On the other hand, multiprocess-
ing processes do increase the performance because of
parallelism.
However, sharing variables between Python pro-

cesses is in most cases very ineffective. Mostly, it is
more effective to implement some kind of inter-process
communication. Python supports multiprocessing li-
brary [7] which provides communication between pro-
cesses using pipes or queues. Python multiprocessing
pipes are the simplest approach of multiprocessing
communication in Python. The pipes connect only
two processes. One end of the pipe is used to send
data by one process, the other end is used to receive
the data by the other process. In order to provide
connection between more than two processes, multi-
processing queues can be used, but multiprocessing
pipes give more performance due to their simplicity.
The control software consists of a multi-process

core and graphical user interface (GUI) process con-
nected by multiprocessing pipes. The core includes
four processes, stat poller, data logger, data keeper
and command executor. Its interconnection is shown
in figure 2.
The crucial process in the control software core is

the stat poller. It is based on linuxcnc.stat() of
LinuxCNC Python Interface and extended by methods
providing communication with sensors, output log file
management etc. Stat poller periodically updates
machine status variables calling poll() method and
obtains values from sensors. Obtained data is sent
to data logger, data keeper and to GUI. Data logger
receives data from stat poller and saves it periodically
to output file. Data keeper keeps received data from
stat poller in an array and sends the data to GUI
on request to show the data in a graph. The control
software core contains also command executor process

which is based on linuxcnc.command() of LinuxCNC
Python Interface. It provides execution of dynamically
generated Python string commands received from GUI
or stat poller using exec statement.

3. User Interface
The main objective of the GUI is to not affect the con-
trol software core performance, so the user interface
runs in a process separate from the control software
core and is connected with it using multiprocessing
pipes. All the pipes leading from control software core
are connected to GUI core, which handles communi-
cation between control software core and GUI process
itself.
The user interface is aimed to be modular and

straightforwardly adaptable for various experimental
devices. Each experimental device uses its specific
LinuxCNC initializing file, which contains data needed
for control software startup. To take into considera-
tion differences of particular devices, the initialization
files were extended by specific entries. These entries
define active axes of a device, axes equipped with a
sensor (measurement axes), axes units etc. On con-
trol software startup, initializing file is loaded and
user interface is dynamically generated considering
specific entries in initializing file and individual ex-
perimental device needs. The user interface of the
control software is developed using Qt framework in
cooperation with Python binding PyQt [8]. The user
interface is designed as a set of plugins (QWidgets),
which contributes to straightforward adaptation to
new experimental devices and helps to keep the user
interface source code well structured.

Currently, various GUI plugins were created to cover
specific needs of laboratory devices. Emergency stop
button, power button etc. are elementary plugins
and are common to all devices. Other plugins al-
low for controlling by executing manual data input
(MDI) commands based on G-code (RS-274), manual
control of positioning axes of the device or sensors
management.

For proper sensors functionality initializing files of
all supported sensors were created. On control soft-
ware startup, these initializing files are loaded into
software internal database. The files consist of nu-
merical values important for appropriate operation
of the sensor specified by calibration protocol or user
requirement (measurement range, safe overload, am-
plification, sensitivity).

After the system startup user specifies appropriate
sensors which are mounted in particular experimen-
tal device using plugin for sensors choice. After the
sensors are chosen, GUI sends a command to control
software core to start obtaining data from sensors pe-
riodically (e. g. force, temperature etc.). The control
software core sends these data to GUI and the data
is shown in e. g. load cell plugin. All the data is
periodically sent to data logger and saved to output

16

vol. 18/2018 Multi-Channel Control System for In-situ Laboratory Loading Devices

Figure 3. Overall view of the control software user interface

file. Thus a plugin managing data logging was cre-
ated. It enables the user to export output file either
to a static config-given folder or using a save dialog
interface. The plugin also enables creating new empty
output file leaving the old data in temporary folder
to prevent accidental data loss.

The control software purpose is to reliably perform
mechanical experiments. There was a special plugin
created for controlling the displacement-driven and
force-driven experiments.

