
JSS Journal of Statistical Software
October 2017, Volume 81, Issue 2. doi: 10.18637/jss.v081.i02

simcausal R Package: Conducting Transparent and
Reproducible Simulation Studies of Causal Effect

Estimation with Complex Longitudinal Data

Oleg Sofrygin
Kaiser Permanente Northern California

University of California, Berkeley

Mark J. van der Laan
University of California, Berkeley

Romain Neugebauer
Kaiser Permanente Northern California

Abstract

The simcausal R package is a tool for specification and simulation of complex lon-
gitudinal data structures that are based on non-parametric structural equation models.
The package aims to provide a flexible tool for simplifying the conduct of transparent
and reproducible simulation studies, with a particular emphasis on the types of data
and interventions frequently encountered in real-world causal inference problems, such as,
observational data with time-dependent confounding, selection bias, and random monitor-
ing processes. The package interface allows for concise expression of complex functional
dependencies between a large number of nodes, where each node may represent a mea-
surement at a specific time point. The package allows for specification and simulation
of counterfactual data under various user-specified interventions (e.g., static, dynamic,
deterministic, or stochastic). In particular, the interventions may represent exposures
to treatment regimens, the occurrence or non-occurrence of right-censoring events, or of
clinical monitoring events. Finally, the package enables the computation of a selected
set of user-specified features of the distribution of the counterfactual data that repre-
sent common causal quantities of interest, such as, treatment-specific means, the average
treatment effects and coefficients from working marginal structural models. The applica-
bility of simcausal is demonstrated by replicating the results of two published simulation
studies.

Keywords: causal inference, simulation, marginal structural model, structural equation model,
directed acyclic graph, causal model, R.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201467135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.18637/jss.v081.i02

2 simcausal: Causal Simulation Package in R

1. Introduction

1.1. Motivation for simcausal

This article describes the simcausal package (Sofrygin, van der Laan, and Neugebauer 2017b),
a comprehensive set of tools for the specification and simulation of complex longitudinal data
structures to study causal inference methodologies. The package is developed using the R sys-
tem for statistical computing (R Core Team 2017) and is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=simcausal. Our
package is intended to provide a flexible tool to facilitate the process of conducting transpar-
ent and reproducible simulation studies, with a particular emphasis on the types of data and
interventions frequently encountered in real-world causal inference problems. For example,
our package simplifies the simulation of observational data based on random clinical moni-
toring to evaluate the effect of time-varying interventions in the presence of time-dependent
confounding and sources of selection bias (e.g., informative right censoring). The package
provides a novel user-interface that allows concise and intuitive expression of complex func-
tional dependencies between a large number of nodes that may represent time-varying random
variables (e.g., repeated measurements over time of the same subject-matter attribute, such
as, blood pressure).
Statisticians often rely on simulation studies for assessing the appropriateness and accuracy
of different statistical methods (Burton, Altman, Royston, and Holder 2006). These studies
generally help evaluate and uncover potential problems with a method because the statisti-
cian knows and controls the true data generating distribution, which remains unknown in a
real data study (Hill and Reiter 2006). Hence, a simulation study provides statisticians with
a gold standard for evaluating and comparing the performance of different statistical meth-
ods. The artificial population data is usually drawn according to the specified model and
the statistical procedure is then applied to such data many times. For example, simulations
have been applied to evaluate the bias of an estimator (Porter, Gruber, van der Laan, and
Sekhon 2011; Brookhart, Schneeweiss, Rothman, Glynn, Avorn, and Stürmer 2006), study
its asymptotic behavior (Mynbaev and Martins-Filho 2015), diagnose its sensitivity towards
different modeling assumptions (Petersen, Porter, Gruber, Wang, and van der Laan 2012;
Brookhart et al. 2006), and determine the power of hypothesis tests (Væth and Skovlund
2004). Moreover, it may not only be of value to find out that the statistical method works
when its postulated assumptions are true, but also to evaluate its robustness towards depar-
tures from the required causal and statistical assumptions (Demirtas 2007). These are some
of the common reasons why simulation studies are increasingly being used in the medical
literature (Burton et al. 2006; Kristman, Manno, and Cote 2004; Væth and Skovlund 2004;
Collins, Schafer, and Kam 2001). We also note that careful consideration should be given to
a simulation study design (Burton et al. 2006). Indeed, simulations are of most value when
there is some hope that they are capable of capturing the complexities one might expect to
see in real-world data-generating processes. We also argue that careful attention should be
paid to the structure and clarity of the simulation code itself, not only to simplify the conduct
and presentation of extensive and complex simulation studies, but also to avoid coding errors
which may lead to incorrect conclusions and difficulty with reproducing the findings of such
a simulation study.
In package simcausal, data can be simulated using a broad range of parametric distributions,

https://CRAN.R-project.org/package=simcausal

Journal of Statistical Software 3

such that the resulting user-specified data generating distribution always falls into some non-
parametric structural equation model (NPSEM; Pearl 1995, 2009, 2010a). An NPSEM con-
sists of a set of structural equations, which describe the causal mechanisms for generating
independent observations of a user-specified data structure. Each structural equation is used
to describe a single variable (call it ‘X’), which may be latent or observed. Specifically, the
structural equation for X postulates a mechanism in which Nature could have generated X, as
a consequence of other endogenous variables’ values and a random disturbance (representing
the effect of exogenous variables). Thus, defining X in this manner avoids having to make
a commitment to a particular parametric family of distributions or specific functional form
in which X may relate to other variables. As a result, an NPSEM enforces the separation
of the notion of a causal “effect” from its algebraic representation in a particular parametric
family (i.e., a coefficient in a linear causal model), and redefines an effect as a “general ca-
pacity to transmit changes among variables” (Pearl 2010b, 2012). In particular, the NPSEM
framework allows the extension of the capabilities of traditional SEM methods to problems
that involve discrete variables, nonlinear dependencies, and heterogeneous treatment effects
(Elwert 2013). The interventions can then be defined by replacing some of the equations in
NPSEM with their intervened values, which then defines the counterfactual data.

Our package was developed based on the principles of the NPSEM framework and thus aims
to provide the user with a toolkit for specifying and simulating data based on a very large col-
lection of parametric distributions with often nonlinear relationships between the variables.
Moreover, simcausal is built around the language and the logic of counterfactuals: What
would happen if a subject received a different treatment? In other words, simcausal also
allows for specification and simulation of counterfactual data under various user-specified
interventions (e.g., static, dynamic, deterministic, or stochastic), which are referred to as
“actions”. These actions may represent exposure to treatment regimens, the occurrence or
non-occurrence of right-censoring events, or of clinical monitoring events (e.g., laboratory
measurements based on which treatment decisions may be made). Finally, the package en-
ables the computation of a selected set of “effects” (defined as user-specified features of the
distribution of some counterfactual data) that represent common causal quantities of interest,
referred to as causal target parameters. For instance, treatment-specific means, the average
treatment effects (ATE; on the multiplicative or additive scale) and coefficients from a work-
ing marginal structural model (MSM; Robins 1998; Neugebauer and van der Laan 2007) are
a few of the causal target parameters that can be evaluated by the package. The computed
value of a particular causal parameter can then serve as the gold standard for evaluating and
comparing different estimation methods, e.g., evaluating finite sample bias of an estimator.
We note that our package also provides a valuable tool for incorporating and changing various
causal independence assumptions and then testing the sensitivity or robustness of the studied
statistical methods towards departures from those assumptions.

One of the possible examples of applying simcausal in practice includes simulating the types
of data collected on subjects in the fields of medicine and public health, e.g., electronic health-
records data. Specifically, when one is interested in evaluating the utility and appropriateness
of a statistical procedure towards answering causal policy questions about the effects of dif-
ferent interventions on the exposures of interest (e.g., the average effect of a treatment for
lowering blood pressure vs. placebo). In addition, our package provides tools for converting
simulated and real data between various formats, simplifying the data processing as it may be
required by different estimation R packages (e.g., converting longitudinal data from wide to

4 simcausal: Causal Simulation Package in R

long formats, performing forward imputation on right-censored data). Finally, we note that
the simcausal package can be a useful instructional tool, since it can elucidate understanding
of complex causal concepts (Hodgson and Burke 2000), for example, using a simulated set-
ting to demonstrate the validity of complex causal identifiability results, showing bias due to
unmeasured confounding (Fewell, Davey Smith, and Sterne 2007), selection bias (Elwert and
Winship 2014), and bias due to positivity violations (Petersen et al. 2012). In summary, these
are just a few of the possible practical applications of simcausal: (a) Evaluating and com-
paring the performance of statistical methods and their sensitivity towards departures from
specific modeling assumptions; (b) Modeling simulations after real data sets and technically
validating an implementation of a novel statistical procedure; (c) Identifying possible issues
with statistical algorithms that were not or could not be predicted from theory; and (d) Serv-
ing as an instructional tool for understanding complex causal theory in practical simulated
settings.

1.2. Comparison to other simulation packages

The CRAN system contains several R packages for conducting data simulations with various
statistical applications. We reference some of these packages below. Our review is not in-
tended to be exhaustive and we focus on two key aspects in which simcausal differ from these
other simulation tools.
First, simulations in the simcausal package are based on data generating distributions that can
be specified via general structural equation models. By allowing the specification of a broad
range of structural equations, the set of possible distributions available to the analyst for
simulating data is meant to be not overly restrictive. For instance, any sampling distribution
that is currently available in R or that can be user-defined in the R programming environment
can be used for defining the conditional distribution of a node given its parents. Some of the
other R packages rely on alternative approaches for specifying and simulating data. For
example, the package gems (Blaser, Salazar Vizcaya, Estill, Zahnd, Kalesan, Egger, Keiser,
and Gsponer 2015) is based on the generalized multistate models, and the package survsim
(Moriña and Navarro 2014) is based on the Weibull, log-logistic or log-normal models. Finally,
the following R simulation packages rely on linear structural equation models: lavaan (Rosseel
2012), lavaan.survey (Oberski 2014), sem (Fox 2006; Fox, Nie, and Byrnes 2014), semPLS
(Monecke and Leisch 2012), OpenMx (Boker, Neale, Maes, Wilde, Spiegel, Brick, Spies,
Estabrook, Kenny, Bates, and others 2011; Boker, Neale, Maes, Spiegel, Brick, Estabrook,
Bates, Gore, Hunter, Pritikin, Zahery, and Kirkpatrick 2014) and simsem (Pornprasertmanit,
Miller, and Schoemann 2015). The latter group of R packages is traditionally described as
being based on the LISREL model (Bollen 1989). We note that the purpose and formulation
of the LISREL framework differs from the NPSEM framework that we adopt in simcausal,
and we use the example in Section 3 to help highlight some of the differences. However,
describing all the technical details of these two modeling approaches is beyond the scope of
this article and we refer the reader to the following sources for the additional details: Glynn
and Quinn (2007); Pearl (2010b); Matsueda (2012); Pearl (2012); Bollen and Pearl (2013);
Shpitser and Pearl (2009).
Second, unlike the simFrame package (Alfons, Templ, and Filzmoser 2010), which is meant
as a general object-oriented tool for designing simulation studies, the simcausal package is in-
stead tailored to study causal inference methodologies and is particularly suited to investigate

Journal of Statistical Software 5

problems based on complex longitudinal data structures (Robins 1998). Indeed, simcausal
provides a single pipeline for performing the following common steps frequently encountered
in simulation studies from the causal inference literature and described in details later in this
article: defining the observed data distribution, defining intervention/counterfactual distribu-
tions, defining causal parameters, simulating observed and counterfactual data, and evaluating
the true value of causal parameters. In addition, the package introduces an intuitive user-
interface for specifying complex data-generating distributions to emulate realistic real-world
longitudinal data studies characterized by a large number of repeated measurements of the
same subject-matter attributes over time. In particular, the simcausal package was designed
to facilitate the study of causal inference methods for investigating the effects of complex
intervention regimens such as dynamic and stochastic interventions (not just the common
static and deterministic intervention regimens), and summary measures of these effects de-
fined by (working) marginal structural models. We note, however, that while the package
was initially developed for this particular methodological research purpose, its utility can be
extended to a broader range of causal inference research, e.g., to perform simulation-based
power calculations for informing the design of real-world studies.

1.3. Organization of this article

The rest of this article is organized as follows. In Section 2, we provide an overview of the
technical details for a typical use of the simcausal package. In Section 3, we describe a
template workflow for a simple simulation study with single time point interventions, while
also drawing parallels with the traditional linear SEM framework. In Section 4, we describe
the use of the package for a more realistic and complex simulation study example based on
survival data with repeated measures and dynamic interventions at multiple time points. In
Section 4, we also apply the simcausal package to replicate some of the results of a previously
published simulation study by Neugebauer, Schmittdiel, and van der Laan (2014) and Neuge-
bauer, Schmittdiel, Zhu, Rassen, Seeger, and Schneeweiss (2015). In Section 5, we apply
the simcausal package to replicate results of another published simulation study by Lefebvre,
Delaney, and Platt (2008). We conclude with a discussion in Section 6.

