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Abstract

The tree-based TVCM algorithm and its implementation in the R package vcrpart
are introduced for generalized linear models. The purpose of TVCM is to learn whether
and how the coefficients of a regression model vary by moderating variables. A sepa-
rate partition is built for each potentially varying coefficient, allowing the user to specify
coefficient-specific sets of potential moderators, and allowing the algorithm to select mod-
erators individually by coefficient. In addition to describing the algorithm, the TVCM is
evaluated using a benchmark comparison and a simulation study and the R commands
are demonstrated by means of empirical applications.

Keywords: regression trees, varying coefficient models, generalized linear models, statistical
learning, R package, CART.

1. Introduction
When carrying out a regression analysis, researchers often wish to know whether and how
moderating variables affect the coefficients of predictor variables. For example, medical scien-
tists may be interested in how age or past illnesses moderate the effect of a clinical trial (e.g.,
Yusuf, Wittes, Probstfield, and Tyroler 1991), and social scientists may examine the gender
wage gap separately for different labor sectors and countries (e.g., Arulampalam, Booth, and
Bryan 2007).
Varying coefficient models (e.g., Hastie and Tibshirani 1993) provide a semiparametric ap-
proach for such moderated relations. Consider a response variable Y , where g(E(Y |·)) = η,
with g a known link function and η a predictor function of form:

Mvc : η = X1β1(Z1) + . . .+XPβP (ZP ) , (1)

where the variables Xp, p = 1, . . . , P , are the P predictors with each having a varying coeffi-
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cient βp(Zp). The vector Zp = (Zp1, . . . , ZpLp)> associated to coefficient βp stands for the Lp
potential moderator variables specified for that coefficient. ModelMvc defines each coefficient
βp as a multivariate, nonparameterized function βp(Zp) of its associated set of moderators
Zp. For example, if Xp is an indicator variable for some treatment and Zp reflects the age,
the term βp(Zp) states that the treatment effect changes as a function of age. In principle,
the moderator vectors Z1, . . . ,ZP , can have common moderators and can include some of the
predictors X1, . . . , XP . ModelMvc also covers two special cases. First, defining Zp as a con-
stant, for example by setting Zp ≡ 1, yields a “non-varying” coefficient for the predictor Xp.
Second, for a constant predictor Xp ≡ 1, the coefficient βp(Zp) becomes a “varying intercept”,
and its moderation provides a nonparametric estimate of the direct effects of the moderators
Zp on E(Y |·).
In varying coefficient regression, exogenous variables can act as predictor, moderator or both.
The distinction between predictor and moderator arises naturally from the context. Predictors
are the variables for which we are primarily interested to study the impact – coefficient – on
the response variable. Moderators are variables that we think can moderate the impact of
predictors, i.e., variables with which the coefficients of predictors may vary. Such moderators
can serve to distinguish values of coefficients by groups of cases, to model continuous evolution
of coefficients, or simply to improve the fit by allowing for interactions and non-linearities.
Different examples illustrate the use of moderators in Sections 4 and 5. See for example Hayes
(2013) for a more in-depth discussion of moderation.
Various approaches have been considered to fit varying coefficient models, in particular with
spline or kernel regression methods. See Fan and Zhang (2008) for an overview and the
R (R Core Team 2017) packages mgcv (Wood 2006), svcm (Heim 2009), mboost (Hothorn,
Bühlmann, Kneib, Schmid, and Hofner 2017a), and np (Hayfield and Racine 2008) for software
implementations. The tree-based approach considered here is a combination of linear models
and recursive partitioning (e.g., Quinlan 1992; Alexander and Grimshaw 1996; Loh 2002),
where Zeileis, Hothorn, and Hornik (2008) and Wang and Hastie (2014) refer explicitly to the
use of recursive partitioning to fit models of the form Mvc (1). Thus, it approximates the
unknown varying coefficients with piecewise constant functions using recursive partitioning.
The tree-based approach has certain drawbacks, particularly because it is a heuristic, and
can be unstable for small changes in the data. However, it does have several advantages for
statistical learning. Among others, the approach can handle many moderators, interactions
between moderators, and nonlinearities, it treats moderators of different scales uniformly, and
yields easily readable outcomes in the form of decision trees.
Both Zeileis et al. (2008) and Wang and Hastie (2014) propose approximatingMvc as follows:
Let X = (X1, . . . , XP )>, Z = {Z1 ∪ . . . ∪ ZP }, and {B1, . . . ,BM} be a partition of the value
space of the Z into M strata. Then, their piecewise constant approximation has the form

M̂tree : η =
M∑
m=1

1 (Z ∈ Bm) X>βm . (2)

Model M̂tree (2) is linear and, consequently, standard estimation methods apply. The non-
parametric task is to find a partition such that the varying coefficients β1(Z), . . . , βP (Z) vary
between the strata {B1, . . . ,BM}, but are relatively constant within the strata. Since global
partitioning is computationally too challenging, forward-stepwise algorithms are used that,
in each iteration, split one of the current strata into two. The resulting partition can be
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visualized as a decision tree and, therefore, the strata Bm are referred to as terminal nodes,
or simply as nodes.
Here, we introduce the tree-based varying coefficient model (TVCM) algorithm of the R pack-
age vcrpart (Bürgin 2017) available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=vcrpart. The TVCM algorithm allows us to ap-
proximateMvc in a “coefficient-wise” manner. First, assuming that K out of the P predictors
have varying-coefficients, we let X0 be the P − K predictors with non-varying coefficients
and X1, . . . , XK denote the remaining K predictors with corresponding moderator vectors
Z1, . . . ,ZK . Further, we denote the value space of Zk as Zk = Zk1× . . .×ZkLk

and denote a
partition of Zk into Mk nodes as {Bk1, . . . ,BkMk

}. Then, the proposed approximation is:

M̂tvcm : η = X>0 β0 +
K∑
k=1

Mk∑
m=1

1 (Zk ∈ Bkm)Xkβkm . (3)

Compared with M̂tree, the TVCM approximation M̂tvcm assigns each varying coefficient
a partition and includes non-varying coefficients. This allows us to specify parametrically
known relations (the first term) and coefficient-specific sets of moderators (the second term).
In addition, M̂tvcm allows us to select moderators individually by varying coefficient. Fur-
thermore, empirical evidence suggests (Section 4.1) that M̂tvcm can build more accurate and
more parsimonious fits than M̂tree is able to do. A technical difference between the two
approximations M̂tree and M̂tvcm is that the coefficients of M̂tree are commonly obtained by
fitting a local model on each of the M strata, while the approximation M̂tvcm must be fitted
as a closed model on all observations.
The remainder of this paper is organized as follows. In Section 2, we describe the basic
algorithm that we apply to generalized linear models. In Section 3, we provide more detail
and extend the basic algorithm. The algorithm is evaluated in Section 4 by comparing its
performance with competing algorithms on a benchmark data set and its ability to retrieve
an underlying generating model through a simulation study. Then, in Section 5, we present
two applications. Finally, the concluding Section 6 addresses issues for further development.

2. The TVCM algorithm
Similar to classification and regression trees (CART, Breiman, Friedman, Olshen, and Stone
1984), TVCM involves two stages: The first stage (Section 2.2) buildsK overly fine partitions;
the second stage (Section 2.3) selects the final partitions by pruning.
To provide a consistent formulation, we restrict our consideration of TVCM to generalized lin-
ear models (GLMs). Therefore, Section 2.1 summarizes GLMs and introduces an illustrative
example. Extensions to other model families are discussed in Section 3.3.

2.1. Generalized linear models

GLMs cover regression models for various types of responses, such as continuous data (the
Gaussian model), count data (the Poisson model), and binary data (the logistic model).
Denote the ith response of the training data D as yi, with observations i = 1, . . . , N , and the

https://CRAN.R-project.org/package=vcrpart
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ith P×1 predictor vector as xi. Simple GLMs have densities of the form

f(yi|θi, φ) = exp
{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (4)

where θi is the natural parameter of the family, φ is the dispersion parameter, and b(·)
and c(·) are family-specific functions. For example, the Poisson distribution has density
f(yi) = λyi

i e
−λi/k! and it can be derived that θi = log λi, b(θi) = eθi = λi, φ = 1, and

c(yi, φ) = log yi. The predictor vector xi is incorporated by defining the linear predictor

Mglm : ηi = x>i β , (5)

where β is the vector of unknown coefficients. This linear predictor ηi is linked with the
conditional mean µi = E(yi|xi) via g(µi) = ηi = x>i β. The choice of g(·) depends on the
specific model. A mathematically motivated choice is to specify g(·), such that θi = ηi, usually
called canonical link. For example, for the Poisson model, the canonical link is log(µi) = ηi.
Further details on GLMs can be found, for instance, in McCullagh and Nelder (1989).
GLMs are generally fitted using maximum likelihood estimation (MLE), in other words, by
maximizing the total log-likelihood of the training data w.r.t. β and φ:

`(β, φ) =
N∑
i=1

wi log f(yi|β, φ) =
N∑
i=1

wi

(
yiθi − b(θi)

φ
+ c(yi, φ)

)
, (6)

where wi is the weight for observation i. The coefficients β enter into Equation 6 via θi =
d(µi) = d(g−1(x>i β)), with d(·) a known function. To fit GLMs, we use the glm function of
the stats package (see Chambers and Hastie 1992).