The control software provides a plugin allowing for
plotting the data during experiment in a live graph.
The live graph window is based on Qwt (Qt Widgets
for Technical Applications) library written in C++
and Python binding for this library named PythonQwt
. The Qwt library was chosen for its performance to
achieve higher live graph FPS. The plugin enables to
specify the amount of samples to plot. The refresh rate
of the live graph decreases with increasing amount
of samples. The optimal refresh rate is calculated
automatically based on the number of samples using
linear approximation.
Overall view of the control software user interface

is shown in figure 3.

4. Applications
The modular design of the control software gives it an
ability to control various laboratory devices separat-
edly or combine them in laboratory setups and control
multiple devices as a single complex closed-loop con-
trolled system [9]. Moreover it is possible to integrate
external procedures (e.g. auto-calibration [10]). Func-
tionality of the system is hereinafter demonstrated

on the setup consisting of uni-axial loading device in
arrangement for optical strain measurement where the
camera is placed on triaxial table. The experimental
procedure is in detail described in [11].
This is achieved by creating LinuxCNC custom

initializing file for each device and extending it with
[RAPO] section. The section name comes from the
control software name RaPoSoft (Rada Positioning
Software). The section contains specific additional
parameters. For instance, the additional parameters
of a triaxial motorized table are as follows:

[RAPO]
AXES_ACTIVE␣=␣X␣Y␣Z
AXES_UNITS␣=␣mm␣mm␣mm
AXES_MEASUREMENT␣=
LJ_AINS_ACTIVE␣=
LJ_AINS_GAIN␣=
LJ_AINS_INVERT␣=

The motorized table is equipped with 3 active axes
(X, Y, Z), all of the axes units are millimeters and it
has no measurement (loading) axis, i. e. all of the
axes are used only for positioning. Devices with mea-
surement (loading) axes included mostly use various
sensors (typically load cells). Parameters needed for
sensors operation come with "LJ" prefix, which refers
to the LabJack measurement cards (T7-PRO, LabJack
Corporation, USA) , used at our institute for establish-
ing connection with the sensors using labjack.ljm
library for Python.

Usage of these parameters is demonstrated on uni-
axial loading device.

17

V. Rada, T. Fíla, P. Zlámal et al. Acta Polytechnica CTU Proceedings

[RAPO]
AXES_ACTIVE␣=␣X
AXES_UNITS␣=␣um
AXES_MEASUREMENT␣=␣X
LJ_AINS_ACTIVE␣=␣0
LJ_AINS_GAIN␣=␣51
LJ_AINS_INVERT␣=␣1

The uniaxial loading device is equipped with a single
active axis, the units are micrometers and the active
axis is also measurement (loading) axis. The loading
axis is equipped with a sensor (load cell) connected
to LabJack analog input no. 0. The LabJack analog
input signal can be amplified using LJTick-InAmp
amplifier and the amplification coefficient of the analog
input is given by the gain parameter. The analog input
signal can be inverted to set the appropriate load cell
polarity while performing tension and compression
tests.

The motorized table and the uniaxial loading device
can be used together as well. The parameters in
initializing file look as follows:

[RAPO]
AXES_ACTIVE␣=␣X␣Y␣Z␣A
AXES_UNITS␣=␣mm␣mm␣mm␣um
AXES_MEASUREMENT␣=␣A
LJ_AINS_ACTIVE␣=␣0
LJ_AINS_GAIN␣=␣51
LJ_AINS_INVERT␣=␣1

The laboratory setup consists of 4 active axes in
total, three of them are positioning axes of the table
with millimeter units, one of them is measurement
(loading) axis with micrometer units. Parameters for
the LabJack analog inputs configuration are the same
as for the single uniaxial loading device usage.
The control software allows for controlling devices

equipped with multiple sensors. This can be demon-
strated on initializing file of a loading device developed
at our institute used for four-point bending tests. The
initializing file looks as follows:

[RAPO]
AXES_ACTIVE␣=␣X␣Y
AXES_UNITS␣=␣um␣um
AXES_MEASUREMENT␣=␣X␣Y
LJ_AINS_ACTIVE␣=␣0␣1
LJ_AINS_GAIN␣=␣51␣51
LJ_AINS_INVERT␣=␣1␣1

The device consists of 2 active axes, both of them are
loading (measurement) axes with micrometer units.
The device is equipped with 2 sensors (load cells)
connected to LabJack analog inputs no. 0 and no.
1. Both of the analog inputs are amplified using
coefficient 51 and their signal is inverted.