2. Technical details

2.1. NPSEM, causal parameter and causal graph

For the sake of clarity, we limit ourselves to describing a non-parametric structural equation
model (NPSEM; Pearl 2009) for the observed data collected from a simple single-time point
intervention study (no repeated measures on subjects over time) and we note that this NPSEM
can be easily extended to longitudinal settings with repeated measures. Suppose that we
collect data on baseline covariates, denoted as W , an exposure, denoted as A (e.g., treatment
variable), and an outcome of interest, denoted as Y . An NPSEM is a causal model that
describes how these variables could be generated from a system of equations, such as: W =
fW (UW), A = fA(W,UA) and Y = fY (W,A,UY). We note that an NPSEM is defined by
unspecified (non-random) functions fW , fA, fY , and a model on the probability distribution
PU of random “disturbances” U = (UW , UA, UY). These equations are non-parametric in the
sense that they make no specific statement about the functional form of fW , fA, fY . We

6 simcausal: Causal Simulation Package in R

define the observed data1 as O = (W,A, Y), and we note that the allowed set of probability
distributions for O is referred to as the statistical model and it is implied by the causal model
encoded by the above NPSEM (i.e., by the choice of f and the choice of the distribution PU).
We also note that every parametric data-generating distribution defined in the simcausal
package can be described as an instance of a distribution in some NPSEM. Such NPSEM
encodes the independence assumptions between the endogenous variables. For instance, the
NPSEM described above assumes that the exposure A can depend on all baseline variables
W . As another example, suppose that (W,A, Y) were collected from a clinical trial in which
the exposure A was assigned at random. In this case, A is independent of W , an assumption
that can be encoded in the above NPSEM by removing W from the above equation fA as
follows: A = fA(UA).
The NPSEM also implicitly encodes the definition of counterfactual variables, i.e., variables
which would result from some particular interventions on a set of endogenous variables. For
example, the NPSEM can be modified as follows: W = fW (UW), A = a, Ya = fY (W,a, UY),
where the equation forW was kept unchanged, A was set to a known constant a and Ya denotes
the counterfactual outcome under an intervention that sets A = a. In this article, we will refer
to (W,a, Ya) as counterfactual data and we define our target causal parameter as a function
of such counterfactual data distribution, resulting from one or more exposure intervention
“a”. For example, the average treatment effect (ATE) can be expressed as E [Y1 − Y0]. The
fundamental feature of the causal parameter defined in this manner is that it remains a well-
defined quantity under any probability distribution PU for the disturbances and any choice
of functions f , a notion which we also highlight with examples in Section 3.
Furthermore, suppose our goal is to evaluate the effect of the exposure with more than two
levels (e.g., categorical or time-varying A), in which case we could evaluate the above ATE
for any two possible combinations of different exposure levels. We could also undertake an
equivalent approach and characterize all such contrasts with a saturated model for the mean
counterfactual outcome (E(Ya)), as indexed by the exposure levels a of interest. For example,
for an exposure with levels a ∈ {0, 1, 2}, we may use the following saturated MSM with three
parameters: E(Ya) = α0+α1I(a = 1)+α2I(a = 2). This model then implies that each possible
contrast (ATE) can be recovered as a function of α = (α0, α1, α2), e.g., E(Y1 − Y0) = α1.
However, this approach becomes problematic when dealing with small sample datasets and
high dimensional or continuous exposures. That is, suppose our goal is to characterize the
entire causal function of a given by {E(Ya) : a ∈ A}, where A represents the support of
a highly dimensional or continuous A. An alternative approach is to approximate the true
causal function {E(Ya) : a ∈ A} with some low-dimensional working marginal structural
model m(a|α). For example, one may define the working MSM as the following linear model:
m(a|α) = α0 + α1a + α2a

2. Note, however, that the term “working MSM” implies that we
are not assuming E(Ya) = m(a|α), but instead we are defining our causal parameter (α) as
the best parametric approximation of the true function E(Ya) with m(a|α). That is, such a
working MSM made no assumptions about the true functional form of E(Ya) and thus made no
additional assumptions about the distribution of U and the functions f , beyond those already
implied by the NPSEM (e.g., independence of (UW , UA, UY)). We also refer to Neugebauer
and van der Laan (2007) for additional details and examples of working MSMs. Also note
that the concept of such working MSMs is easily extended to arbitrary functions, e.g., we

1We use the term “observed data” to designate the collection of all non-latent endogenous variables. The
term “observed data” is meant to be opposed to the “counterfactual data” defined in the next paragraph.

Journal of Statistical Software 7

UW

W

UA

A

UY

Y

W

A

Y

Figure 1: Two alternative ways to graphically represent the same structural equation model
(SEM) using directed acyclic graphs (DAGs). The left figure shows the independent (latent)
errors, while the right figure does not.

could define m(a|α) as an expit function when the outcome Y is binary.
We note that the above NPSEM can be equivalently represented as a directed acyclic graph
(DAG; Pearl 1995), such as the one in Figure 1 (left), by drawing arrows from causes to their
effects. Links in this DAG can be of two kinds: Those that involve unmeasured quantities
are represented by dashed arrows and those that only involve measured quantities by solid
arrows. We note that each endogenous node in Figure 1 represents a single equation in the
above NPSEM. The causal assumptions in such a DAG are conveyed by the missing arrows,
i.e., in our second example of the NPSEM, the absence of a variable W from the right-hand
side of the equation for A = fA(UA) would correspond with no direct arrow between W and
A. The disturbances U (also referred to as “errors”) are enclosed in circles in the diagram
on the left because they represent unobserved (latent) factors that the modeler decides to
keep unexplained. When the error terms (UW , UA, UY) are assumed to be independent, the
often-used convention is to remove them from the causal DAG (Pearl 2012), as shown in
Figure 1 (right), with the implication that each of the remaining variables is subject to the
influence of its own independent error. This is also precisely how the function plotDAG() of
the simcausal package will plot the diagram of the user-specified SEM, that is, omitting the
implied independent errors that influence each user-defined latent and endogenous node. We
also refer to the examples in Section 3 for illustrations of this functionality of simcausal.
We note that simcausal was designed to facilitate simulations from NPSEM with mutually
independent disturbances. However, we also note that one can use simcausal to simulate de-
pendent errors (U) with an arbitrary correlation structure using one of the following methods:
a) Sample U jointly using a user-specified multivariate distribution with a specific correla-
tion structure, e.g., multivariate normal or copula (see the documentation and examples for
the node() function); b) Create a common (also latent) parent that has a direct effect of
all three variables in U (see the example in Section 3; or c) Perform Cholesky decomposi-
tion of the covariance matrix Σ for a multivariate normal N(µ,Σ), then generate correlated
(UW , UA, UY) distributed as N(µ,Σ) based on the previously sampled independent standard
normal variables (see the example in Appendix A).

2.2. The workflow

Data structures

The following most common types of output are produced by the package.

8 simcausal: Causal Simulation Package in R

D = DAG.empty()
↓

D = D + node(. . .) + node(. . .)
↓

D = set.DAG(D) −→ sim(D)
↓

D = D + action(. . .) −→ sim(D, actions = . . .)
↓

D = set.targetE(D, . . .)
D = set.targetMSM(D, . . .)

↓
eval.target(D)

Figure 2: Schematic of simcausal routines and the order in which one would usually call such
routines in a typical simulation study.

Parameterized causal DAG model – Object that specifies the structural equation model,
along with interventions and the causal target parameter of interest.

Observed data – Data simulated from the (pre-intervention) distribution specified by the
structural equation model.

Counterfactual data – Data simulated from one or more post-intervention distributions
defined by actions on the structural equation model.

Causal target parameter – The true value of the causal target parameter evaluated with
counterfactual data.

Routines

The following routines, also outlined in Figure 2, will be generally invoked by a user, in the
same order as presented below.

DAG.empty initiates an empty ‘DAG’ object that contains no nodes.

node defines a node in the structural equation model and its conditional distribution, i.e., the
outcome of one equation in the structural equation model and the formula that links
the outcome value to that of earlier covariates, referred to as parent nodes. A call to
node() can specify either a single node or multiple nodes at once, with name and distr
being the only required arguments. To specify multiple nodes with a single node() call,
one must also provide an indexing vector of integers as an argument t. In this case, each
node shares the same name, but is indexed by distinct values in t. The simultaneous
specification of multiple nodes is particularly relevant for providing a shorthand syntax
for defining a time-varying covariate, i.e., for defining repeated measurements over time
of the same subject-matter attribute, as shown in the example in Section 4.1.

add.nodes or D + node provide two equivalent ways of growing the structural equation
model by adding new nodes and their conditional distributions. Informally, these rou-

Journal of Statistical Software 9

tines are intended to be used to sequentially populate a ‘DAG’ object with all the struc-
tural equations that make up the causal model of interest. See Sections 3.1 and 4.1 for
examples.

set.DAG locks the ‘DAG’ object in the sense that no additional nodes can be subsequently
added to the structural equation model. In addition, this routine performs several con-
sistency checks of the user-populated ‘DAG’ object. In particular, the routine attempts
to simulate observations to verify that all conditional distributions in the ‘DAG’ object
are well-defined.

sim simulates independent and identically distributed (iid) observations of the complete node
sequence defined by a ‘DAG’ object. The output dataset is stored as a ‘data.frame’ and
is referred to as the observed data. It can be structured in one of two formats, as
discussed in Section 4.5.

add.action or D + action provide two equivalent ways to define one or more actions. An
action modifies the conditional distribution of one or more nodes of the structural
equation model. The resulting data generating distribution is referred to as the post-
intervention distribution. It is saved in the ‘DAG’ object alongside the original structural
equation model. See Sections 3.3 and 4.3 for examples.

sim(..., actions = ...) can also be used for simulating independent observations from
one or more post-intervention distributions, as specified by the actions argument. The
resulting output is a named list of ‘data.frame’ objects, collectively referred to as
the counterfactual data. The number of ‘data.frame’ objects in this list is equal to the
number of post-intervention distributions specified in the actions argument, where each
‘data.frame’ object is an iid sample from a particular post-intervention distribution.

set.targetE and set.targetMSM define two distinct types of target causal parameters. The
output from these routines is the input ‘DAG’ object with the definition of the target
causal parameter saved alongside the interventions. See Sections 3.5 and 4.6 for exam-
ples defining various target parameters.

eval.target evaluates the causal parameter of interest using simulated counterfactual data.
As input, it can take previously simulated counterfactual data (i.e., the output of a call
to the sim(..., actions = ...) function) or, alternatively, the user can specify the
sample size n, based on which counterfactual data will be simulated first.

2.3. Specifying a structural equation model

The simcausal package encodes a structural equation model using a ‘DAG’ object. The ‘DAG’
object is a collection of nodes, each node represented by a ‘DAG.node’ object that captures a
single equation of the structural equation model. ‘DAG.node’ objects are created by calling the
node() function. When the node() function is used to simultaneously define multiple nodes,
these nodes share the same name, but must be indexed by distinct user-specified integer values
of the time variable t, as shown in the example in Section 4.1. We will refer to a collection of
nodes defined simultaneously in this manner as a time-varying node and we will refer to each
node of such a collection as a measurement at a specific time point.

10 simcausal: Causal Simulation Package in R

Each node is usually added to a growing ‘DAG’ object by using either the add.nodes function
or equivalently the + function, as shown in the examples in Sections 3.1 and 4.1. Each new
node added to a ‘DAG’ object must be uniquely identified by its name or the combination of
a name and a value for the time variable argument t.
The user may explicitly specify the temporal ordering of each node using the order argument
of the node() function. However, if this argument is omitted, the add.nodes function assigns
the temporal ordering to a node by using the actual order in which this node was added to the
‘DAG’ object and, if applicable, the value of the time variable that indexes this node (earlier
added nodes receive a lower order value, compared to those that are added later; nodes with
a lower value for the t argument receive a lower order value, compared to those with a higher
value of t).
The node() function also defines the conditional distribution of a node, given its parents,
with a combination of the sampling distribution specified by the distr argument and the
distributional parameters specified as additional named arguments to the node() function.
This distr argument can be set to the name of any R function that accepts an integer
argument named n and returns a vector of size n. Examples of such distribution functions
are provided in Section 3.6.
The distributional parameters are specified as additional named arguments of the node() func-
tion and can be either constants or some summary measures of the parent nodes. Their values
can be set to any evaluable R expressions that may reference any standard or user-specified R
function, and also, may invoke a novel and intuitive shorthand syntax for referencing specific
measurements of time-varying parent nodes, i.e., nodes identified by the combination of a
node name and a time point value t. The syntax for identifying specific measurements of
time-varying nodes is based on a re-purposed R square-bracket vector subsetting function
[: E.g., writing the expression sum(A[0:5]), where A is the name of a previously defined
time-varying node, defines the summary measure that is the sum of the node values over time
points t = 0, . . ., 5. This syntax may also be invoked to simultaneously define the condi-
tional distribution of the measurements of a time-varying node over multiple time points t
at once. For example, defining the conditional distribution of a time-varying node with the
R expression sum(A[max(0, t - 5):t]) + t will resolve to different node formulas for each
measurement of the time-varying node, depending on the value of t:

1. A[0] at t = 0;

2. sum(A[0:1]) + 1 at t = 1, . . ., sum(A[0:5]) + 5 at t = 5;

3. sum(A[1:6]) + 6 at t = 6, . . ., sum(A[5:10]) + 10 at t = 10.