Gender gap in university admissions. To illustrate R syntax and explanations, we con-
sider the admission data of the UC Berkeley from 1973. The data consist of 4, 526 observations
on the response variable Admit (0 = rejected, 1 = admitted) and the covariates Female (0 =
male, 1 = female) and Dept (departments A to F ). The training data UCBA are prepared by

R> UCBA <- as.data.frame(UCBAdmissions)
R> UCBA$Admit <- 1 * (UCBA$Admit == "Admitted")
R> UCBA$Female <- 1 * (UCBA$Gender == "Female")
R> head(UCBA, 3)

Admit Gender Dept Freq Female
1 1 Male A 512 0
2 0 Male A 313 0
3 1 Female A 89 1

Each row of the data UCBA represents one combination of values in Admit, Female, and Dept.
The column Freq gives the frequencies of the combinations.
The UCB admission data are a popular application to illustrate Simpson’s paradox (see Bickel,
Hammel, and O’Connell 1975). The primary interest is the gender gap in the chance to be
admitted. Let us first study this gap using the logistic regression model:
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R> glmS.UCBA <- glm(formula = Admit ~ Female, data = UCBA,
+ family = binomial(), weights = UCBA$Freq)

The estimated coefficients,

R> coef(summary(glmS.UCBA))[, -4]

Estimate Std. Error z value
(Intercept) -0.22 0.0388 -5.68
Female -0.61 0.0639 -9.55

suggest that being female decreases the logit to be admitted significantly (|z value|> 2). Now,
let us extend the basic model glmS.UCBA with the Dept covariate by defining department-
specific intercepts and department-specific gender gaps (without a global intercept):

R> glmL.UCBA <- glm(formula = Admit ~ -1 + Dept + Dept:Female,
+ data = UCBA, family = binomial(), weights = UCBA$Freq)
R> coef(summary(glmL.UCBA))[, -4]

Estimate Std. Error z value
DeptA 0.492 0.0717 6.859
DeptB 0.534 0.0875 6.097
DeptC -0.536 0.1149 -4.659
DeptD -0.704 0.1041 -6.764
DeptE -0.957 0.1616 -5.922
DeptF -2.770 0.2198 -12.602
DeptA:Female 1.052 0.2627 4.005
DeptB:Female 0.220 0.4376 0.503
DeptC:Female -0.125 0.1439 -0.868
DeptD:Female 0.082 0.1502 0.546
DeptE:Female -0.200 0.2002 -1.000
DeptF:Female 0.189 0.3052 0.619

In this second fit, the disadvantage for females disappears, and, in the case of department A,
the gender gap is significantly positive (DeptA:Female: Estimate = 1.05, |z value|> 2). The
apparent disadvantage for females in glmS.UCBA arises, as the reader may know, from the
tendency of females to apply to departments where the chances to be admitted are low.
The model glmL.UCBA, which uncovers the problem, can be seen as a full parametric varying
coefficient model that defines the intercept and the gender gap as functions of the department.
We will return to this example to investigate whether and how TVCM solves this problem.

2.2. Partitioning

The first stage to fit the approximate varying coefficient model M̂tvcm (3) involves building
a partition for each of the value spaces Zk, k = 1, . . . ,K corresponding to the K varying
coefficients. The resulting K partitions should be overly fine so that the “optimal” partitions
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Algorithm 1: The TVCM partitioning algorithm for generalized linear models.

Parameters: N0 minimum node size, e.g., N0 = 30
Dmin minimum −2 · log-likelihood reduction, e.g., Dmin = 2

Initialize Bk1 ← Zk1× . . .×ZkLk
and Mk ← 1 for all partitions k = 1, . . . ,K.

repeat
1 Compute ˆ̀M̂ = max

{β,φ}
`M̂(β, φ) of the current model

M̂ : ηi = x>i0β0 +
K∑
k=1

Mk∑
m=1

1 (zik ∈ Bkm)xikβkm (7)

using all observations i = 1, . . . , N .
for partitions k = 1 to K do

for nodes m = 1 to Mk and moderator variables l = 1 to Lk do
foreach unique candidate split Mkmlj, in {zkli : zik ∈ Bkm} that divides Bkm into
two nodes {Bkmlj1,Bkmlj2} and satisfies mins

∑
iwi1(zik ∈ Bkmljs) ≥ N0 do

2 Using only the observations {i : zik ∈ Bkm} of the node Bkm, compute
ˆ̀M̂kmlj = max

{β1,β2,φ}
`M̂kmlj (β1, β2, φ) of the approximate search model

M̂kmlj : η(s)
i = η̂i +

2∑
s=1

1 (zik ∈ Bkmljs)xikβs , (8)

and compute the training error reduction Dkmlj = −2ˆ̀M̂ + 2ˆ̀M̂kmlj

{i:zik∈Bkm},

where ˆ̀M̂
{i:zik∈Bkm} is the subtotal of ˆ̀M̂ for the observations of Bkm.

3 Split node Bk′m′ by Mk′m′l′j′ where Dk′m′l′j′ = maxDkmlj and increase Mk′ ←Mk′ + 1.
until no candidate split satisfies N0 or Dk′m′l′j′ < Dmin

can be found in the subsequent pruning stage. Algorithm 1 provides a formal summary of
this partitioning algorithm.
To partition the value spaces Z1, . . . ,ZK , Algorithm 1 uses a breadth-first search (e.g., Russell
and Norvig 2003) that in each iteration fits the current model and splits one of the current
terminal nodes into two. The split is selected by employing an exhaustive search over a set
of candidate splits. These candidate splits are denoted by Mkmlj and refer in each case to a
partition k; a node m; a moderator variable l; and the cutpoint j in the selected moderator.
Algorithm 1 fits for each candidate split a corresponding (approximate) search-model M̂kmlj

(8) and selects the split that reduces the total −2 · log-likelihood training error the most.1
The used search-model is approximate in that it keeps, in Step 2, all parameters but those of
the two newly created nodes as fixed, and it uses only the observations of the node to split.
The reason for that is given below under “Computational details” on page 9. The algorithm
iterates until (i) no candidate split provides daughter nodes with more than N0 observations
or (ii) the best split increases the −2 · log-likelihood training error by less than Dmin.

1In other words, we maximize the deviance from the current model.
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When searching for a split, there can be differences in the number of candidate splits between
partitions, nodes, and potential moderators. The −2 · log-likelihood reduction statistic is
not “standardized” to such differences and, therefore, Algorithm 1 tends to select partitions,
nodes, and variables with many candidate splits (cf., Hothorn, Hornik, and Zeileis 2006). This
selection bias negatively affects interpretability and accuracy of the resulting trees. Reducing
this bias is desirable and, therefore, a potential focus for further investigations.

The tvcglm function. The tvcglm function implements Algorithm 1. For illustration, we
fit a logistic TVCM to the UCB admission data. The following command specifies that both
the intercept and the gender gap vary across departments.