5. Conclusions
The presented control software allows for controlling
laboratory devices developed at our institute, which
are used for mechanical testing in different loading
scenarios including time-dependent processes under
controlled ambient conditions. It allows to control
laboratory devices actuated by stepper, servo-motors,
linear voice coil actuator etc. It provides support for
various sensors operating on analog signal proportional
to the applied excitation voltage (mV/V) e.g. load-
cells or thermometers. Moreover it is possible to
integrate external closed-loop driven procedures. The
modular design enables very effective adaptability
and extendability which gives the control software
capability to be used in a long-term way.

Acknowledgements
The research has been supported by the European Re-
gional Development Fund in frame of the project Kompe-
tenzzentrum MechanoBiologie (ATCZ133) in the Interreg
V-A Austria - Czech Republic programme and by Opera-
tional Programme Research, Development and Education
in project Engineering applications of microworld physics
(CZ.02.1.01/0.0/0.0/16_019/0000766).

References
[1] P. Smid. CNC Programming Handbook, Third Edition.
Industrial Press, Inc., 2007.

[2] S. Anderberg, T. Beno, L. Pejryd. Energy and cost
efficiency in CNC machining from a process planning
perspective. In S. G. (ed.), Sustainable Manufacturing,
pp. 393–398. Springer, 2012.

[3] The LinuxCNC Team. LinuxCNC Getting Started
Guide. Samurai Media Ltd., 2016.

[4] LinuxCNC Python Interface Documantation.
http://linuxcnc.org/docs/2.6/html/common/
python-interface.html. Accessed: 2018-06-15.

[5] G. Zaccone. Python Parallel Programming Cookbook.
Packt Publishing Ltd., 2015.

[6] E. Bendersky. Python - parallelizing cpu-bound tasks
with multiprocessing.
https://eli.thegreenplace.net/2012/01/16/
python-parallelizing-cpu-bound-tasks-with-multiprocessing.
Accessed: 2018-07-03.

[7] B. Jones, D. Beazley. Python Cookbook - Recipes for
Mastering Python 3. O’Reilly Media, 2013.

[8] M. Summerfield. Rapid GUI Programming with
Python and Qt: The Definitive Guide to PyQt
Programming. Prentice Hall Press, 1st edn., 2007.

[9] D. Kytyr, P. Zlamal, P. Koudelka, et al. Deformation
analysis of gellan-gum based bone scaffold using
on-the-fly tomography. Materials and Design
134:400–417, 2017. doi:10.1016/j.matdes.2017.08.036.

[10] M. Vopalensky, D. Vavrik, I. Kumpova. Optimization
of the X-ray tube voltage with respect to the dynamical
resolution in radiography and tomography. NDTnet
Journal 2018-02, 2018.

18

http://linuxcnc.org/docs/2.6/html/common/python-interface.html
http://linuxcnc.org/docs/2.6/html/common/python-interface.html
https://eli.thegreenplace.net/2012/01/16/python-parallelizing-cpu-bound-tasks-with-multiprocessing
https://eli.thegreenplace.net/2012/01/16/python-parallelizing-cpu-bound-tasks-with-multiprocessing
http://dx.doi.org/10.1016/j.matdes.2017.08.036

vol. 18/2018 Multi-Channel Control System for In-situ Laboratory Loading Devices

[11] T. Doktor, I. Kumpova, M. Sniechowski, et al.
Influence of printing and loading direction on
mechanical response in 3d printed models of human
trabecular bone. Acta Polytechnica CTU Proceedings
18(10):24–27 2018. doi:10.14311/APP.2018.18.0024.

19

http://dx.doi.org/10.14311/APP.2018.18.0024

	Acta Polytechnica CTU Proceedings 18:15–19, 2018
	1 Introduction
	2 Approach
	3 User Interface
	4 Applications
	5 Conclusions
	Acknowledgements
	References