Concrete applications of this syntax are described in Section 4.1, as well as in the documen-
tation of the node() function (?node).
Note that the user can also define a causal model with one or more nodes that represent the
occurrence of end of follow-up (EFU) events (e.g., right-censoring events or failure events of
interest). Such nodes are defined by calling the node() function with the EFU argument being
set to TRUE. The EFU nodes encode binary random variables whose value of 1 indicates that,
by default, all of the subsequent nodes (i.e., nodes with a higher temporal order value) are
to be replaced with a constant NA (missing) value. As an alternative, the user may choose to
impute missing values for the time-varying node that represents the failure event of interest

Journal of Statistical Software 11

using the last time point value carried forward (LTCF) imputation method. This imputation
procedure consists in replacing missing values for measurements of a time-varying node at time
points t after an end of follow-up event with its last known measurement value prior to the
occurrence of an end of follow-up event. Additional details about this imputation procedure
are provided in the simcausal package vignette in Section 4.6 (Sofrygin et al. 2017b).

Finally, we note that the package includes pre-written wrapper functions for random sampling
from some commonly employed distributions. These routines can be passed directly to the
distr argument of the node function with the relevant distributional parameters on which
they depend. These built-in functions can be listed at any time by calling distr.list().
In particular, the routines "rbern", "rconst", and "rcat.b1" can be used for specifying a
Bernoulli distribution, a degenerate distribution (constant at a given value), and a categor-
ical distribution, respectively. One can also use any of the standard random generating R
functions, e.g., "rnorm" for sampling from the normal distribution and "runif" for sampling
from the uniform distribution, as demonstrated in Sections 3.1 and 3.6.

2.4. Specifying interventions

An intervention regimen (also referred to as action regimen) is defined as a sequence of
conditional distributions that replace the original distributions of a subset of nodes in a ‘DAG’
object. To specify an intervention regimen, the user must identify the set of nodes to be
intervened upon and provide new node distributions for them. The user may define a static,
dynamic, deterministic or stochastic intervention on any given node, depending on the type
of distributions specified. A deterministic static intervention is characterized by replacing
a node distribution with a degenerate distribution such that the node takes on a constant
value. A deterministic dynamic intervention is characterized by a conditional degenerate
distribution such that the node takes on a value that is only a function of the values of its
parents (i.e., a decision rule). A stochastic intervention is characterized by a non-degenerate
conditional distribution. A stochastic intervention is dynamic if it is characterized by a non-
degenerate conditional distribution that is defined as a function of the parent nodes and it is
static otherwise. Note that a particular intervention may span different types of nodes and
consist of different types of distributions, e.g., an intervention on a monitoring node can be
static, while the intervention on a treatment node from the same structural equation model
may be dynamic.

To define an intervention the user must call D + action(A, nodes = B) (or equivalently
add.action(D, A, nodes = B)), where D is a ‘DAG’ object, A is a unique character string that
represents the intervention name, and B is a list of ‘DAG.node’ objects defining the intervention
regimen. To construct B the user must first aggregate the output from one or more calls to
node() (using c(..., ...)), with the name argument of the node() function call set to node
names that already exist in the locked ‘DAG’ object D. The example in Section 4.3 demonstrates
this functionality. Alternatively, repeated calls to add.action or D + action with the same
intervention name, e.g., A = "A1", allow the incremental definition of an intervention regimen
by passing each time a different ‘DAG.node’ object, enabling iterative build-up of the collection
B of the intervened nodes that define the intervention regimen. Note, however, that by calling
D + action or add.action(D, ...) with a new action name, e.g., action("A2", ...), the
user initiates the definition of a new intervention regimen.

12 simcausal: Causal Simulation Package in R

2.5. Specifying a target causal parameter

The causal parameter of interest (possibly a vector) is defined by either calling the function
set.targetE() or set.targetMSM(). The function set.targetE() defines causal param-
eters as the expected value(s) of ‘DAG’ node(s) under one post-intervention distribution or
the contrast of such expected value(s) from two post-intervention distributions. The function
set.targetMSM() defines causal parameters based on a working marginal structural model
(Neugebauer and van der Laan 2007). In both cases, the true value of the causal parameter is
defined by one or several post-intervention distributions and can thus be approximated using
counterfactual data.
The following types of causal parameters can be defined with the function set.targetE():

• The expectation of an outcome node under an intervention regimen denoted by d, where
the outcome under d is denoted by Yd. This parameter can be naturally generalized
to a vector of measurements of a time-varying node, i.e., the collection of nodes Yd(t)
sharing the same name, but indexed by distinct time points t that represents a sequence
of repeated measurements of the same attribute (e.g., a CD4 count or the indicator of
past occurrence of a given failure event):

E(Yd) or (E(Yd(t)))t=0,1,....

• The difference between two expectations of an outcome node under two interventions,
d1 and d0. This parameter can also be naturally generalized to a vector of measurements
of a time-varying node:

E(Yd1)− E(Yd0) or (E(Yd1(t))− E(Yd0(t)))t=0,1,....

• The ratio of two expectations of an outcome node under two interventions. This pa-
rameter can also be naturally generalized to a vector of measurements of a time-varying
node:

E(Yd1)
E(Yd0) or

(E(Yd1(t))
E(Yd0(t))

)
t=0,1,...

.

Note that if the ‘DAG’ object contains nodes of type EFU = TRUE other than the outcome
nodes of interest Yd(t), the target parameter must be defined by intervention regimens that
set all such nodes that precede all outcomes of interest Yd(t) to 0. Also note that with
such intervention regimens, if the outcome node is time-varying of type EFU = TRUE then the
nodes Yd(t) remain well defined (equal to 1) even after the time point when the simulated
value for the outcome jumps to 1 for the first time. The nodes Yd(t) can then be interpreted
as indicators of past failures in the absence of right-censoring events. The specification of
these target parameters is covered with examples in Sections 3.5 and 4.6.
When the definition of the target parameter is based on a working marginal structural model,
the vector of coefficients (denoted by α) of the working model defines the target parameter.
The definition of these coefficients relies on the specification of a particular weighting function
when the working model is not a correct model (see Neugebauer and van der Laan 2007 for
details). This weighting function is set to the constant function of 1 in this package. The
corresponding true value of the coefficients α can then be approximated by running a stan-
dard (unweighted) regression routine applied to simulated counterfactual data observations.

Journal of Statistical Software 13

The following types of working models, denoted by m(), can be defined with the function
set.targetMSM():

• The working linear or logistic model for the expectation of one outcome node under
intervention d, possibly conditional on baseline node(s) V , where a baseline node is any
node preceding the earliest node that is intervened upon, i.e., E(Yd | V):

m(d, V | α).

Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on the mean CD4 count measured at one point in time.

• The working linear or logistic model for the expectation vector of measurements of a
time-varying outcome node, possibly conditional on baseline node(s) V , i.e.,
E(Yd(t) | V):

m(t, d, V | α), for t = 0, 1,

Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on survival probabilities over time.

• The logistic working model for discrete-time hazards, i.e., for the probabilities that a
measurement of a time-varying outcome node of type EFU = TRUE is equal to 1 under
intervention d, given that the previous measurement of the time-varying outcome node
under intervention d is equal to 0, possibly conditional on baseline node(s) V , i.e.,
E(Yd(t) | Yd(t− 1) = 0, V):

m(t, d, V), for t = 0, 1,

Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on discrete-time hazards of death over time.

Examples of the specification of the above target parameters are provided in Sections 3.5
and 4.6. As shown above, the working MSM formula m() can be a function of t, V and
d, where d is a unique identifier of each intervention regimen. In Sections 3.5 and 4.6 we
describe in detail how to specify such identifiers for d as part of the action function call.
Also note that the working MSM formula, m, may reference time-varying nodes using the
square-bracket syntax introduced in Section 2.3, as long as all such instances are embedded
within the syntax S(...). Example use of this syntax is provided in Section 4.6 (Example 2
of set.targetMSM()).

2.6. Simulating data and evaluating the target causal parameter

The simcausal package can simulate two types of data: (1) observed data, sampled from the
(pre-intervention) distribution specified by the structural equation model and (2) counter-
factual data, sampled from one or more post-intervention distributions defined by actions
on the structural equation model. Both types of data are simulated by invoking the sim()
function and the user can set the seed for the random number generator using the argument
rndseed. The examples showing how to simulate observed data are provided in Sections 3.2
and 4.2, whereas the examples showing how to simulate counterfactual data are provided in
Sections 3.4 and 4.4.

14 simcausal: Causal Simulation Package in R

We note that two types of structural equation models can be encoded with the ‘DAG’ object:
(1) models where some or all nodes are defined by specifying the “time” argument t to the
node() function, or (2) models where the argument t is not used for any of the nodes. For
the first type of structural equation models, the simulated data can be structured in either
long or wide formats. A dataset is considered to be in wide format when each simulated
observation of the complete sequence of nodes is represented by only one row of data, with
each time-varying node represented by columns spanning distinct values of t. In contrast,
for a dataset in long format, each simulated observation is typically represented by multiple
rows of data indexed by distinct values of t and each time-varying node represented by a
single column. The format of the output data is controlled by setting the argument wide
of the sim() function to TRUE or FALSE. The default setting for sim() is to simulate data
in wide format, i.e., wide = TRUE. An example describing these two formats is provided in
Section 4.5.
In addition, as previously described, for nodes representing the occurrence of end of follow-up
events (i.e., censoring or outcome nodes declared with EFU = TRUE), the value of 1 indicates
that, during data simulation, by default, all values of subsequent nodes (including the outcome
nodes) are set to missing (NA). To instead impute these missing values after a particular end
of follow-up event occurs (typically the outcome event) with the last time point value carried
forward (LTCF) method, the user must set the argument LTCF of the sim() function to the
name of the EFU-type node that represents the end of follow-up event of interest. This will
result in carrying forward the last observed measurement value for all time-varying nodes,
after the value of the EFU node whose name is specified by the LTCF argument is observed
to be 1. For additional details see the package documentation for the function sim().
In the last step of a typical workflow, the function eval.target() is generally invoked for
estimation of the true value of a previously defined target causal parameter. The true value
is estimated using counterfactual data simulated from post-intervention distributions. The
function eval.target() can be called with either previously simulated counterfactual data,
specified by the argument data or a sample size value, specified by the argument n. In the
latter case, counterfactual data with the user-specified sample size will be simulated first.

3. Simulation study with single time point interventions

The following examples describe a typical workflow for specifying a structural equation model,
defining various interventions, simulating observed and counterfactual data, and calculating
various causal target parameters. The structural equation model chosen here illustrates a
common point treatment problem in which one is interested in evaluating the effect of an
intervention on one treatment node on a single outcome node using observational data with
confounding by baseline covariates. In addition, these examples demonstrate the plotting
functionality of the simcausal package that builds upon the igraph R package (Csardi and
Nepusz 2006) to visualize the directed acyclic graph (DAG; Pearl 1995, 2009, 2010a) implied
by the structural equation model encoded in the ‘DAG’ object.
We also undertake an approach similar to the one described in Elwert (2013) and use the
following examples to highlight some of the differences between the non-parametric structural
equation models (Pearl 2009) and the traditional linear structural equation models based on
the LISREL framework (Bollen 1989). Many traditional applications of structural equation

Journal of Statistical Software 15

modeling are devoted to addressing the problem of the measurement in the exposure, and
more precisely, to address problems in which the true exposure of interest is a latent variable,
such as talent, motivation or political climate that cannot be observed directly, but that is
instead measured via some noisy and correlated proxies. Hence, the LISREL framework is
frequently applied to formally assess the causal effects of such latent variables. However, the
primary intended goal of simcausal is not to simulate such measurement error data, even
though one could adapt simcausal for that purpose. Instead, our package specifically focuses
on data simulation for the purpose of evaluating estimation methods for assessing the effect of
exposures that can be observed directly. Additionally, one may also use simcausal to simulate
data problems with latent variables that might impact the observed exposures of interest.