R> library("vcrpart")
R> vcmL.UCBA <- tvcglm(formula = Admit ~ -1 + vc(Dept) + vc(Dept,
+ by = Female), data = UCBA, family = binomial(), weights = UCBA$Freq,
+ control = tvcglm_control(minsize = 30, mindev = 0.0, cv = FALSE))

tvcglm treats the data, family and weights arguments in the same way as glm. Varying
coefficients are specified with the vc operator and a separate partition is fitted for each vc
term. The by argument of the vc operator specifies the predictor, while potential moderators
are specified before the by argument as a comma separated list of variables. When no by
argument is given, the vc term defines a varying intercept. Non-vc terms are treated as
linear terms, as in glm. In the example above, vc(Dept) specifies a intercept varying with the
variable Dept, and vc(Dept, by = Female) a varying coefficient for Female that varies with
Dept. The predictors passed as by argument must be numeric in the current implementation.
This is why we have defined on page 4 the Female variable for the UCBA data as UCBA$Female
<- 1 * (UCBA$Gender == "Female").
The control parameters are set by the tvcglm_control function. Above, minsize = 30
specifies N0 = 30 and mindev = 0 specifies Dmin = 0. We set Dmin = 0 to obtain the largest
possible tree and cv = FALSE to disable cross-validation (Section 2.3). Note that practice-
oriented examples follow in Sections 4 and 5, and details on arguments and dummy examples
can be found in the help pages of the functions tvcglm, vc and tvcglm_control.
The two fitted partitions are shown in Figure 1, along with the nodewise coefficients. These
plots were produced by the following commands:

R> plot(vcmL.UCBA, type = "coef", part = "A")
R> plot(vcmL.UCBA, type = "coef", part = "B")

As an option2, we could display the confidence intervals extracted from the underlying ‘glm’
object. However, these intervals would not account for the model selection procedure and
we do not show them here. Both partitions separate the departments fully and, therefore,
the values of the coefficients of vcmL.UCBA shown in Figure 1 are exactly those obtained for
the model glmL.UCBA on page 5. The partitioning process can be backtracked using the
splitpath function. The following command summarizes the first iteration.

R> splitpath(vcmL.UCBA, steps = 1, details = TRUE)
2See the conf.int argument of the panel_coef function.



8 Coefficient-Wise Tree-Based Varying Coefficient Regression with vcrpart
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Figure 1: vcmL.UCBA: Fitted tree structures and nodewise coefficients. Left panel: The varying
intercept. Right panel: The varying gender gap.

Step: 1

Selected Split:
Partition: A
Node: 1
Variable: Dept
Cutpoint: {F}, {A, B, C, D, E}

Loss Reduction Statistics:
Partition: A Node: 1 Variable: Dept

A B C D E F dev npar
1 0 0 0 0 0 1 444 1
2 0 0 0 0 1 1 409 1
3 0 0 0 1 1 1 384 1
4 0 0 1 1 1 1 416 1
5 0 1 1 1 1 1 226 1

Partition: B Node: 1 Variable: Dept
A B C D E F dev npar

1 0 0 0 0 0 1 130.6 1
2 0 0 0 0 1 1 124.7 1
3 0 0 1 0 1 1 76.8 1
4 0 0 1 1 1 1 99.3 1
5 0 1 1 1 1 1 121.0 1
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Based on the training error reduction statistic Dkmlj (column dev), the algorithm selects
the split {F} vs. {A,B,C,D,E} for the varying intercept (partition A). The evaluated splits,
listed in the lower part, show that only a subset of possible splits was evaluated. For example,
the split {A,F} vs. {B,C,D} was excluded from the search. This relates to the implemented
acceleration technique that orders the six categories A to F and treats the Dept as ordinal
(details follow).

Computational details

A breadth-first search can be computationally burdensome because it cycles in each itera-
tion through all current nodes. Even so, we do not consider a depth-first search, which is
more common for recursive partitioning and which evaluates only one node in each iteration,
because it seems unclear whether the search sequence has consequences on the resulting par-
titions. To speed up the search, we use the approximate search model M̂kmlj (8) to compute
the training error reduction of split Mkmlj , instead of using the following accurate search
model

M̂∗kmlj : η(s)
i = x>i0γ0 +

∑
(k′,m′) 6=(k,m)

1 (zk′i ∈ Bk′m′)xk′iγk′m′ +

+
∑
s=1,2

1 (zik ∈ Bkmljs)xikγs . (9)

The accurate search model, M̂∗kmlj (9), requires using all observations i = 1, . . . , N and re-
estimating all coefficients. By contrast, the approximate search model, M̂kmlj , uses only the
observations {i : zik ∈ Bkm} of the node to split and incorporates the fitted values η̂i of the
current model M̂ (7) as offsets. This reduces the optimization per considered split to three
parameters, namely the coefficients β1 and β2 of the newly created nodes, and the dispersion
parameter φ, because it cannot be fixed in glm. More specifically, the approximate model
M̂kmlj estimates the coefficients γs, s = 1, 2 of M̂∗kmlj as γ̂s = β̂km + β̂s, with β̂km retrieved
from the current model M̂. Further, in M̂kmlj all the remaining coefficients of M̂∗kmlj , i.e., γ0
and γk′m′ for (m′, k′) 6= (m, k), are kept fixed at the values estimated in Part 1 given in (7).
In our experience, the approximation is reliable, although it does not necessarily result in the
same partitions that the accurate search would produce.3 In particular, the approximation
will tend to neglect splits that improve the fit through interplays with the temporarily fixed
coefficients.
Eliminating split candidates and cleverly choosing the stopping parameters are further efficient
acceleration techniques. We describe these techniques in more detail here.

Splits for ordered scales. In Algorithm 1, the splits Mkmlj for continuous and ordinal
moderators are defined as rules of the form {Is zkli ≤ ζkmlj?}. The candidate cutpoints,
{ζkml1, . . .}, are the unique values in set {zkli : zik ∈ Bkm}. Note that splits at boundaries
may be omitted to respect the minimum node size criterion. To reduce the computational
burden, we allow the set of candidate cutpoints to shrink to a prespecified cardinality NS ,
which is NS = 9 by default.4 Specifically, the unique values of the (non-interpolated) quantiles

3The approximation can be disabled by setting fast = FALSE in tvglm_control().
4See the maxnumsplit and maxordsplit arguments in tvcglm_control.
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of {zkli : zik ∈ Bkm} are extracted at the NS equidistant probabilities (1, . . . , NS)/(NS + 1).
In cases of tied data, where this procedure potentially yields fewer than NS splits, the number
of equidistant probabilities is increased until the set of candidate splits has the desired size.

Splits for nominal scales. The splits Mkmlj for nominal moderators are rules of the form
{Is zkli ∈ ζkmlj?}, where ζkmlj are merged categories from the set {zkli : zik ∈ Bkm}. The
number of unique candidate merges for C categories is 2C−1, which increases exponentially
with C. An approximation that restricts the number of splits to be linearly increasing with C
determines a category order and then treats the moderator as ordinal. For CART, Breiman
et al. (1984) propose to deduce such an order from the category-wise averages in the current
node. Following this idea, we propose ordering, for each node, the categories by the category-
wise estimated coefficients. This reduces the computational expenses to fitting the model that
provides the category-wise coefficients, and fitting the at most C − 1 models that evaluate
the ordinal splits. By default, the approximation is applied for C ≥ 5.5

On page 7, we referred to the category ordering technique when demonstrating the splitpath
function for the first iteration of partitioning. For instance, for partition B (the gender gap),
we used the order F < E < C < D < B < A. The rank of a category corresponds to the
first row where a 1 appears in the corresponding column. The category-wise coefficients can
be estimated by using the model:

R> glmCW.UCBA <- glm(formula = Admit ~ 1 + Dept:Female, family = binomial(),
+ data = UCBA, weights = UCBA$Freq)

The model glmCW.UCBA substitutes the effect of Female of the current model, which is just
the model glmS.UCBA (page 5), by an interaction term with Dept and Female. The category
ordering is then obtained by ordering the estimated department-specific gender effects.

R> sort(coef(glmCW.UCBA)[-1])

DeptF:Female DeptE:Female DeptC:Female DeptD:Female DeptB:Female
-2.361 -0.937 -0.440 -0.402 0.974

DeptA:Female
1.764

Internally, our implementation uses an approximation technique to estimate category-wise
coefficients, which is analogous to the technique used for approximating the search model
M̂∗kmlj (9).

Stopping criteria. Algorithm 1 applies two stopping criteria. First, to have sufficient
observations to estimate the coefficients nodewise, we require a minimum node size N0. Here,
N0 = 30 seems a reasonable rule of thumb value, but can be modified according to the model.
Second, to reduce the computational burden, we stop partitioning as soon as the maximal
training error reduction falls below Dmin. Large values of Dmin yield rougher partitions and
require less computation, and vice versa. Therefore, it is crucial to choose Dmin to be small

5See the maxnomsplit argument in tvcglm_control. After the transformation to the ordinal scale, the
argument maxordsplit controls the effective number of evaluated splits.
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Algorithm 2: The TVCM weakest-link pruning algorithm for generalized linear models.
Input: A fitted model M̂ from Algorithm 1
Parameters: λ: the cost-complexity penalty, λ ≥ 0
repeat

forall inner nodes B∗kj of M̂, k = 1, . . . ,K and j = 1, . . . ,Mk − 1 do
Fit the model M̂kj that collapses the inner node B∗kj of M̂.

Compute the per-split increase of the training error D̄kj = −2ˆ̀M̂kj +2ˆ̀M̂∑
k
MM̂

k
−
∑

k
M

M̂kj
k

.

if any D̄kj ≤ λ then
Set M̂ ← M̂k′j′ with {k′, j′} = arg mink,j D̄kj

until all D̄kj > λ

enough so that the optimal partitions are not overlooked. The default Dmin = 2 was selected
based on the forward-stepwise AIC algorithm (e.g., Venables and Ripley 2002), which also
requires the total −2 · log-likelihood training error to decrease by at least 2 to continue. In
our experience, Dmin = 2 is small enough to capture the optimal partition, yet reduces the
computational burden considerably. In Section 4.1, we evaluate the impact of N0 and Dmin
on a real data application.
The tvcglm_control function also allows us to control classic tree growth parameters. These
parameters, which can include the maximum number of terminal nodes and the maximal depth
of the trees, can restrict the complexity of the final model.

2.3. Pruning

The pruning stage selects the final model by collapsing the inner nodes of the overly fine
partitions produced by Algorithm 1. In other words, it cuts branches stemming from the same
node. Here, we broadly follow the minimal cost-complexity pruning approach of Breiman et al.
(1984, Chapter 8). Let M̂ be a fitted model of form Equation 3, where the nodes Bkm result
from Algorithm 1. Define the cost-complexity error criterion by

errλ(M̂) := −2ˆ̀M̂ + λ
K∑
k=1

(MM̂k − 1), λ ≥ 0 . (10)

In other words, we define the criterion as the total −2 · log-likelihood training error plus a
tuning constant λ multiplied by the total number of splits. Here, λ trades off the in-sample
performance and the complexity (i.e., the number of splits) of the model. When minimizing
errλ(M̂), small choices of λ yield models with many splits, and vice versa. In general, λ is
unknown and must be chosen adaptively from the data.

Pruning algorithm. Pruning hierarchically collapses inner nodes of the initially overly
fine partition to find the model that minimizes errλ(M̂), given λ. A global search that
collapses multiple inner nodes simultaneously would be computationally too expensive and,
therefore, we adopt the weakest link pruning algorithm of Breiman et al. (1984). Algorithm 2
summarizes the implemented algorithm.
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Each iteration in Algorithm 2 collapses the inner node that yields the smallest per-split
increase in the total −2 · log-likelihood training error. The procedure starts with the model
from the partitioning stage and continues until the smallest per-split increase is larger than
λ (i.e., all remaining collapses would increase errλ(M̂)). The prune function implements
Algorithm 2. For example, the fit for vcmL.UCBA on page 7 is pruned with λ = 6, as follows.

R> vcm.UCBA <- prune(vcmL.UCBA, cp = 6)

The pruning algorithm can be backtracked with the prunepath function.

R> prunepath(vcm.UCBA, steps = 1)

Step: 1
part node loss npar nsplit dev

<none> 5167 12 10
1 A 1 5682 7 5 102.95129
2 A 3 5364 8 6 49.19850
3 A 4 5172 10 8 2.31499
4 A 5 5168 11 9 1.17896
5 A 9 5167 11 9 0.13536
6 B 1 5187 7 5 4.04086
7 B 3 5185 8 6 4.39381
8 B 4 5169 9 7 0.56149
9 B 6 5167 10 8 0.08252
10 B 8 5167 11 9 0.00341

The above R output provides various information about the first iteration of Algorithm 2,
applied on the fit for vcmL.UCBA. The columns part and node identify the collapsed inner
node, and dev shows the per-split increase of the training error. In the first iteration, the
inner node 8 of partition B (the gender gap) yields the smallest D̄kj and is therefore collapsed.

Choosing λ. The per-split penalty λ is generally unknown and, hence, must be chosen
adaptively from the data. To do so, the validation-set or cross-validation methods are suitable
(e.g., Breiman et al. 1984) and computationally fast. The validation-set method works as
follows. First, divide the training data D randomly into a subtraining set D1 and a validation
set D2, e.g., with a ratio of 3 : 1. Second, replicate the fit with Algorithm 1 based on
D1. Third, repeatedly prune the new fit with increasing λ values and compute the validation
error each time an inner node is collapsed. This yields two sequences, {λ1 = 0, . . . , λS , λS+1 =
∞} and {errD2

1 , . . . , errD2
S }, where errD2

s = −2∑
i∈D2

wi

∑
i∈D2 wi log fM̂(yi|xi, zi) is the average6

prediction error on D2 of the new model pruned by λ values in interval [λs, λs+1). We retain
the estimate for λ,

λ̂ = λs′ + λs′+1
2 with s′ = arg min

s∈{1,...,S}
errD2

s . (11)

6We use the average to avoid having the validation error depend on the number of observations in D2.
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Figure 2: cv.UCBA: Validation errors as function of λ from 5-fold cross-validating fits for
vcmL.UCBA. Black solid line: The cross-validated error. Gray solid lines: The validation
errors on individual validation sets. Vertical dotted line: The estimated value for λ.

This is the center of the interval [λs′ , λs′+1) that minimizes the validation error errD2 . The
estimation potentially yields λ̂ = ∞, in which case no split is necessary. Cross-validation
methods repeat the validation-set method to include the entire data. In particular, cross-
validation combines the obtained sequences {λ1, . . . , λS+1} to a finer grid and averages the
errors errD2

s accordingly.
The cvloss function implements the validation-set and the cross-validation methods to esti-
mate λ̂. By default, 5-fold cross-validation is used. To estimate λ for the UCBA data, we use
the commands:

R> cv.UCBA <- cvloss(vcmL.UCBA, folds = folds_control(weights = "freq",
+ seed = 13))

The argument weights = "freq" indicates that the weights of vcmL.UCBA represent counts
rather than unit-specific weights (default). The seed argument is used to control the random
generator when creating the cross-validation folds, which allows the results to be replicated.
If available, the cvloss function processes the validation sets parallelized.
The black solid line in Figure 2 shows the per-split penalty λ against the cross-validated
error of fits for vcmL.UCBA, which is minimal with errcv

28 = 1.148 at λ̂ = 5.1. The original fit
for vcm.UCBA can be pruned by λ̂ = 5.1 with the command:

R> vcm.UCBA <- prune(vcmL.UCBA, cp = cv.UCBA$cp.hat)

The varying coefficients of the model obtained from pruning with λ̂ = 5.1 are shown in
Figure 3. Both the varying intercept and the varying gender gap are split into three strata.
The final model collapses several departments. For example, in the right panel, we see that
the departments B, C, D, and F share the same gender gap. By contrast, the large negative
intercept in department F and the large gender gap in department A remain detached.
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Figure 3: vcm.UCBA: Pruned tree structures and nodewise coefficient plots. Left panel: The
varying intercept. Right panel: The varying gender gap.

Alternatives to λ̂ (as determined in Equation 11) could be considered. For example, Breiman
et al. (1984, Chapter 3) propose the 1-SE rule to decrease the variance of λ̂. We prefer λ̂ for
its simple form, but with cvloss and prune, we provide the tools to use these alternative
rules.

3. Details and extensions
In Section 2, we explained the basic parts of the TVCM algorithm. This section describes the
algorithm in more detail and explains how TVCM can be extended to other model classes.

3.1. Mean-centering the predictors of the search model

A useful technique to improve the split selection with the approximate search model M̂kmlj

(8) is to mean-center its predictors. That is, we substitute the values xik in Equation 8 with
the values x̃ik = xik − N−1∑N

i=1 xik. The advantage of this is most visible in the case of a
pure interaction. Consider Figure 4. In both panels the slope of a predictor x varies between
two groups, A and B. In the left panel, the TVCM partitioning algorithm tries to uncover
this moderation when x is not centered and the current model specifies a global intercept
and a global slope for x. The search model uses the fitted values of the current model (solid
line) as offsets and incorporates separate slopes for each group. This restricts the slopes to
pass through the origin, and hence the fit (dotted and dashed lines) do not really identify the
moderation pattern. The right panel shows that, in this scenario, the moderation pattern is
perfectly identified by using the same search procedure, but when x is mean-centered.
The centering trick is applied by default, but can be disabled with the control argument
center. Note that the output model is not affected by the mean-centering technique, because
it is applied only to the search model M̂kmlj (8). Further, the trick is not necessary when
using the accurate search model M̂∗kmlj (9) that does not use the offset values.
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Figure 4: Illustration of the split point search without (left) and with (right) mean-centering
the predictors. In this artificial scenario the slope of a predictor x with x̄ = 10 varies between
two groups A (circles) and B (crosses). The solid lines show the slope of the global model and
the dotted and dashed lines the group specific slopes of the search model with an intercept
set equal to that of the global model.