3.1. Specifying parametric structural equation models in simcausal
Suppose that we want to simulate data that could be generated in a hypothetical study
evaluating the effect of receiving school vouchers on mean test scores based on a sample of
students. We start by assuming that a latent covariate I represents the level of subject’s
true and unobserved intelligence, where I is categorical and its distribution is defined by the
node named "I" in the code example below. We also assume that I directly influences the
values of the three observed baseline covariates W = (W1,W2,W3) (nodes "W1", "W2" and
"W3" below) and we define the distribution of each W conditional on I. That is, the observed
baseline covariates in W will be correlated, since all three depend on a common and latent
parent I. We now let A (node "A" below) define the observed binary exposure (receiving
school vouchers), where the probability of success for A is defined as the following logit-linear
function2 of W :

logit(P(A = 1|W)) = α0 + γAW,

for W = (W1,W2,W3)>, α0 = 4.2 and γA = (−0.5, 0.1, 0.2).
That is, the above model assumes that A is directly influenced by the observed variable W ,
while the latent I has no direct influence on A. We also emphasize that we want to study
the effect of intervening on the observed variable(s), such as A, whereas in the traditional
measurement error model the focus might have been on modeling the effect of the latent
varible I on some observed outcome(s). The following example code defines the distributions
of (I,W,A). Specifically, we use the pre-defined R functions rcat.b1, rnorm, runif and
rbern to define the latent categorical node I, normal node W1, uniform node W2 and Bernoulli
nodes W3 and A, respectively3. We also note that implicit in the specification of these nodes
is the specification of independent exogenous errors (disturbances), whose distributions are
defined by the distr arguments as shown below.

R> library("simcausal")
R> D <- DAG.empty()
R> D <- D +
+ node("I", distr = "rcat.b1",
+ probs = c(0.1, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1)) +
+ node("W1", distr = "rnorm",

2logit(x) = log[x/(1 − x)]
3For details and examples on writing sampling functions for arbitrary distributions see Section 3.6. We also

refer to Section 3.6 for a description on how to specify node formulas (distributional parameters), such as, the
R expressions specified by the probs, mean, sd, min, max and prob arguments to the node() function.

16 simcausal: Causal Simulation Package in R

+ mean = ifelse(I == 1, 0, ifelse(I == 2, 3, 10)) + 0.6 * I, sd = 1) +
+ node("W2", distr = "runif", min = 0.025 * I, max = 0.7 * I) +
+ node("W3", distr = "rbern",
+ prob = plogis(-0.5 + 0.7 * W1 + 0.3 * W2 - 0.2 * I)) +
+ node("A", distr = "rbern",
+ prob = plogis(4.2 - 0.5 * W1 + 0.1 * W2 + 0.2 * W3))

Similarly, we assume that the outcome Y is influenced by an independent latent error UY ∼
N(0, 1), and we use the following code example to show how one might explicitly define UY
using a node named "U.Y"4:

R> D <- D + node("U.Y", distr = "rnorm", mean = 0, sd = 1)

The following example defines the outcome Y (node named "Y") by using the following linear
structural equation:

Y = β0 + β1A+ β2I + γYW + UY ,

where β0 = −0.5, β1 = 1.2, β2 = 0.2 and γY = (0.1, 0.3, 0.2).
Note that in this example, we are assuming that the effect of exposure A on Y is the same
for every strata of W and I (i.e., a homogeneous treatment effect). We also note that the
distribution of the node Y is defined below as degenerate (distr = "rconst"), since we
explicitly define its error term with the above node "U.Y". That is, the following example uses
a pre-defined R function rconst, which puts mass one on the value of the node() function
argument const:

R> D <- D +
+ node("Y", distr = "rconst", const = -0.5 + 1.2 * A + 0.2 *
+ I + 0.1 * W1 + 0.3 * W2 + 0.2 * W3 + U.Y)

Note that the names of all user-defined endogenous latent nodes must be specified within the
set.DAG() function via the argument latent.v, as shown in this example:

R> Dset1 <- set.DAG(D, latent.v = c("I", "U.Y"))

Running the code above results in implicitly assigning a sampling order (temporal order)
to each node – based on the order in which the nodes were added to the ‘DAG’ object D.
Alternatively, one can use the optional node() argument order to explicitly specify the integer
value of the sampling order of each node, as described in more detail in the documentation for
the node() function. The resulting internal representation of the structural equation model
encoded by the ‘DAG’ object Dset1 can be examined as follows:

R> str(Dset1)
4In simcausal, such disturbances would typically be defined implicitly as representing mutually independent

exogenous variables, as shown in the previous examples of node specification. We can however also define them
explicitly as endogenous variables. For example, this can be done for the purpose of defining non-independent
error terms. For simplicity here, we demonstrate how such error terms can be defined explicitly and refer
the reader to the previous Section 2.1 and help files for a descriptions of 3 alternative methods for defining
non-independent errors.

Journal of Statistical Software 17

In the example above, we are interested in the causal target parameter defined as the average
treatment effect (ATE) of school vouchers on mean test scores, which is generally defined in
the NPSEM framework as E(Y1 − Y0). Analytically, one can show that in the simple SEM
defined above, the ATE is equal to the coefficient β1 (Pearl 2012).
Our example so far illustrates a scenario typical of the linear SEM literature in which the
effect of interest corresponds with a coefficient from one of the structural equations. We now
illustrate other more complex scenarios in which the effect of interest (ATE) is not equal to
one particular structural equation coefficient. In the following example, we modify the above
SEM for Y and allow for the effect of treatment on Y to vary by strata of W3:

Y = β0 + β1A+ β∗1(AW3) + β2I + γYW + UY ,

where β0 = −0.5, β1 = 1.2, β∗1 = −0.5, β2 = 0.2 and γY = (0.2, 0.2, 0.2). Note that in
this example we moved away from the classical linear structural model for Y , specifically, we
allowed for the causal effect of A on Y to vary by subject depending on their value of W3.
Finally, we note that whenever the node named "Y" is added again to the same ‘DAG’ object
D, simcausal automatically overwrites the previously defined distribution of Y with the one
given by the new node() function call, as demonstrated below.

R> D <- D +
+ node("Y", distr = "rconst", const = -0.5 + 1.2 * A - 0.5 *
+ (A * W3) + 0.2 * I + 0.2 * (W1 + W2 + W3) + U.Y)
R> Dset2 <- set.DAG(D, latent.v = c("I", "U.Y"))

Note that for the above data generating distribution specified by the object Dset2, the ATE
(E(Y1 − Y0)) is no longer equal to β1, but is rather equal to β1 + β∗1E(W3) (proof not shown,
but easily derived by following the same logic as in the previous example).
For our final example shown below, we re-define Y as a nonlinear function of the same parent
nodes used in the previous two examples:

Y = β1A+ β2(W 2
1 +W 3

2 /10 +W3) + β3|UY |+ β4I
2+

β5

∣∣∣∣ 1
sin(UYW2 +A)

∣∣∣∣hY (UY ,W) + β6(1− hY (UY ,W)),

where hY (UY ,W) = I(|1/sin(UYW2)| ≤ 10), β1 = 1.2, β2 = 0.05, β3 = 0.7, β4 = 0.002,
β5 = 0.02 and β6 = 5. Note that in this model for the outcome Y , the analytic derivation
of the ATE becomes intractable. However, one can use simcausal to find a Monte Carlo
approximation of the ATE from simulated counterfactual data, as shown in Section 3.5.

R> D <- D +
+ node("Y", distr = "rconst",
+ const = 1.2 * A + 0.05 * (W1^2 + W2^3 / 10 + W3) + 0.7 * abs(U.Y) +
+ 0.002 * I^2 + 0.02 * abs(1 / sin(U.Y * W2 + A)) *
+ (abs(1 / sin(U.Y * W2)) <= 10) + 5 * (abs(1 / sin(U.Y * W2)) > 10))
R> Dset3 <- set.DAG(D, latent.v = c("I", "U.Y"))

We note that all three of the above structural equations for Y depend on exactly the same
variables, namely, (A,W, I). Therefore, the three parameterizations of the SEM specified by

18 simcausal: Causal Simulation Package in R

I

W1

W2

W3

A

U.Y

Y

Figure 3: Graphical representation of the structural equation model using a DAG, where the
latent nodes "I" and "U.Y" are enclosed in circles.

the above objects Dset1, Dset2 and Dset3 are all represented by the same NPSEM and the
same DAG in Figure 3. The DAG in Figure 3 was automatically generated by calling the
function plotDAG. The plotting is accomplished by using the visualization functionality from
the igraph package (Csardi and Nepusz 2006). The directional arrows (solid and dashed)
represent the functional dependencies in the structural equation model. Specifically, the node
of origin of each arrow is an extracted node name from the node formula(s). The user-specified
latent nodes are surrounded by circles, and each functional dependency that originates at a
latent node is displayed via a dashed directional arrow5.
The above alternative examples for specifying the outcome variable Y also demonstrate how
simcausal can be applied for defining a variety of functional and distributional relationships
between the model variables, including those that can be specified by the traditional linear
structural equation models. We have also demonstrated that our package can be used for
defining the SEM with endogenous latent variables. The above examples also highlight the
merit of defining the target causal parameters in a way that remains meaningful for any
parametric specification of the SEM. As we demonstrate in Section 3.3 below, our package
provides exactly this type of functionality, allowing the user to define and evaluate various
causal target parameters as functions of the counterfactual data distribution.

3.2. Simulating observed data (sim)

Simulating observed data is accomplished by calling the function sim() and specifying its
arguments DAG and n that indicate the causal model and sample size of interest. Below is an
example of how to simulate an observed dataset with 10,000 observations using the causal
model defined in the previous section. The output is a ‘data.frame’ object.

R> Odat <- sim(DAG = Dset3, n = 10000, rndseed = 123)

The format of the output dataset is easily understood by examining the first row of the
‘data.frame’ returned by the sim() function. Note that the latent variables "I" and "U.Y"
are absent from the simulated data, as shown below.

R> Odat[1,]
5Note that the appearance of the resulting diagram can be customized with additional arguments, as

demonstrated in the simcausal package vignette (Sofrygin et al. 2017b).

Journal of Statistical Software 19

ID W1 W2 W3 A Y
1 1 3.705826 0.1686546 1 1 7.080206

3.3. Specifying interventions (+ action)

The example below defines two actions on the treatment node. The first action named
"A1" consists in replacing the distribution of the treatment node "A" with the degenerate
distribution at value 1. The second action named "A0" consists in replacing the distribution
of the treatment node "A" with the degenerate distribution at value 0. As shown below, these
interventions are defined by invoking the + action syntax on the existing ‘DAG’ object. This
syntax automatically adds and saves the new intervention object within the original ‘DAG’
object, without overwriting it.

R> A1 <- node("A", distr = "rbern", prob = 1)
R> Dset3 <- Dset3 + action("A1", nodes = A1)
R> A0 <- node("A", distr = "rbern", prob = 0)
R> Dset3 <- Dset3 + action("A0", nodes = A0)

The added actions can be examined by looking at the result of the call A(Dset). Note that
A(Dset) returns a list of ‘DAG.action’ objects, with each ‘DAG.action’ encoding a particular
post-intervention distribution, i.e., it is a modified copy of the original ‘DAG’ object, where
the original distribution of the node "A" is replaced with the degenerate distribution at value
0 or 1, for actions "A0" and "A1", respectively.

R> names(A(Dset3))
R> class(A(Dset3)[["A0"]])

3.4. Simulating counterfactual data (sim)

Simulating counterfactual data is accomplished by calling the function sim() and specifying
its arguments DAG, actions and n to indicate the causal model, interventions, and sample
size of interest. Counterfactual data can be simulated for all actions stored in the ‘DAG’ object
or a subset by setting the actions argument to the vector of the desired action names.
The example below shows how to use the sim() function to simulate 100,000 observations
for each of the two actions, "A1" and "A0". These actions were defined as part of the ‘DAG’
object Dset above. The call to sim() below produces a list of two named ‘data.frame’
objects, where each ‘data.frame’ object contains observations simulated from the same post-
intervention distribution defined by one particular action only.

R> Xdat1 <- sim(DAG = Dset3, actions = c("A1", "A0"), n = 100000,
+ rndseed = 123)
R> names(Xdat1)
R> nrow(Xdat1[["A1"]])
R> nrow(Xdat1[["A0"]])

The format of the output list is easily understood by examining the first row of each ‘data.frame’
object:

20 simcausal: Causal Simulation Package in R

R> Xdat1[["A1"]][1,]
R> Xdat1[["A0"]][1,]

3.5. Defining and evaluating various causal target parameters

Causal parameters defined with set.targetE()

The first example below defines the causal quantity of interest as the expectation of node Y
under action "A1", i.e., E(Y1):

R> Dset3 <- set.targetE(Dset3, outcome = "Y", param = "A1")

The true value of the above causal parameter is now evaluated by calling the function
eval.target() and passing the previously simulated counterfactual data object Xdat1.

R> eval.target(Dset3, data = Xdat1)$res

Alternatively, eval.target() can be called without the simulated counterfactual data, spec-
ifying the sample size argument n instead. In this case a counterfactual dataset with the
user-specified sample size is simulated first.