3.2. Additive expansion of multivariate varying coefficients
An additional feature of TVCM is the possibility to avoid the interactions between moder-
ators by means of an additive expansion of varying coefficients. Although this restriction
may prevent the algorithm from finding the very best model, coefficient functions with one
moderator may be easier to understand while still performing quite well as will be seen in
Section 4.1.
So far, we have implicitly assumed that the predictors X1, . . . , XP of model Mvc (1) differ
from one another. To suppress interactions between moderators, we expand the multivariate
varying coefficients into additive, moderator-wise components. First, consider a multivariate
varying coefficient term xipβp(zip) = xipβp(zip1, . . . , zipLp), possibly xip = 1 for all i. The
additive expansion is

xipβ(zip) −→ xipβp0 + xipβp1(zip1) + . . .+ xipβipLp(zipLp) . (12)

Here, we decompose xipβ(zp) into the “isolated” contributions of the individual moderators,
including a global term xipβp0. In this expansion, the individual varying coefficients βpl(zipl),
l = 1, . . . , Lp act as local contributions to the global coefficient βp0. To identify the additive
expansion of Equation 12, we mean-center the approximations for βp1(·), . . . , βpLp(·) using
node-weighted sum contrasts that restrict the sample-average of the coefficient functions to
zero. That is, we approximate βpl(·) with the piecewise constant function ∑Mpl

m=1 1(zipl ∈
Bplm)βplm, and estimate the coefficients βpl1, . . . , βplMpl

subject to

N∑
i=1

Mpl∑
m=1

1(zipl ∈ Bplm)wiβplm = 0 . (13)

The nodewise-weighted sum contrasts are computed with the contr.wsum function of vcrpart.
We also considered extending the additive expansion with second- and higher-order interac-
tions between moderators. However, such an extension likely needs further considerations for
the partitioning algorithm.
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3.3. Extension to other model classes

To extend the scope of the algorithm, the TVCM requires functions to extract the training
and validation errors from fitted models of the considered model class. The training error is
required for partitioning (Algorithm 1) and pruning (Algorithm 2), and the need for extract-
ing validation errors arises from cross-validating λ. Both errors refer to loss functions. We
suggest to use the loss function retained for estimating the coefficients, even though different
functions could be specified in vcrpart. For GLMs, we use as the training error the total
−2 · log-likelihood loss on the training sample, which can be extracted from the coefficient
estimation. Then, as the validation error, we use the average −2 · log-likelihood loss of pre-
dictions on validation sets, which can be extracted using the predict and family functions.
Using the −2 · log-likelihood loss for both the training and validation errors synchronizes the
criteria for estimating the coefficients, selecting the split, pruning, and choosing λ. The same,
or a similar implementation could be considered for other likelihood-based regression models.
The vcrpart package also provides implementations for the baseline-category as well as the
cumulative-link models to allow for regression with nominal and ordinal responses. Both
these models are multivariate extensions of GLMs (cf., Fahrmeir and Tutz 2001, Chapter 3).
Therefore, we can adopt the definitions for the training and validation errors for GLMs (Bürgin
and Ritschard 2015).

4. Empirical evaluation
Here, we present two empirical evaluations of the TVCM algorithm. Section 4.1 evaluates the
performance of TVCM with different stopping criteria by comparing it with alternative tree-
based algorithms on a benchmark data set. Section 4.2 presents a simulation study to assess
the ability of TVCM to identify an underlying data generating varying coefficient process.
From here on and unless specifically stated otherwise, the following default control parameters
and fixed seed for creating cross-validation folds will be used.

R> control <- tvcglm_control(folds = folds_control(seed = 13))

4.1. Benchmarking TVCM with the Pima Indians diabetes data

To evaluate the TVCM algorithm, we consider the Pima Indians diabetes data of Smith,
Everhart, Dickson, Knowler, and Johannes (1988). These data are available from the UC
Irvine machine learning repository (Bache and Lichman 2013) and record diabetes tests of 768
Pima Indian women, along with eight covariates. Here, we use the PimaIndiansDiabetes2
data of the R package mlbench (Leisch and Dimitriadou 2012) containing a version of the
original data corrected for physical impossibilities, such as zero values for blood pressure.
We exclude the two variables tricepts and insulin and omit cases with missing values of
the remaining data by listwise deletion, which is also the default option of tvcglm, to avoid
expanding the discussion to the missing value problem. The Pima data, prepared by the
following commands, include 724 observations on the seven variables listed in Table 1.

R> data("PimaIndiansDiabetes2", package = "mlbench")
R> Pima <- na.omit(PimaIndiansDiabetes2[, -c(4, 5)])



Journal of Statistical Software 17

Variable Label Scale (Unit) Range
1 Diabetes diabetes Binary Negative, Positive
2 Plasma glucose concentration glucose Continuous [44, 199]
3 Number of times pregnant pregnant Continuous [0, 17]
4 Diastolic blood pressure pressure Cont. (mmHg) [24, 122]
5 Body mass index mass Cont. (kg/m2) [18.2, 67.1]
6 Diabetes pedigree function pedigree Continuous [0.08, 2.42]
7 Age age Cont. (years) [21, 81]

Table 1: Variables of the Pima data.

For this evaluation, we follow Zeileis, Hothorn, and Hornik (2006) and model the response
variable diabetes using a logistic model with a varying intercept and a varying slope for
glucose in the predictor function. The remaining covariates 3–7 of Table 1 are used as
potential moderators for both varying coefficients. The described model is fitted with the
command

R> vcm.Pima.1 <- tvcglm(diabetes ~ -1 + vc(pregnant, pressure, mass,
+ pedigree, age) + vc(pregnant, pressure, mass, pedigree, age,
+ by = glucose), data = Pima, family = binomial(), control = control)

where the first vc term specifies the varying intercept and the second term specifies the
varying slope for glucose. We use -1 to remove the global intercept so that the fitted
varying intercepts represent local intercepts. Keeping the global intercept would produce the
same fit. However, the fitted varying intercepts would represent local contributions to the
global intercept. The alternative additive expansion introduced in Section 3.2 is fitted using
the command:

R> vcm.Pima.2 <- tvcglm(diabetes ~ 1 + glucose + vc(pregnant) + vc(pregnant,
+ by = glucose) + vc(pressure) + vc(pressure, by = glucose) + vc(mass) +
+ vc(mass, by = glucose) + vc(pedigree) + vc(pedigree, by = glucose) +
+ vc(age) + vc(age, by = glucose), data = Pima, family = binomial(),
+ control = control)

The additive expansion includes a global intercept and a global slope for glucose, which
implies that the remaining varying coefficients, which consist of moderator-wise varying in-
tercepts and varying slopes for glucose, represent local contributions.
Zeileis et al. (2006) fit the same varying coefficient model using the model-based recursive
partitioning algorithm (MOB; Zeileis et al. 2008), which is based on the single-tree approx-
imation Mtree (2). First, we compare the fit for vcm.Pima.1 with the fit based on MOB to
discuss the structural differences between the two approximationsMtree andMtvcm.
The left panel in Figure 5 shows the fit for vcm.Pima.1 and the right panel the fit based on the
MOB algorithm. Note that the partykit (Hothorn and Zeileis 2015) plot function generates
by default spinograms and not coefficient plots for the leaves of the MOB tree. For the
sake of comparison, we have replaced here the default with coefficient plots.7 The structural
difference with MOB is that the TVCM fits separate partitions for the varying intercept

7The code for generating the plot with spinograms is given in the supplementary R script.
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Figure 5: Fitted tree structures and nodewise coefficient plots. Left panel: The varying
intercept (left) and the varying slope for glucose (right, no split) of the fit for vcm.Pima.1.
Right panel: The fit based on MOB (cf., Zeileis et al. 2006).

and the varying slope for glucose, while the MOB algorithm fits a common partition for
the two varying coefficients. Interestingly, the tree of the varying intercept from the TVCM
is identical to the tree from the MOB algorithm. By contrast, the TVCM does not retain
splits for the slope of glucose. This illustrates the flexibility of the TVCM in adapting to
situations in which coefficient functions differ. If a single partition for all varying coefficients is
accurate, then the TVCM can fit the same partition multiple times. Otherwise, it can tailor
the partition individually for each varying coefficient. As a result, the TVCM potentially
produces more parsimonious and/or more accurate fits than does theMtree approximation.