R> eval.target(Dset3, n = 1e+05, rndseed = 123)$res

The example below defines the causal target parameter as the ATE on the additive scale, i.e.,
the expectation of Y under action "A1" minus its expectation under action "A0", given by
E(Y1 − Y0):

R> Dset3 <- set.targetE(Dset3, outcome = "Y", param = "A1 - A0")
R> eval.target(Dset3, data = Xdat1)$res

Diff_Y
1.281203

Similarly, the ATE on the multiplicative scale given by E(Y1)/E(Y0) can be evaluated as
follows:

R> Dset3 <- set.targetE(Dset3, outcome = "Y", param = "A1 / A0")
R> eval.target(Dset3, data = Xdat1)$res

Causal parameters defined with set.targetMSM()

To specify the MSM target causal parameter, the user must provide the following arguments
to set.targetMSM(): (1) the ‘DAG’ object that contains all and only the actions of interest;
(2) outcome, the name of the outcome node (possibly time-varying); (3) for a time-varying
outcome node, the vector of time points t that index the outcome measurements of interest;
(4) form, the regression formula defining the working MSM; (5) family, the working model
family that is passed on to glm, e.g., family = "binomial" or family = "gaussian" for a

Journal of Statistical Software 21

logistic or a linear working model; and (6) for time-to-event outcomes, the logical flag hazard
that indicates whether the working MSM describes discrete-time hazards (hazard = TRUE)
or survival probabilities (hazard = FALSE).
In the examples above, the two actions "A1" and "A0" are defined as deterministic static
interventions on the node "A", setting it to either constant 0 or 1. Thus, each of these two
interventions is uniquely indexed by the post-intervention value of the node "A" itself. In the
following example, we instead introduce the variable d ∈ {0, 1} to explicitly index each of the
two post-intervention distributions when defining the two actions of interest. We then define
the target causal parameter as the coefficients of the following linear marginal structural
model m(d | α) = α0 + α1d. As expected, the estimated true value for α1 obtained below
corresponds exactly with the estimated value for the ATE on the additive scale obtained
above by running set.targetE() with the parameter param = "A1 - A0".
As just described, we now redefine the actions "A1" and "A0" by indexing the intervention
node formula (the distributional parameter prob) with parameter d before setting its values
to 0 or 1 by introducing an additional new argument named d into the action function call.
This creates an action-specific attribute variable d whose value uniquely identifies each of
the two actions and that will be included as an additional column variable to the simulated
counterfactual data sets.

R> newA <- node("A", distr = "rbern", prob = d)
R> Dset3 <- Dset3 + action("A1", nodes = newA, d = 1)
R> Dset3 <- Dset3 + action("A0", nodes = newA, d = 0)

Creating such an action-specific attribute d allows it to be referenced in the MSM regression
formula as shown below:

R> msm.form <- "Y ~ d"
R> Dset3 <- set.targetMSM(Dset3, outcome = "Y", form = msm.form,
+ family = "gaussian")
R> msm.res <- eval.target(Dset3, n = 100000, rndseed = 123)
R> msm.res$coef

(Intercept) d
7.385276 1.281203

3.6. Defining node distributions
To facilitate the comprehension of this subsection, we note that, in the simcausal package,
simulation of observed or counterfactual data follows the temporal ordering of the nodes that
define the DAG object and is vectorized. More specifically, the simulation of a dataset with
sample size n is carried out by first sampling the vector of all n observations of the first node,
before sampling the vector of all n observations of the second node and so on, where the
node ranking is defined by the temporal ordering that was explicitly or implicitly specified by
the user during the creation of the DAG object (see Section 2.3 for a discussion of temporal
ordering).
The distribution of a particular node is specified by passing the name of an evaluable R
function to the distr argument of the function node(). Such a distribution function must

22 simcausal: Causal Simulation Package in R

implement the mapping of n independent realizations of the parent nodes into n independent
realizations of this node. In general, any node with a lower temporal ordering can be defined
as a parent. Thus, such a distribution function requires an argument n, but will also typically
rely on additional input arguments referred to as distributional parameters. In addition, the
output of the distribution function must also be a vector of length n. Distributional param-
eters must be either scalars or vectors of n realizations of summary measures of the parent
nodes. The latter types of distributional arguments are referred to as the node formula(s)
because they are specified by evaluable R expressions. Distributional parameters are passed
as named arguments to the node() function so they can be mapped uniquely to the relevant
argument of the function that is user-specified by the distr argument of the node() function
call. The node formula(s) of any given node may invoke the name(s) of any other node(s)
with a lower temporal order value. The parents of a particular node are thus defined as the
collection of nodes that are referenced by its node formula(s). Note that unlike the values
of distributional parameters, the value of the argument n of the distr function is internally
determined during data simulation and is set to the sample size value passed to the sim()
function by the user.
For example, as shown below, the pre-written wrapper function for the Bernoulli distribution
rbern is defined with two arguments, n and prob. When defining a node with the distr
argument set to "rbern", only the second argument must be explicitly user-specified by a
distributional parameter named prob in the call to the node() function, e.g., node("N1",
distr = "rbern", prob = 0.5). The argument prob can be either a numeric constant as
in the previous example or an evaluable R expression. When prob is a numeric constant,
the distribution function rbern returns n iid realizations of the Bernoulli random variable
with probability prob. When prob is an R expression (e.g., see the definition of node "W3"
in Section 3.1) that involves parent nodes, the prob argument passed to the rbern function
becomes a vector of length n. The value of each of its component is determined by the
R expression evaluated using one of the n iid realizations of the parent nodes simulated
previously. Thus, the resulting simulated independent observations of the child node (e.g.,
"W3" in Section 3.1) are not necessarily identically distributed if the vector prob contains
distinct values. We note that the R expression in the prob argument is evaluated in the
environment containing the simulated observations of all previous nodes (i.e., nodes with a
lower temporal order value).
To see the names of all pre-written distribution wrapper functions that are specifically opti-
mized for use as distr functions in the simcausal package, invoke distr.list(), as shown
below:

R> distr.list()

[1] "rbern" "rcat.b0" "rcat.b1" "rcat.factor"
[5] "rcategor" "rcategor.int" "rconst" "rdistr.template"

For a template on how to write a custom distribution function, see the documentation
?rdistr.template and rdistr.template, as well as any of the pre-written distribution
functions above. For example, the rbern function below simply wraps around the standard
R function rbinom to define the Bernoulli random variable generator:

R> rbern

Journal of Statistical Software 23

function (n, prob)
{

rbinom(n = n, prob = prob, size = 1)
}
<environment: namespace:simcausal>

Another example on how to write a custom distribution function to define a custom left-
truncated normal distribution function based on the standard R function rnorm with argu-
ments mean and sd is demonstrated below. The truncation level is specified by an additional
distributional parameter minval, with default value set to 0.

R> rnorm_trunc <- function(n, mean, sd, minval = 0) {
+ out <- rnorm(n = n, mean = mean, sd = sd)
+ minval <- minval[1]
+ out[out < minval] <- minval
+ out
+ }

The example below makes use of this function to define the outcome node "Y" with positive
values only:

R> Dmin0 <- DAG.empty()
R> Dmin0 <- Dmin0 +
+ node("W", distr = "rbern", prob = plogis(-0.5)) +
+ node("A", distr = "rbern", prob = plogis(-0.5 - 0.3 * W)) +
+ node("Y", distr = "rnorm_trunc", mean = 1.2 * A + 0.3 * W, sd = 10)
R> Dmin0set <- set.DAG(Dmin0)

In the next example, we overwrite the previous definition of node "Y" to demonstrate how
alternative values for the truncation parameter minval may be passed by the user as part of
the node() function call:

R> Dmin0 <- Dmin0 +
+ node("Y", distr = "rnorm_trunc",
+ mean = 1.2 * A + 0.3 * W, sd = 10, minval = 10)
R> Dmin10set <- set.DAG(Dmin0)

Finally, we illustrate how the minval argument can also be defined as a function of parent
node realizations:

R> Dmin0 <- Dmin0 +
+ node("Y", distr = "rnorm_trunc",
+ mean = 1.2 * A + 0.3 * W, sd = 10, minval = ifelse(A == 0, 5, 10))
R> Dminset <- set.DAG(Dmin0)

As just described, the distributional parameters defining a particular node distribution can
be evaluable R expressions, referred to as node formulas. These expressions can contain
any built-in or user-defined R functions. By default, any user-defined function inside such

24 simcausal: Causal Simulation Package in R

an R expression is assumed non-vectorized, except for functions from the simcausal built-in
list of known vectorized functions (this list can be printed by calling vecfun.all.print()).
We note that the simulation time can often be significantly improved by using vectorized
user-defined node formula functions. For example, to register a new user-defined vectorized
function "funname", which is not part of the built-in vectorized function list, the user may
call vecfun.add("funname"). We refer to the package vignette (Sofrygin et al. 2017b) for
additional details and examples on how to write custom vectorized node formula functions.
We also refer to the same vignette for a simulation demonstrating the performance gains as
a result of vectorization.

4. Simulation study with multiple time point interventions
In this example we replicate results from the longitudinal data simulation protocol used in
two published manuscripts (Neugebauer et al. 2014, 2015). We first describe the structural
equation model that implies the data generating distribution of the observed data, with time-
to-event outcome, as reported in Section 5.1 of Neugebauer et al. (2015). We then show how
to specify this model using the simcausal R interface, simulate observed data, define static and
dynamic intervention, simulate counterfactual data, and calculate various causal parameters
based on these interventions. In particular, we replicate estimates of true counterfactual risk
differences under the dynamic interventions reported in Neugebauer et al. (2014), as shown
in Section 4.6 (Examples 1 for set.targetE() and for set.targetMSM()).

4.1. Specifying the structural equation model
In this section, we demonstrate how to specify the structural equation model described by
the following longitudinal data simulation protocol (Section 5.1 of Neugebauer et al. 2015):

1. L2(0) ∼ B(0.05) where B denotes the Bernoulli distribution (e.g., L2(0) represents a
baseline value of a time-dependent variable such as low versus high hemoglobin A1c).

2. If L2(0) = 1 then L1(0) ∼ B(0.5), else L1(0) ∼ B(0.1) (e.g., L1(0) represents a time-
independent variable such as history of cardiovascular disease at baseline).

3. If (L1(0), L2(0)) = (1, 0) then A1(0) ∼ B(0.5), else if (L1(0), L2(0)) = (0, 0) then A1(0) ∼
B(0.1), else if (L1(0), L2(0)) = (1, 1) then A1(0) ∼ B(0.9), else if (L1(0), L2(0)) = (0, 1)
then A1(0) ∼ B(0.5) (e.g., A1(0) represents the binary exposure to an intensified type
2 diabetes pharmacotherapy).

4. For t = 1, . . . , 16 and as long as Y (t− 1) = 0 (by convention, Y (0) = 0):

(a) Y (t) ∼ B
(
(1 + exp (−(−6.5 + L1(0) + 4L2(t− 1) + 0.05∑t−1

j=0 I(L2(j) = 0))))−1
)

(e.g., Y(t) represents the indicator of failure such as onset or progression of albu-
minuria).

(b) If A1(t− 1) = 1 then L2(t) ∼ B(0.1), else if L2(t− 1) = 1 then L2(t) ∼ B(0.9), else
L2(t) ∼ B(min(1, 0.1 + t/16)).

(c) If A1(t− 1) = 1 then A1(t) = 1, else if (L1(0), L2(t)) = (1, 0) then A1(t) ∼ B(0.3),
else if (L1(0), L2(t)) = (0, 0) then A1(t) ∼ B(0.1), else if (L1(0), L2(t)) = (1, 1)
then A1(t) ∼ B(0.7), else if (L1(0), L2(t)) = (0, 1) then A1(t) ∼ B(0.5).

Journal of Statistical Software 25

First, the example below shows how to define the nodes "L2", "L1" and "A1" at time point
t = 0 as Bernoulli random variables, using the distribution function "rbern":

R> library("simcausal")
R> D <- DAG.empty()
R> D <- D +
+ node("L2", t = 0, distr = "rbern", prob = 0.05) +
+ node("L1", t = 0, distr = "rbern",
+ prob = ifelse(L2[0] == 1, 0.5, 0.1)) +
+ node("A1", t = 0, distr = "rbern",
+ prob = ifelse(L1[0] == 1 & L2[0] == 0, 0.5,
+ ifelse(L1[0] == 0 & L2[0] == 0, 0.1,
+ ifelse(L1[0] == 1 & L2[0] == 1, 0.9, 0.5))))

Second, the example below shows how one may use the node() function with node formulas
based on the square bracket function [to easily define the time-varying nodes "Y", "L1" and
"A1" simultaneously for all subsequent time points t ranging from 1 to 16:

R> t.end <- 16
R> D <- D +
+ node("Y", t = 1:t.end, distr = "rbern",
+ prob = plogis(-6.5 + L1[0] + 4 * L2[t - 1] +
+ 0.05 * sum(I(L2[0:(t - 1)] == rep(0, t)))), EFU = TRUE) +
+ node("L2", t = 1:t.end, distr = "rbern",
+ prob = ifelse(A1[t - 1] == 1, 0.1,
+ ifelse(L2[t - 1] == 1, 0.9, min(1, 0.1 + t / 16)))) +
+ node("A1", t = 1:t.end, distr = "rbern",
+ prob = ifelse(A1[t - 1] == 1, 1,
+ ifelse(L1[0] == 1 & L2[t] == 0, 0.3,
+ ifelse(L1[0] == 0 & L2[t] == 0, 0.1,
+ ifelse(L1[0] == 1 & L2[t] == 1, 0.7, 0.5)))))
R> lDAG <- set.DAG(D)

Note that the node() formulas specified with the prob argument above use the generic time
variable t both outside and inside the square-bracket vector syntax. For example, the condi-
tional distribution of the time-varying node "Y" is defined by an R expression that contains the
syntax sum(I(L2[0:(t - 1)] == rep(0, t))), which evaluates to different R expressions,
as t ranges from 0 to 16:

1. sum(I(L2[0] == 0)), for t = 1; and

2. sum(I(L2[0:1] == c(0, 0))), for t = 2, . . . , sum(I(L2[0:16] == c(0, ..., 0))),
for t = 16.