Comparison with competing tree-based algorithms. To evaluate the performance of
the TVCM, we extend the benchmark study of Zeileis et al. (2006) who, using the same Pima
data, compare MOB with the conditional inference tree (CTree; Hothorn et al. 2006), CART
(Breiman et al. 1984), the logistic model tree (LMT; Landwehr, Hall, and Frank 2005), and
C4.5 (Quinlan 1993) algorithms.8 The MOB and CTree algorithms are implemented in the
R partykit package (and party, Hothorn, Hornik, Strobl, and Zeileis 2017b), CART in rpart
(Therneau, Atkinson, and Ripley 2017), and LMT and C4.5 in RWeka (Hornik, Buchta, and
Zeileis 2009). We denote CART as RPART and C4.5 as J4.8 because the corresponding R
implementations are slightly modified versions.
The performance comparison is made with the Pima data and relies on 250 bootstrap samples
with replacement (as in Zeileis et al. 2006). For each bootstrap sample, we fit a model with

8Here, we do not consider the quick, unbiased, efficient, statistical tree algorithm (QUEST; Loh and Shih
1997) included in the study by Zeileis et al. (2006).
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Misclassification Complexity Time
Boot Boot-Mean Orig Boot Orig Boot Orig

TVCM 0.246 0.247 0.232 10 6 39.29 25.85
TVCM (additive) 0.240 0.241 0.200 14 18 49.10 22.39
TVCM (N0 = 50) 0.243 0.244 0.225 12 6 12.96 9.25
TVCM (Dmin = 50) 0.249 0.250 0.250 2 2 0.83 0.57
TVCM (NS = 19) 0.246 0.246 0.232 10 6 45.61 50.56
MOB 0.254 0.253 0.238 23 8 1.19 1.00
CTree 0.256 0.258 0.222 19 15 0.03 0.03
RPART 0.258 0.258 0.182 27 23 0.01 0.02
LMT 0.279 0.280 0.222 63 1 0.15 0.85
J4.8 0.279 0.280 0.213 89 11 0.03 0.05

Table 2: Performances for the Pima data. Boot: Medians (and means under Boot-Mean) of
results from fits on 250 bootstrap samples. Orig: Results on the original data. Misclassifi-
cation: Misclassification errors. Complexity: The number of coefficients plus the number of
splits. Time: Computation time in seconds.

each algorithm to predict the excluded observations. In the case of the TVCM, we fit five
models on each bootstrap sample to compare the fits for tvcm.Pima.1 and tvcm.Pima.2 and
to evaluate the sensitivity of fits for tvcm.Pima.1 to changes from the defaults for N0 (the
minimum node size), Dmin (the minimum training error reduction), and NS (the maximum
number of splits). For the competitors, we employ the default control parameters. Three
comparison measures are considered: misclassification, the median and mean 0-1 loss on
excluded data; complexity, the median of the number of coefficients plus the number of splits;
and time, the median computation time. Furthermore, with each algorithm, we fit a model
on the original data. To run the simulation, we use a computer with an Intel Xeon 3.50GHz
processor.
Table 2 shows that the TVCM outperforms the competitors in terms of performance and
complexity. That is, it builds smaller models with slightly better predictive performance than
the other algorithms. By contrast, the TVCM performs worst in terms of computational time
because it evaluates far more candidate models than do the competitors. Increasing N0 and
Dmin accelerates the burden significantly, with surprisingly little effect on the performance.
Apparently, in this application, it is not necessary to grow very large trees in the partitioning
stage to produce an accurate fit. Furthermore, the difference between the multivariate varying
coefficient specification and the additive expansion is negligibly small in this application.
Figure 6 shows averages of 250 pairwise differences between the competitors and the TVCM.
The confidence intervals for the averages are based on the Student’s t-distribution. Several
average differences are significant in favor of the TVCM. It may be that the CTree, RPART,
LMT, and J4.8 algorithms perform worse because they merely use piecewise constant regres-
sion functions, whereas the TVCM and the MOB algorithm include a (prespecified) slope for
glucose.

4.2. Simulation study

Here, we use simulated data to evaluate the ability of TVCM to identify an underlying data
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Figure 6: Performances for the Pima data relative to TVCM with default control parameters.
Left panel: Average differences in misclassification errors. Right panel: Average differences
in complexity.

generating process with coefficients varying across coefficient-wise partitions. In particular,
we consider a scenario where the varying coefficients of the data generating model depend on
different moderator variables, in which case we would expect coefficient-wise partitioning to
perform better than a single partitioning approach.
The study consists in generating multiple datasets by means of a simulation model, and
fitting a model with the coefficient-wise and a model with the single partitioning approach on
each of the datasets. The two approaches are then compared by means of four performance
measures. For each dataset, we draw N realizations of a normally distributed predictor
variable X i.i.d.∼ N (0, 1), and N realizations of each of 6 independent Bernoulli moderator
variables Z0, . . . , Z5 with Zl

i.i.d.∼ Bin(1, 0.5). Using these data, we drawN responses y1, . . . , yN
from the simulation model:

Msim : yi =
[
−1 + 2 · 1(z0i>0)

]
+
[
1− 2 · 1(z1i>0)

]
· xi + εi, εi

i.i.d.∼ N (0, 1). (14)

The modelMsim (14) has a varying intercept that depends on Z0, and a varying slope for X
that depends on Z1. The additional four variables X2 to X5 act as noise variables that we
expect to not be selected. Since both the varying intercept and the varying slope are threshold
functions, they can be reconstructed by recursive partitioning. Coefficient-wise partitioning
can reconstruct the model with two splits, a first split for the varying intercept in Z0 and a
second split for the varying slope for X in Z1. The single partition approach needs to perform
three splits. Either, it splits the root node by Z0 and both child nodes by Z1, or it splits
the root node by Z1 and both child nodes by Z1. The sample size N is varied by steps of
50 between 50 and 500, and 2000 runs are made for each N , which makes a total of 20,000
simulated datasets.
Both the model with coefficient-wise partitions and the model with a single partition are fitted
with the tvcglm function. Using for both models tvcglm allows to isolate the comparison
between the coefficient-wise and single partition approaches from other differences between
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the algorithms. For example, glmtree from package partykit could be used to fit the single
partition model, but then the performance differences would also relate to implementation-
specific differences between TVCM and MOB such as the splitting criterion. Apart from
computational details, the procedure used by tvcglm to fit single partition models is equivalent
to that of Wang and Hastie (2014). Here are the R commands used to fit the two models,
where the data frame simdata presents a placeholder for a generated dataset. First the
coefficient-wise partition model is fitted and saved in vcm.sim.1 and then the single partition
model is fitted and saved in vcm.sim.2.

R> z <- c("z0", "z1", "z2", "z3", "z4", "z5")
R> control.sim <- tvcglm_control(mindev = min(N / 200, 2),
+ minsize = min(N / 20, 30))
R> vcm.sim.1 <- tvcglm(y ~ -1 + vc(z) + vc(z, by = x), data = simdata,
+ family = gaussian(), control = control.sim)
R> vcm.sim.2 <- tvcglm(y ~ -1 + vc(z, by = x, intercept = TRUE),
+ data = simdata, family = gaussian(), control = control.sim)

As can be seen from the code for vcm.sim.2, a single vc term in the formula with the
arguments intercept = TRUE and by = x allows to fit a common partition for the varying
intercept and the slope for X. The minimum node size N0 and the minimum training error
reduction Dmin arguments (cf., Algorithm 1) are specified such that identifying the true model
and selecting noise variable remains possible for small sample sizes. For this purpose – to some
extent arbitrarily chosen – truncated linear functions are used. For N = 200 for example,
the retained functions set the minimum node size (minsize) as N0 = 10 and the minimum
required deviance improvement (mindev) as Dmin = 1.

Performance measures. To evaluate the fitted models, four frequency measures are con-
sidered: (i) identified underlying model, the proportion of runs for which the exact underlying
model was identified; (ii) nested underlying model, the proportion of runs for which the un-
derlying model is nested in the fitted model; (iii) true moderators selected, the proportion
of runs for which all true moderators were selected; and (iv) false variable selections, the
proportion of runs that selected noise moderators.

Results. Figure 7 contrasts the performances of coefficient-wise partitioning to the single
partition approach. All four measures tend to a same asymptote for both approaches with,
however, a faster convergence for the coefficient-wise partitioning. For our generated data, the
chances to identify the exact generating model tends to about 85% when the sample size N
becomes large (N ≥ 150 for coefficient-wise partitioning and N ≥ 300 for single partitioning),
while the chances to end up with a model that includes the generating process as a nested
model tends to 1. This shows that the presence of the noise variables leads in some cases
to overfitting. Similar conclusions hold for the two other indicators: When N becomes large
both approaches select at least all true moderators together with, in 20% of the cases, some
noise variables. In sum, the above simulation study indicates that coefficient-wise partitioning
is better than single partitioning in retrieving the exact generating process with a sample of
moderated size N , while both approaches look equivalent when N becomes large (≥ 350). It
also shows that, when N ≥ 200, the methods tend to select a set of moderators that include
at least all true moderators.
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Figure 7: Performance comparison of coefficient-wise partitioning (solid lines) and single
partitioning (dashed lines).

5. Applications
We now illustrate the usage of the vcrpart library to tackle moderated regression problems
in social science research. Two applications are presented. We demonstrate the general
multivariate varying coefficient specification in Section 5.1 and the additive expansion in
Section 5.2.

5.1. The racial wage gap
The first application is a study of the racial wage gap and, more specifically, a study of whether
the wage gap varies across strata. A suitable data set to examine the issue is the Schooling
data of the R package Ecdat (Croissant 2016). The Schooling data are a cross-section of
3, 010 men prepared by Card (1993) from the 1976 wave of the US National Longitudinal
Survey of Young Men (NLSYM).9 Table 3 describes the variables of the Schooling data,
where lwage76 is the response variable and the dummy black the predictor of interest. The
data were prepared as follows.

R> data("Schooling", package = "Ecdat")
R> Schooling <- Schooling[c(19, 21, 7, 28, 9, 14, 17, 18, 20, 23, 2, 4)]
R> Schooling$black <- 1 * (Schooling$black == "yes")

A standard model for wage is provided by the Mincer equation (Mincer 1974), stating that
schooling and working experience are the principal predictors for wage. Therefore, a (Gaus-
sian) linear model that predicts lwage76 by ed76, exp76 (linear and squared), and black
seems a suitable base model for the examination of the racial wage gap.
Since the literature (e.g., Ashenfelter and Card 1999) has widely discussed the endogene-
ity problem in regressing wages on schooling, we implement an instrumental variable (IV)
approach using college proximity (nearc4) as the instrument for schooling (ed76). This in-
strument, which we computed with

R> Schooling$ed76.IV <- fitted(lm(ed76 ~ nearc4, Schooling))
9See http://davidcard.berkeley.edu/data_sets.html.

http://davidcard.berkeley.edu/data_sets.html
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Variable Label Scale (Unit) Values
1 Logarithm wage per hour 1976 lwage76 Cont. (¢/h) [4.6, 9]
2 Is person black? black Binary 0 = No, 1 = Yes
3 Education in 1976 ed76 Continuous [1, 18]
4 Working experience in 1976 exp76 Continuous [0, 23]
5 Age in 1976 age76 Cont. (years) [24, 34]
6 Lived with mom/ dad at age 14? momdad14 Binary No, Yes
7 Lived in south in 1966? south66 Binary No, Yes
8 Lived in south in 1976? south76 Binary No, Yes
9 Mother-father education class famed Continuous [1, 9]

10 Enrolled in 1976? enroll76 Binary No, Yes
11 Lived in smsa in 1976? smsa76 Binary No, Yes
12 Grew up near 4-yr college? nearc4 Binary No, Yes

Table 3: The subset of used variables of the Schooling data.

has been proposed and evaluated by Card (1993). We rely on their evaluation and do not go
into detail, because the endogeneity problem is not the point of this illustration.
Using the instrument ed76.IV for ed76, we fit the intended base model that includes the
Mincer equation and the interesting black dummy in the predictor function with

R> lm.School <- lm(lwage76 ~ ed76.IV + exp76 + I(exp76^2) + black,
+ data = Schooling)
R> coef(summary(lm.School))[, -4]

Estimate Std. Error t value
(Intercept) 3.90434 0.263306 14.83
ed76.IV 0.16422 0.019645 8.36
exp76 0.05483 0.007184 7.63
I(exp76^2) -0.00243 0.000351 -6.92
black -0.31594 0.018065 -17.49

The fit reveals that black has a significant (|t value| > 2) negative impact on lwage76.
The aim of this application is to illustrate how the TVCM could be used to study moderations
on the effect of black. To do this, we consider the covariates 3 to 11 of Table 3 as potential
moderators. Furthermore, we want to account for the direct effects of the covariates 5 to
11 on wage, which are those covariates not included in lm.School. To integrate these two
extensions, we replace the constant coefficient of black with a varying coefficient and we
replace the global intercept with a varying intercept. However, we continue to assume the
Mincer equation and, therefore, use the same specification for the direct effects of ed76.IV and
exp76 as in lm.School. To fit the described extended model, we use the following formula.

R> f.School <- lwage76 ~ -1 + ed76.IV + exp76 + I(exp76^2) +
+ vc(age76, momdad14, south66, south76, famed, enroll76, smsa76) +
+ vc(ed76.IV, exp76, age76, momdad14, south66, south76, famed,
+ enroll76, smsa76, by = black)
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Figure 8: vcm.School: 5-fold cross-validated error as function of λ.

Then, we fit the varying coefficient model using

R> vcm.School <- tvcglm(formula = f.School, data = Schooling,
+ family = gaussian(), control = control)

Figure 8 shows the 5-fold cross-validated error as a function of λ. The estimated λ̂ = 15.76
is almost at the minimum of the evaluated λ values. If we decrease the control parameter
mindev to 0.5, then λ̂ will be situated in a clear dump at about 6. Compared to the tree
structures below for which λ̂ = 15.76 was used for pruning, λ = 6 yields additional splits for
the varying intercept, yet the same tree structure for the varying coefficient of black.
The fitted varying intercept and varying wage gap are shown in Figure 9. The varying inter-
cept on the left consists of 9 terminal nodes. The tree structure suggests that, in particular,
age76 and smsa76 (standard metropolitan statistical area) have strong direct effects on wage.
We do not study the varying intercept in detail because it was mainly implemented to allow
the study of the racial wage gap while controlling for the direct effects of the considered
variables.
The varying racial wage gap, shown in the right panel of Figure 9, includes three strata.
It turns out that the gap is particularly negative for people who live in a Southern state
and have high working experience. For people who live in the North or with a low working
experience (equal or less than 9 years) in the South, the gap is smaller. However, the negative
gap remains.
The estimated non-varying coefficients for ed76.IV and exp76 (linear, squared) can be ex-
tracted using the summary or the coef functions, for example, with

R> coef(vcm.School)$fe

ed76.IV exp76 I(exp76^2)
0.05723 0.00865 -0.00190
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Figure 9: vcm.School: Fitted tree structures and nodewise coefficient plots. Left panel: The
varying intercept. Right panel: The varying race gap.

5.2. The effect of parental leave duration on return to work

As the last application, we consider an example from the literature on the effects of welfare
reforms. Specifically, we investigate the effect of the 1990 reform of the Austrian parental-
leave (PL) system. Before 1990, working women had the right to stay off work after childbirth
up to 12 months and, thereafter, return to the same (or similar) job at the same employer.
The 1990 reform extended the duration of this leave from 12 months to 24 months. Lalive and
Zweimüller (2009) investigated the effect of the 1990 PL reform on various fertility and labor
market outcomes, based on linear regression models and using the Austrian Social Security
Database (ASSD). They provide a background to the Austrian PL system and describe the
data subset.10 Here, using the same data, we reanalyze the effect of the reform on whether
women returned to work at least once in the 10 years after childbirth.
The subset of the ASSD data includes 6, 180 women who gave birth in June or July 1990 and
were eligible to access the Austrian PL system. With vcrpart, the data are loaded by

R> data("PL", package = "vcrpart")

The interesting PL reform dummy is july. A ‘0’ in july means childbirth in June 1990, which
is the last month under the old PL system, and a ‘1’ indicates a birth in July 1990, which is the
first month under the new PL system. The response variable uncj10 is binary, where ‘1’ refers
to women who returned to work at least once in the 10 years after the considered childbirth.
Both july and uncj10 are summarized in Table 4, along with eight further covariates used
as moderators.
First, we consider a simple logistic model for uncj10 with only july in the predictor function.