For more details on the specification of node formulas, see Section 3.6.
One can visualize the observed data generating distribution defined in the lDAG object as
shown in Figures 4 by calling plotDAG(). Note that the appearance of the resulting dia-
gram can be customized with additional arguments, as demonstrated in the package vignette
(Sofrygin et al. 2017b).

26 simcausal: Causal Simulation Package in R

L2_0

L1_0

A1_0

Y_1

L2_1

A1_1

Y_2

L2_2

A1_2

Y_3

L2_3

A1_3

Figure 4: Graphical representation of a portion of the structural equation model using a
DAG. Only the nodes indexed by time points lower than or equal to 3 are represented.

4.2. Simulating observed data (sim)
Simulating observed data is accomplished by calling the function sim() and specifying its
arguments DAG and n that indicate the causal model and sample size of interest. Below is an
example of how to simulate an observed dataset with 10, 000 observations using the causal
model defined previously. The output is a ‘data.frame’ object.

R> Odat <- sim(DAG = lDAG, n = 10000, rndseed = 123)
R> Odat[1,]

4.3. Specifying interventions (+ action)

Dynamic interventions
The following two dynamic interventions on the time-varying node "A1" of the structural
equation model encoded by the previously defined lDAG object were studied in Neugebauer
et al. (2014): “Initiate treatment A1 the first time t that the covariate L2 is greater than or
equal to θ and continue treatment thereafter (i.e., Ā1(t− 1) = 0 and A(t) = 1, A(t + 1) = 1,
. . .)”, for θ = 0, 1. The example below demonstrates how to specify these two dynamic
interventions.
First, we define the list of intervention nodes and their post-intervention distributions. Note
that these distributions are indexed by the attribute theta, whose value is not yet defined:

R> act_theta <- c(
+ node("A1", t = 0, distr = "rbern",
+ prob = ifelse(L2[0] >= theta , 1, 0)),
+ node("A1", t = 1:(t.end), distr = "rbern",
+ prob = ifelse(A1[t - 1] == 1, 1, ifelse(L2[t] >= theta, 1, 0))))

Second, we add the two dynamic interventions to the lDAG object while defining the value of
theta for each intervention:

Journal of Statistical Software 27

R> Ddyn <- lDAG
R> Ddyn <- Ddyn + action("A1_th0", nodes = act_theta, theta = 0)
R> Ddyn <- Ddyn + action("A1_th1", nodes = act_theta, theta = 1)

We refer to the argument theta passed to the + action function as an action attribute.
One can select and inspect particular actions saved in a ‘DAG’ object by invoking the function
A():

R> class(A(Ddyn)[["A1_th0"]])
R> A(Ddyn)[["A1_th0"]]

The distribution of some or all of the intervention nodes that define an action saved within a
‘DAG’ object can be modified by adding a new intervention object with the same action name
to the ‘DAG’ object. The new intervention object can involve actions on only a subset of the
original intervention nodes for a partial modification of the original action definition. For
example, the code below demonstrates how the existing action "A1_th0" with the previously
defined dynamic and deterministic intervention on the node "A1[0]" is partially modified by
replacing the intervention distribution for the node "A1[0]" with a deterministic and static
intervention defined by a degenerate distribution at value 1. Note that the other intervention
nodes previously defined as part of the action "A1_th0" remain unchanged.

R> A(Ddyn)[["A1_th0"]]$A1_0
R> Ddyntry <- Ddyn + action("A1_th0", nodes = node("A1", t = 0,
+ distr = "rbern", prob = 0))
R> A(Ddyntry)[["A1_th0"]]$A1_0

Similarly, some or all of the action attributes that define an action saved within a ‘DAG’
object can be modified by adding a new intervention object with the same action name but
a different attribute value to the ‘DAG’ object. This functionality is demonstrated with the
example below in which the previous value 0 of the action attribute theta that defines the
action named "A1_th0" is replaced with the value 1 and in which a new attribute newparam
is simultaneously added to the previously defined action "A1_th0":

R> A(Ddyntry)[["A1_th0"]]
R> Ddyntry <- Ddyntry + action("A1_th0", nodes = act_theta, theta = 1,
+ newparam = 100)
R> A(Ddyntry)[["A1_th0"]]

Static interventions

Here we diverge from the replication of simulation results presented in Neugebauer et al.
(2014). Instead, we build on the structural equation model introduced in that paper to
illustrate the specification of static interventions on the treatment node "A1". These static
interventions are defined by more or less early treatment initiation during follow-up followed
by subsequent treatment continuation. Each of these static interventions is thus uniquely
identified by the time when the measurements of the time-varying node "A1" switch from
value 0 to 1. The time of this value switch is represented by the parameter tswitch in the

28 simcausal: Causal Simulation Package in R

code below. Note that the value tswitch = 16 identifies the static intervention corresponding
with no treatment initiation during follow-up in our example while the values 0 through
15 represent 16 distinct interventions representing increasingly delayed treatment initiation
during follow-up.
First, we define the list of intervention nodes and their post-intervention distributions. Note
that these distributions are indexed by the attribute tswitch, whose value is not yet defined:

R> `%+%` <- function(a, b) paste0(a, b)
R> Dstat <- lDAG
R> act_A1_tswitch <- node("A1", t = 0:(t.end), distr = "rbern",
+ prob = ifelse(t >= tswitch, 1, 0))

Second, we add the 17 static interventions to the lDAG object while defining the value of
tswitch for each intervention:

R> tswitch_vec <- (0:t.end)
R> for (tswitch_i in tswitch_vec) {
+ abar <- rep(0, length(tswitch_vec))
+ abar[which(tswitch_vec >= tswitch_i)] <- 1
+ Dstat <- Dstat + action("A1_ts" %+% tswitch_i, nodes = act_A1_tswitch,
+ tswitch = tswitch_i, abar = abar)
+ }

Note that in addition to the action attribute tswitch, each intervention is also indexed
by an additional action attribute abar that also uniquely identifies the intervention and
that represents the actual sequence of treatment decisions that defines the intervention, i.e.,
ā(tswitch − 1) = 0, a(tswitch) = 1, . . .:

R> A(Dstat)[["A1_ts3"]]

The purpose of this additional action attribute abar will become clear when we illustrate the
definition of target parameters defined by working MSMs based on these 17 static interventions
in Section 4.6 (Example 2 of set.targetMSM()).

4.4. Simulating counterfactual data (sim)

Simulating counterfactual data is accomplished by calling the function sim() and specifying
its arguments DAG, actions and n to indicate the causal model, interventions, and sample
size of interest. The counterfactual data can be simulated for all actions stored in the ‘DAG’
object or a subset by setting the actions argument to the vector of the desired-action names.
The example below shows how to use the sim() function to simulate 200,000 observations for
each of the two dynamic actions, "A1_th0" and "A1_th1", defined in Section 4.3. The call
to sim() below produces a list of two named ‘data.frame’ objects, where each ‘data.frame’
object contains observations simulated from the same post-intervention distribution defined
by one particular action only.

R> Xdyn <- sim(Ddyn, actions = c("A1_th0", "A1_th1"), n = 200000,
+ rndseed = 123)

Journal of Statistical Software 29

The default format of the output list generated by the sim() function is easily understood
by examining the first row of each ‘data.frame’ object:

R> Xdyn[["A1_th0"]][1,]
R> Xdyn[["A1_th1"]][1,]

4.5. Converting a dataset from wide to long format (DF.to.long)

The specification of structural equation models based on time-varying nodes such as the
one described in Section 4.1 allows for simulated (observed or counterfactual) data to be
structured in either long or wide formats. Below, we illustrate these two alternatives. We
note that, by default, simulated (observed or counterfactual) data from the sim() function
are stored in wide format. The data output format from the sim() function can, however, be
changed to the long format by setting the wide argument of the sim() function to FALSE or,
equivalently, by applying the function DF.to.long to an existing simulated dataset in wide
format.
The following code demonstrates the default data formatting behavior of the sim() function
and how this behavior can be modified to generate data in the long format:

R> Odat.wide <- sim(DAG = lDAG, n = 1000, wide = TRUE, rndseed = 123)
R> Odat.wide[1:2, 1:16]

ID L2_0 L1_0 A1_0 Y_1 L2_1 A1_1 Y_2 L2_2 A1_2 Y_3 L2_3 A1_3 Y_4 L2_4 A1_4
1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 NA NA
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R> Odat.long <- sim(DAG = lDAG, n = 1000, wide = FALSE, rndseed = 123)
R> Odat.long[1:7,]

ID L1 t L2 A1 Y
1 1 0 0 0 0 NA
2 1 0 1 0 0 0
3 1 0 2 0 0 0
4 1 0 3 1 0 0
5 1 0 4 NA NA 1
6 2 0 0 0 0 NA
7 2 0 1 0 0 0

Note that the first observation in Odat.wide contains NAs following Y_4. As described in
Section 2.3, this is due to the fact that the node "Y" was defined earlier as an end of follow-up
(EFU) event (using argument EFU = TRUE). That is, Y_4 = 1 indicates that the first subject
has reached the end of the follow-up at time point t = 4 (i.e., was right-censored), therefore,
all of the subsequent columns following Y_4 are replaced with NA (missing) value. This is
also the reason why we only see 5 rows of data on the subject with ID = 1 in the above long
format dataset Odat.long. Also note that in Odat.long, the value of Y is always NA (missing)
for t = 0, since the node Y was only defined for time-points t > 0.

30 simcausal: Causal Simulation Package in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

t

C
ou

nt
er

fa
ct

ua
l s

ur
vi

va
l f

or
 e

ac
h

in
te

rv
en

tio
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

t

C
ou

nt
er

fa
ct

ua
l s

ur
vi

va
l f

or
 e

ac
h

in
te

rv
en

tio
n

●

●

d_theta1
d_theta0

Figure 5: Estimates of the true survival curves under the two dynamic interventions.

4.6. Defining and evaluating various causal target parameters

Causal parameters defined with set.targetE()

Example 1. In the example below, we first define two causal target parameters as two
vectors, each containing the expectations of the node Y[t], for time points t = 1, . . . , 16, under
the post-intervention distribution defined by one of the two dynamic interventions "A1_th0"
and "A1_th1" defined in Section 4.3. Second, we evaluate these target parameters using the
counterfactual data simulated previously in Section 4.4 and we map the resulting estimates of
cumulative risks into estimates of survival probabilities. We also plot the corresponding two
counterfactual survival curves using the simcausal routine plotSurvEst as shown in Figure 5.
Finally, we note that Figure 5 replicates the simulation study results reported in Figure 4 of
Neugebauer et al. (2014).

R> Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 1:16, param = "A1_th1")
R> surv_th1 <- 1 - eval.target(Ddyn, data = Xdyn)$res
R> Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 1:16, param = "A1_th0")
R> surv_th0 <- 1 - eval.target(Ddyn, data = Xdyn)$res
R> plotSurvEst(surv = list(d_theta1 = surv_th1, d_theta0 = surv_th0),
+ xindx = 1:17, ylab = "Counterfactual survival for each intervention",
+ ylim = c(0.75, 1))

Example 2. In the example below, we first define the causal target parameter as the ATE on
the additive scale (cumulative risk differences) for the two dynamic interventions ("A1_th1"
and "A1_th0") defined in Section 4.3 at time point t = 12. Second, we evaluate this target
parameter using the previously simulated counterfactual data from Section 4.4.
ATE on the additive scale:

Journal of Statistical Software 31

R> Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 12,
+ param = "A1_th1 - A1_th0")
R> (psi <- round(eval.target(Ddyn, data = Xdyn)$res, 3))

Diff_Y_12
0.053

We also note that the above result for the ATE (0.053) replicates the simulation result reported
for ψ in Section 5.1 and Figure 4 of Neugebauer et al. (2014), where ψ was defined as the
difference between the cumulative risks of failure at t0 = 12 for the two dynamic interventions
d1 and d0.

Causal parameters defined with set.targetMSM()

In Section 3.5, we described the arguments of the function set.targetMSM() that the user
must specify to define MSM target causal parameters. They include the specification of the
argument form which encodes the working MSM formula. This formula can only be a function
of the time index t, action attributes that uniquely identify each intervention of interest, and
baseline nodes (defined as nodes that precede the earliest intervention node). Both baseline
nodes that are measurements of time-varying nodes and time-varying action attributes must
be referenced in the R expression passed to the form argument within the wrapping syntax
S(...) as illustrated in several examples below.