10The data subset is available from https://sites.google.com/site/rafaellalive/research.

https://sites.google.com/site/rafaellalive/research
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Variable Label Scale Range
1 Whether returned to work 0–

120 months after childbirth
uncj10 Binary 0 = No, 1 = Yes

2 Whether childbirth was in July july Binary 0 = June, 1 =
July

3 Years employed before birth workExp Continuous [0, 17.5]
4 Years unemployed before birth unEmpl Continuous [0, 5.8]
5 Daily earnings at birth laborEarnings Cont. (EUR/d) [0, 1510.7]
6 Whether white collar worker whiteCollar Binary no, yes
7 Daily earnings 1989 wage Cont. (EUR/d) [0, 98.6]
8 Age age Ordinal 1, [15−19]; . . . ;

5, [35−44]
9 Industry industry.SL Nominal 20 categories
10 Region region.SL Nominal 9 categories

Table 4: The subset of used variables of the PL data.

R> glm.PL <- glm(uncj10 ~ july, data = PL, family = binomial)
R> coef(summary(glm.PL))[, -4]

Estimate Std. Error z value
(Intercept) 1.840 0.0535 34.40
july -0.234 0.0713 -3.28

The estimated effect of july is −0.23 (corresponding to an odds ratio of e−0.23 = 0.79) and
is significant (|z value|> 2). This means that the 1990 PL reform decreases the logit for
returning to work.
The aim of this application is to investigate whether and how the effect of the PL reform
is moderated by covariates 3 to 10 of Table 4, which include for example age and region.
Furthermore, we want to study such moderation by considering the direct effects of the mod-
erators. To implement this, we use the additive expansion for multivariate varying coefficients
introduced in Section 3.2. The additive expansion is restrictive because it ignores interac-
tions between moderators. However, in applied regression analysis it is common to limit the
scope on first-order interactions between the predictor of interest and further covariates (e.g.,
Cox 1984). For each considered moderator, the intended model adds varying intercepts and
varying coefficients for july to the simple model glm.PL, and is specified by the formula

R> f.PL <- uncj10 ~ 1 + july + vc(age) + vc(age, by = july) + vc(workExp) +
+ vc(workExp, by = july) + vc(unEmpl) + vc(unEmpl, by = july) +
+ vc(laborEarnings) + vc(laborEarnings, by = july) + vc(whiteCollar) +
+ vc(whiteCollar, by = july) + vc(wage) + vc(wage, by = july) +
+ vc(industry.SL) + vc(industry.SL, by = july) + vc(region.SL) +
+ vc(region.SL, by = july)

Note that we keep the global intercept and the global effect of july as global references for
the individual varying coefficients. The model is fitted with

R> vcm.PL <- tvcglm(formula = f.PL, family = binomial(), data = PL,
+ control = control)
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Figure 10: vcm.PL: 5-fold cross-validated error as function of λ.
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Figure 11: vcm.PL: Fitted varying coefficients with at least one split. Top row: The varying
intercepts. Bottom row: The varying PL reform effects. The coefficients are contributions to
the global intercept β̂(Intercept) = 1.93 resp. the global PL reform effect β̂july = −0.23.
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Figure 10 shows that the 5-fold cross-validated error is smallest at λ̂ = 13.49. The error curve
is relatively flat on the right of the minimum.
Figure 11 renders the fitted varying coefficients with at least one split. The top row shows the
varying intercepts, which are contributions to the global intercept β̂(Intercept) = 1.93, and are
interpreted as direct effects on the logits for return to work. The result suggests that women
with low working experience (≤ 2.2 years) and a high wage (> 45.8EUR/d) have increased
logits to return to work, and that there are also differences between industries. Specifically,
working in an industry corresponding to Node 3, which includes service industries such as
social insurance, education and bank industries, has a positive direct effect on return to work.
The global effect of the PL reform on the logits for return to work is estimated to be β̂july =
−0.23. The moderation effects of the two selected variables, working experience and region,
are shown in the bottom row of Figure 11. From the nodewise coefficient plots, we learn that
low working experience (≤ 5.3 years) increases β̂july by 0.22, and living in Vienna (W) or
Lower Austria (NOe) increases β̂july by 0.27. These positive contributions imply that the
effect of the PL reform locally surpasses zero, especially for those women who combine the
two characteristics low working experience and living in Vienna or Lower Austria.

6. Discussion and outlook
In this study, we showed how to use the TVCM algorithm for varying coefficient regression, as
well as its implementation in the R package vcrpart. Unlike alternative tree-based algorithms,
the TVCM can build a separate partition for each varying coefficient. Thus, it allows us to
select moderators individually for each varying coefficient and to specify coefficient-specific
sets of moderators. Furthermore, Section 4 provides empirical evidence showing that TVCM
builds slightly more accurate and/or more parsimonious models than competing tree-based
algorithms. It also assesses the ability of TVCM to identify an underlying data model. In
addition to the description of the TVCM, we discussed the model specification, provided R
commands and demonstrated the scope of TVCM by applying the algorithm to different data
sets.
It is worth mentioning here that TVCM could in some situations wrongly identify a moderator
effect in place of a main effect of the variable.11 Such spurious moderator effects could appear
when the moderator has in truth a main effect on the response while the variable is not
specified as a predictor, nor as a moderator of the intercept. Such potential moderators may,
when one of the specified predictors remains almost constant, reflect their own main effect
on the response through their interaction with that predictor. Therefore, it would be good
practice to test, before drawing any definite conclusion, that every identified moderator effect
does not change significantly when the moderator is also entered as a predictor.
Further research should investigate the theoretical properties of the TVCM in more detail.
This could include simulation studies and/or comparisons with smoothing splines and/or
kernel regression techniques, in line with the comparison study of Wang and Hastie (2014).
The simulation study described in Section 4.2 is a first attempt in that direction. It suggests
that the performance of TVCM for identifying an underlying data model improves with
increasing numbers of observations, and that TVCM is more powerful than the single-partition
approach in the case where the coefficient functions differ from each others.

11Thanks to the reviewer who pointed that out.
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There also is potential for improving the TVCM. This could include: (i) developing an unbi-
ased selection procedure for partitioning; (ii) decreasing the computational time; (iii) refining
the pruning criterion; and (iv) stabilizing the algorithm.
Improvement (i) requires finding an alternative criterion that does not tend to select parti-
tions, nodes, and moderators with many split candidates (cf., Section 2.2). At the outset,
we considered implementing the score-based coefficient constancy tests of Zeileis and Hornik
(2007), used in the MOB algorithm. We were particularly interested into these tests because
they would have allowed to select the partition, the node and the moderator based on the
scores of the current model M̂ (7), without estimating search models. However, we discarded
the idea because the tests work under the condition that the predictors of the model are sta-
tionary and ergodic (cf., Andrews 1993) with respect to the tested moderator, which seems
difficult to control when partitioning coefficient-wise. Another adjustment would be to derive
the distribution of the maximally selected likelihood ratio statistics Dk′m′l′j′ of Algorithm 1.
This would allow us to select the split based on p values, which eliminates the dependence of
the selection on the number of splits in the moderator variable. Andrews (1993) develops the
distribution of maximally selected likelihood ratio statistics, however, again under the station-
arity assumption. Indeed, the stationarity assumption could be resolved by using bootstrap
techniques (e.g., Jouini 2008), but such techniques are computationally complex. Finally,
F - or χ2-type tests, such as those proposed in Loh and Shih (1997), could be implemented.
For example, Brandmaier, von Oertzen, McArdle, and Lindenberger (2012) implement such
tests for building structural equation model trees, and they show that their implementation
reduces the variable selection bias substantially.
With regard to point (ii), the TVCM seems more time consuming than the alternative algo-
rithms (cf., Section 4.1), although we integrated several acceleration techniques and paral-
lelized the cross-validation. This hindrance, which might be relevant for big data applications,
could be partly solved by rewriting the bottleneck functions in a low-level programming lan-
guage. With regard to improvement (iii), we could consider refining the cost-complexity
criterion of Equation 10, which assumes that the “optimism” of the training error linearly
increases with each split. Ye (1998) showed that this assumption is violated for CART, and
the same probably applies to the TVCM. Ye (1998) and Efron (2004) provide more accurate
solutions using resampling techniques, though these solutions are highly time consuming. Fi-
nally, with regard to improvement (iv), to stabilize the algorithm regarding perturbations to
the data and to improve the accuracy, we provide with the fvcglm function an implementa-
tion of the random forest ensemble algorithm (Breiman 2001) for the TVCM. We have not
addressed this implementation here so as to focus on the original parts of our work.
Along with tvcglm, tvcglm_control, splitpath, prunepath, and plot, this study intro-
duced the main functions for the fitting and diagnosis of coefficient-wise tree-based varying
coefficient models. Additional functions provided by vcrpart, such as summary and predict,
are described in the reference manual.
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