Example 1. Working dynamic MSM for survival probabilities over time. Here,
we illustrate the evaluation of the counterfactual survival curves E(Ydθ

(t)) for t = 1, . . . , 16
under the dynamic interventions dθ for θ = 0, 1 introduced in Section 4.3 using the following
pooled working logistic MSM (MSM 1):

expit (α0 + α1θ + α2t+ α3tθ) ,

where the true values of the coefficients (αi, i = 0, . . . , 3) define the target parameters of
interest. First, we define these target parameters:

R> msm.form <- "Y ~ theta + t + I(theta * t)"
R> Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, form = msm.form,
+ family = "binomial", hazard = FALSE)

Note that when the outcome is a time-varying node of type EFU, the argument hazard =
FALSE indicates that the working MSM of interest is a model for survival probabilities. The
argument family = "binomial" indicates that the working model is a logistic model. Second,
we evaluate the coefficients of the working model:

R> MSMres1 <- eval.target(Ddyn, n = 10000, rndseed = 123)
R> MSMres1$coef

We also note that no previously simulated counterfactual data were passed as argument
to the function eval.target() above. Instead, the sample size argument n was specified

32 simcausal: Causal Simulation Package in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

t

M
S

M
 S

ur
vi

va
l,

P
(T

>
t)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

t

M
S

M
 S

ur
vi

va
l,

P
(T

>
t)

●

●

MSM_theta1
MSM_theta0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

t

M
S

M
 S

ur
vi

va
l,

P
(T

>
t)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

t

M
S

M
 S

ur
vi

va
l,

P
(T

>
t)

●

●

MSM_theta1
MSM_theta0

ψ=0.053

Figure 6: Survival curve estimates evaluated based on working MSM 1 (left) and saturated
MSM 2 (right).

and the routine will thus first sample n = 10,000 observations from each of the two post-
intervention distributions before fitting the working MSM with these counterfactual data to
derive estimates of the true coefficient values. Alternatively, the user could have passed the
previously simulated counterfactual data. Note however that in this case, the user must either
simulate counterfactual data by calling the sim() function with the argument LTCF = "Y"
or convert the previously simulated counterfactual data with the last time point value carried
forward imputation function doLTCF. Both approaches are described in the simcausal package
vignette in Section 4.7 (Sofrygin et al. 2017b).
The resulting coefficient estimates for MSM 1 can be mapped into estimates of the two
counterfactual survival curves and plotted as shown on the left in Figure 6 using the simcausal
plotSurvEst function.
Next, we modify the previous working model formula by specifying a saturated MSM to
directly replicate the results reported in Figure 4 of Neugebauer et al. (2014) that are based
on a non-parametric MSM approach (MSM 2):

R> msm.form <- "Y ~ theta + as.factor(t) + as.factor(t):theta"
R> Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, formula = msm.form,
+ family = "binomial", hazard = FALSE)
R> MSMres2 <- eval.target(Ddyn, n = 2e+05, rndseed = 123)
R> MSMres2$coef

Finally, we plot the resulting survival curves obtained from MSM 2 as shown on the right in
Figure 6. The resulting estimates of the survival curves replicate those reported in Figure 4
of Neugebauer et al. (2014).

Example 2. Working static MSM for discrete-time hazards over time. Here, we
illustrate the evaluation of discrete-time hazards E(Yā(t)|Yā(t − 1) = 0), for t = 1, . . . , 16
under the 17 static interventions introduced in Section 4.3 using the following pooled working

Journal of Statistical Software 33

logistic MSM:

expit
(
α0 + α1t+ α2

1
t

t−1∑
j=0

a(j) + α3

t−1∑
j=0

a(j)
)
,

where we use the notation ā = (a(0), a(1), . . . , a(16)) to denote the 17 static intervention
regimens on the time-varying treatment node "A1". Note that the time-varying action at-
tribute abar introduced in Section 4.3 directly encodes the 17 treatment regimens values ā
referenced in the MSM working model above. To evaluate the target parameters αj above,
for j = 0, . . . , 3, we first simulate counterfactual data for the 17 static interventions of interest
as follows:

R> Xts <- sim(Dstat, actions = names(A(Dstat)), n = 1000, rndseed = 123)

Second, we define the target parameters and estimate them using the counterfactual data just
simulated as follows:

R> msm.form_1 <- paste0("Y ~ t + ",
+ "S(mean(abar[0:(t - 1)])) + I(t * S(mean(abar[0:(t - 1)])))")
R> Dstat <- set.targetMSM(Dstat, outcome = "Y", t = 1:16, form = msm.form_1,
+ family = "binomial", hazard = TRUE)
R> MSMres <- eval.target(Dstat, data = Xts)
R> MSMres$coef

Note that the working MSM formulas can reference arbitrary summary measures (functions) of
time-varying action attributes such as abar. The square-bracket [syntax can then be used to
identify specific elements of the time-varying action attributes in the same way it can be used
in node formulas to reference particular measurements of time-varying nodes. For example,
the term sum(abar[0:t]) indicates a summation over the elements of the action attribute
abar indexed by time points lower than or equal to value t and the syntax S(abar[max(0,
t - 2)]) creates a summary measure representing time-lagged values of abar that are equal
to abar[0] if t < 2 and to abar[t - 2] if t ≥ 2. Note also that references to time-varying
action attributes in the working MSM formula must be wrapped within a call to the S(...)
function, e.g., Y ~ t + S(mean(abar[0:t])).
The eval.target() function returns a list with the following named attributes: the working
MSM fit returned by a glm function call (msm), the coefficient estimates (coef), the mapping
(S.msm.map) of the formula terms defined by expressions enclosed within the S(...) function
into the corresponding variable names in the design matrix that was used to implement the
regression, and the design matrix (df_long) stored as a list of ‘data.table’ objects from
the R package data.table (Dowle and Srinivasan 2017). Each of these ‘data.table’ objects
contains counterfactual data indexed by a particular intervention. These counterfactual data
are stored in long format with possibly additional new columns representing terms in the
working MSM formula defined by expressions enclosed with the S() function. The design
matrix can be derived by row binding these ‘data.table’ objects.

R> names(MSMres)
R> MSMres$S.msm.map
R> names(MSMres$df_long)
R> MSMres$df_long[["A1_ts2"]]

34 simcausal: Causal Simulation Package in R

0.4

0.6

0.8

1.0

4 8 12 16
t

su
rv

action
A1_ts0

A1_ts1

A1_ts2

A1_ts3

A1_ts4

A1_ts5

A1_ts6

A1_ts7

A1_ts8

A1_ts9

A1_ts10

A1_ts11

A1_ts12

A1_ts13

A1_ts14

A1_ts15

A1_ts16

Figure 7: Survival curve estimates evaluated based on working MSM 2.

Finally, we plot the resulting counterfactual survival curve estimates using the function
survbyMSMterm (source code provided in the supplementary R script), as shown in Figure 7:

R> survMSMh_wS <- survbyMSMterm(MSMres = MSMres, t_vec = 1:16,
+ MSMtermName = "mean(abar[0:(t - 1)])")
R> plotsurvbyMSMterm(survMSMh_wS)

Additional examples of working MSMs are available in the package vignette (Sofrygin et al.
2017b), which includes the examples of dynamic MSMs for discrete-time hazards and dynamic
MSMs that evaluate effect modification by a baseline covariate.

5. Impact of propensity score model misspecification
In this section, we use the simcausal package for replicating a simulation study from Lefebvre
et al. (2008). Specifically, we replicate the results reported in Tables II and IV of that
paper. We first specify the observed data generating distribution using the two structural
equation models corresponding with Scenarios 1 and 3 described in Lefebvre et al. (2008).
Second, for each scenario, we evaluate the true values of the coefficients of the MSM using
counterfactual data and compare them to those reported by Lefebvre et al. (2008). Finally,
for each scenario, we implement the same inverse probability weighting (IPW) estimators of
these MSM coefficients and evaluate their performances using the same two metrics (bias and
mean squared error) as in Lefebvre et al. (2008). We refer to Appendix A for the description
of the details on how the simcausal package was used to conduct this replication study. The R
code that fully reproduces the tables presented in this section is provided in a supplementary
R script.
Our replication results for Scenarios 1 and 3 are reported in Tables 1 and 3, respectively. The
simulation results, as they were originally reported by Lefebvre et al. (2008), are presented in

Journal of Statistical Software 35

Covariates in P(A|L) N A(0)
Bias×10

A(0)
MSE×10

A(1)
Bias×10

A(1)
MSE×10

Confounder(s) only 300 0.531 1.816 0.775 1.672
1000 0.258 0.721 0.361 0.720
10000 0.067 0.134 0.070 0.134

Confounder(s) & 300 0.607 1.710 0.839 1.449
risk factors 1000 0.311 0.714 0.379 0.603

10000 0.053 0.141 0.042 0.121

Table 1: Replication of the simulation results from Lefebvre et al. (2008) for Scenario 1.

Covariates in P(A|L) N A(0)
Bias×10

A(0)
MSE×10

A(1)
Bias×10

A(1)
MSE×10

Lefebvre et al.: Confounder(s) only 300 0.768 1.761 0.889 1.728
1000 0.265 0.761 0.312 0.723

10000 0.057 0.146 0.086 0.120
Lefebvre et al.: Confounder(s) & 300 0.757 1.642 0.836 1.505
risk factors 1000 0.283 0.718 0.330 0.638

10000 0.056 0.139 0.081 0.114

Table 2: Simulation results for Scenario 1 as reported in Table II of Lefebvre et al. (2008).

Covariates in P(A|L) N A(0)
Bias×10

A(0)
MSE×10

A(1)
Bias×10

A(1)
MSE×10

Confounder(s) only 300 −0.179 1.238 0.157 1.102
1000 −0.341 0.413 −0.137 0.363
10000 −0.347 0.054 −0.177 0.046

Confounder(s) & 300 −0.151 1.156 0.110 0.890
risk factors 1000 −0.266 0.348 −0.093 0.271

10000 −0.354 0.050 −0.190 0.034
Confounder(s) & 300 1.397 3.966 2.014 3.854
IVs 1000 0.919 2.016 1.200 1.989

10000 0.438 0.605 0.457 0.595
Confounder(s), 300 1.304 4.010 1.966 3.841
IVs & risk factors 1000 0.936 2.082 1.208 2.027

10000 0.375 0.644 0.422 0.626
Mis-specified 300 2.742 3.203 5.542 5.437

1000 2.598 1.737 5.188 3.739
10000 2.407 0.809 5.009 2.730

Full model 300 1.383 4.028 2.109 3.924
1000 0.934 2.020 1.285 1.926
10000 0.417 0.607 0.435 0.609

Table 3: Replication of the simulation results from Lefebvre et al. (2008) for Scenario 3.

36 simcausal: Causal Simulation Package in R

Covariates in P(A|L) N A(0)
Bias×10

A(0)
MSE×10

A(1)
Bias×10

A(1)
MSE×10

Lefebvre et al.: Confounder(s) only 300 −0.080 1.170 0.099 1.155
1000 −0.371 0.385 −0.035 0.331

10000 −0.368 0.056 −0.203 0.043
Lefebvre et al.: Confounder(s) & 300 −0.110 1.092 0.112 0.865
risk factors 1000 −0.330 0.340 −0.108 0.245

10000 −0.378 0.051 −0.207 0.037
Lefebvre et al.: Confounder(s) & 300 1.611 3.538 2.069 3.841
IVs 1000 0.824 2.063 1.245 2.188

10000 0.241 0.684 0.379 0.622
Lefebvre et al.: Confounder(s), 300 1.600 3.477 2.143 3.598
IVs & risk factors 1000 0.867 2.053 1.170 2.043

10000 0.235 0.676 0.372 0.625
Lefebvre et al.: Mis-specified 300 3.146 3.326 5.591 5.494

1000 2.460 1.700 5.258 3.851
10000 2.364 0.832 4.943 2.705

Lefebvre et al.: Full model 300 1.524 3.648 2.221 3.907
1000 0.878 2.099 1.185 2.099

10000 0.240 0.679 0.377 0.630

Table 4: Simulation results for Scenario 3 as reported in Table IV of Lefebvre et al. (2008).

Tables 2 and 4. We note that our results closely match those originally reported in Lefebvre
et al. (2008).

6. Discussion
In this article we described how our simulation package can be used for creating a wide range
of artificial datasets often encountered in medical and public health applications of causal in-
ference methods. Specifically, we demonstrated that the simcausal R package is a flexible tool
that facilitates the conduct of transparent and reproducible simulation studies. The package
allows the user to simulate complex longitudinal data structures based on structural equa-
tion models using a novel interface which allows concise and intuitive expression of complex
functional dependencies for a large number of nodes. We also argued that such complex simu-
lations are often necessary when one tries to conduct a realistic simulation study that attempts
to replicate a large variety of scenarios one might expect to see from a true data-generating
process. The package allows the user to specify and simulate counterfactual data under var-
ious interventions (e.g., static, dynamic, deterministic, or stochastic). These interventions
may represent exposures to treatment regimens, the occurrence or non-occurrence of right-
censoring events, or of specific monitoring events. The package also enables the computation
of a selected set of user-specified features of the distribution of the counterfactual data that
represent common causal target parameters (the gold standards), such as, treatment-specific
means, average treatment effects and coefficients from working marginal structural models. In
addition, the package provides a flexible graphical component that produces plots of directed
acyclic graphs (DAGs) for observed (or post-intervention) data generating distributions.

Journal of Statistical Software 37

We note that one of the distinguishing features of simcausal is that it allows the user to
define and evaluate a causal target parameter, such as the ATE, that can then serve as the
model-free gold standard. That is, the causal parameter is always the same functional of
the counterfactual data distribution, regardless of the user-selected parameterization of the
SEM. For example, the gold standard defined in this manner provides an objective measure
of bias that does not depend on the modeling assumptions of a specific statistical method.
Furthermore, coupled with a wide variety of possible data generating distributions that may
be specified in simcausal, this package provides statisticians with a powerful tool for testing
the validity and accuracy of various statistical methods. For example, one may use our
package for validating an implementation of a novel statistical method, using the simulated
data with the known truth (the true value of the causal parameter), prior to applying such
an algorithm to real data, in which this truth is unknown. As another example, one may use
simcausal to simulate data from a large variety of data-generating distributions and conduct
a simulation study comparing the properties of different statistical procedures (e.g., bias,
mean-squared error (MSE), asymptotic confidence interval coverage), using the user-selected
causal parameter as the gold standard.

We also demonstrated the functionality of the package with a single time point intervention
simulation study in Section 3 and a complex multiple time point simulation study in Sec-
tion 4. Moreover, we also showed two real-world applications of simcausal in Sections 4 and
5, by replicating some of results of the two previously published simulation studies (Neuge-
bauer et al. 2014, 2015; Lefebvre et al. 2008). The first simulation study by Neugebauer et al.
(2014) was initially conducted as a complement to a real data analysis in order to validate
the claimed theoretical benefits of a new estimator in a simulated setting that was designed
to resemble the data structure collected and used in the real-world study. The second simu-
lation study by Lefebvre et al. (2008) evaluated the impact of the model misspecification of
the treatment mechanism on the MSE for the inverse probability-weighting (IPW) estimator,
where the coefficients of the marginal structural model were used as the target causal quantity.
We note that in both of these instances, we were able to use simcausal to specify the desired
data-generating distribution, then simulate repeated observed data samples, and finally, spec-
ify and evaluate the different causal parameters that were used in these simulation studies.
We also note that the simcausal package vignette (Sofrygin et al. 2017b) contains additional
replication results of the simulation study described by Neugebauer et al. (2014) that evalu-
ated the comparative performance of targeted minimum loss based estimation (TMLE) and
IPW estimation of a causal risk difference between two dynamic treatment regimens.

Finally, we note that the simcausal package is being actively developed and contains several
new features that are beyond the scope of this paper. In particular, recently implemented
functionality allows one to simulate dependent observations using networks (Eckles, Kar-
rer, and Ugander 2017). We refer to Sofrygin, Neugebauer, and van der Laan (2017a) for
additional details. We also note that the implementation of additional functionalities in fu-
ture releases of the simcausal package should further expand its utility for methods research.
Among such possible improvements is the evaluation of additional causal parameters, e.g.,
the average treatment effect on the treated (Holland 1986; Imbens 2004; Shpitser and Pearl
2009), survivorship causal effects (Joffe, Small, and Hsu 2007; Greene, Joffe, Hu, Li, and
Boucher 2013) and direct/indirect effects (Pearl 2001; Petersen, Sinisi, and van der Laan
2006; VanderWeele 2009; VanderWeele and Vansteelandt 2014; Hafeman and VanderWeele
2011).

38 simcausal: Causal Simulation Package in R

Acknowledgments
Funding acknowledgment: This study was partially funded through internal operational funds
provided by the Kaiser Permanente Center for Effectiveness & Safety Research (CESR). This
work was also partially supported through a Patient-Centered Outcomes Research Institute
(PCORI) Award (ME-1403-12506) and an NIH grant (R01 AI074345-07).
Disclaimer: All statements in this report, including its findings and conclusions, are solely
those of the authors and do not necessarily represent the views of the Patient-Centered Out-
comes Research Institute (PCORI), its Board of Governors or Methodology Committee.

References

Alfons A, Templ M, Filzmoser P (2010). “An Object-Oriented Framework for Statistical
Simulation: The R Package simFrame.” Journal of Statistical Software, 37(3), 1–36. doi:
10.18637/jss.v037.i03.

Blaser N, Salazar Vizcaya L, Estill J, Zahnd C, Kalesan B, Egger M, Keiser O, Gsponer T
(2015). “gems: An R Package for Simulating from Disease Progression Models.” Journal
of Statistical Software, 64(10), 1–22. doi:10.18637/jss.v064.i10.

Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates
T, others (2011). “OpenMx: An Open Source Extended Structural Equation Modeling
Framework.” Psychometrika, 76(2), 306–317. doi:10.1007/s11336-010-9200-6.

Boker SM, Neale MC, Maes HH, Spiegel M, Brick TR, Estabrook R, Bates TC, Gore RJ,
Hunter MD, Pritikin JN, Zahery M, Kirkpatrick RM (2014). OpenMx: Multipurpose
Software for Statistical Modeling. R package version 2.0.1, URL http://openmx.psyc.
virginia.edu.

Bollen KA (1989). Structural Equations with Latent Variables. John Wiley & Sons. doi:
10.1002/9781118619179.

Bollen KA, Pearl J (2013). “Eight Myths About Causality and Structural Equation Models.”
In Handbook of Causal Analysis for Social Research, pp. 301–328. Springer-Verlag.

Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T (2006). “Variable
Selection for Propensity Score Models.” American Journal of Epidemiology, 163(12), 1149–
1156.

Burton A, Altman DG, Royston P, Holder RL (2006). “The Design of Simulation Studies in
Medical Statistics.” Statistics in Medicine, 25(24), 4279–4292. doi:10.1002/sim.2673.

Collins LM, Schafer JL, Kam CM (2001). “A Comparison of Inclusive and Restrictive Strate-
gies in Modern Missing Data Procedures.” Psychological Methods, 6(4), 330–351. doi:
10.1037/1082-989x.6.4.330.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. doi:10.1142/s0219525914500064.

http://dx.doi.org/10.18637/jss.v037.i03
http://dx.doi.org/10.18637/jss.v037.i03
http://dx.doi.org/10.18637/jss.v064.i10
http://dx.doi.org/10.1007/s11336-010-9200-6
http://openmx.psyc.virginia.edu
http://openmx.psyc.virginia.edu
http://dx.doi.org/10.1002/9781118619179
http://dx.doi.org/10.1002/9781118619179
http://dx.doi.org/10.1002/sim.2673
http://dx.doi.org/10.1037/1082-989x.6.4.330
http://dx.doi.org/10.1037/1082-989x.6.4.330
http://dx.doi.org/10.1142/s0219525914500064

Journal of Statistical Software 39

Demirtas H (2007). “The Design of Simulation Studies in Medical Statistics by Andrea
Burton, Douglas G. Altman, Patrick Royston and Roger L. Holder, Statistics in Medicine
2006; 25:4279–4292.” Statistics in Medicine, 26(20), 3818–3821. doi:10.1002/sim.2876.

Dowle M, Srinivasan A (2017). data.table: Extension of ‘data.frame’. R package ver-
sion 1.10.4, URL https://CRAN.R-project.org/package=data.table.

Eckles D, Karrer B, Ugander J (2017). “Design and Analysis of Experiments in Net-
works: Reducing Bias from Interference.” Journal of Causal Inference, 5(1). doi:
10.1515/jci-2015-0021.

Elwert F (2013). “Graphical Causal Models.” In Handbook of Causal Analysis for Social
Research, pp. 245–273. Springer-Verlag.

Elwert F, Winship C (2014). “Endogenous Selection Bias: The Problem of Condition-
ing on a Collider Variable.” Annual Review of Sociology, 40, 31–53. doi:10.1146/
annurev-soc-071913-043455.

Fewell Z, Davey Smith G, Sterne JAC (2007). “The Impact of Residual and Unmeasured
Confounding in Epidemiologic Studies: A Simulation Study.” American Journal of Epi-
demiology, 166(6), 646–655.

Fox J (2006). “Teacher’s Corner: Structural Equation Modeling with the sem Package in R.”
Structural Equation Modeling, 13(3), 465–486. doi:10.1207/s15328007sem1303_7.

Fox J, Nie Z, Byrnes J (2014). sem: Structural Equation Models. R package version 3.1, URL
https://CRAN.R-project.org/package=sem.

Glynn A, Quinn K (2007). “Non-Parametric Mechanisms and Causal Modeling.” Techni-
cal report, Department of Government and The Institute for Quantitative Social Sciences
Harvard University.

Greene T, Joffe M, Hu B, Li L, Boucher K (2013). “The Balanced Survivor Aver-
age Causal Effect.” The International Journal of Biostatistics, 9(2), 291–306. doi:
10.1515/ijb-2012-0013.

Hafeman DM, VanderWeele TJ (2011). “Alternative Assumptions for the Identification
of Direct and Indirect Effects.” Epidemiology, 22(6), 753–764. doi:10.1097/ede.
0b013e3181c311b2.

Hill J, Reiter JP (2006). “Interval Estimation for Treatment Effects Using Propensity Score
Matching.” Statistics in Medicine, 25(13), 2230–2256. doi:10.1002/sim.2277.

Hodgson T, Burke M (2000). “On Simulation and the Teaching of Statistics.” Teaching
Statistics, 22(3), 91–96. doi:10.1111/1467-9639.00033.

Holland PW (1986). “Statistics and Causal Inference.” Journal of the American Statistical
Association, 81(396), 945–960. doi:10.2307/2289064.

Imbens GW (2004). “Nonparametric Estimation of Average Treatment Effects under Ex-
ogeneity: A Review.” The Review of Economics and Statistics, 86(1), 4–29. doi:
10.1162/003465304323023651.

http://dx.doi.org/10.1002/sim.2876
https://CRAN.R-project.org/package=data.table
http://dx.doi.org/10.1515/jci-2015-0021
http://dx.doi.org/10.1515/jci-2015-0021
http://dx.doi.org/10.1146/annurev-soc-071913-043455
http://dx.doi.org/10.1146/annurev-soc-071913-043455
http://dx.doi.org/10.1207/s15328007sem1303_7
https://CRAN.R-project.org/package=sem
http://dx.doi.org/10.1515/ijb-2012-0013
http://dx.doi.org/10.1515/ijb-2012-0013
http://dx.doi.org/10.1097/ede.0b013e3181c311b2
http://dx.doi.org/10.1097/ede.0b013e3181c311b2
http://dx.doi.org/10.1002/sim.2277
http://dx.doi.org/10.1111/1467-9639.00033
http://dx.doi.org/10.2307/2289064
http://dx.doi.org/10.1162/003465304323023651
http://dx.doi.org/10.1162/003465304323023651

40 simcausal: Causal Simulation Package in R

Joffe MM, Small D, Hsu CY (2007). “Defining and Estimating Intervention Effects for Groups
That Will Develop an Auxiliary Outcome.” Statistical Science, 22(1), 74–97. doi:10.1214/
088342306000000655.

Kristman V, Manno M, Cote P (2004). “Loss to Follow-Up in Cohort Studies: How Much
Is Too Much?” European Journal of Epidemiology, 19(8), 751–760. doi:10.1023/b:
ejep.0000036568.02655.f8.

Lefebvre G, Delaney JA, Platt RW (2008). “Impact of Mis-Specification of the Treatment
Model on Estimates from a Marginal Structural Model.” Statistics in Medicine, 27(18),
3629–3642. doi:10.1002/sim.3200.

Matsueda RL (2012). “Key Advances in the History of Structural Equation Modeling.” In
R Hoyle (ed.), Handbook of Structural Equation Modeling. Guilford, New York.

Monecke A, Leisch F (2012). “semPLS: Structural Equation Modeling Using Partial Least
Squares.” Journal of Statistical Software, 48(3), 1–32. doi:10.18637/jss.v048.i03.

Moriña D, Navarro A (2014). “The R Package survsim for the Simulation of Simple and
Complex Survival Data.” Journal of Statistical Software, 59(2), 1–20. doi:10.18637/jss.
v059.i02.

Mynbaev K, Martins-Filho C (2015). “Consistency and Asymptotic Normality for a Non-
parametric Prediction under Measurement Errors.” Journal of Multivariate Analysis, 139,
166–188. doi:10.1016/j.jmva.2015.03.003.

Neugebauer R, Schmittdiel JA, van der Laan MJ (2014). “Targeted Learning in Real-
World Comparative Effectiveness Research with Time-Varying Interventions.” Statistics
in Medicine, 33(14), 2480–2520. doi:10.1002/sim.6099.

Neugebauer R, Schmittdiel JA, Zhu Z, Rassen JA, Seeger JD, Schneeweiss S (2015). “High-
Dimensional Propensity Score Algorithm in Comparative Effectiveness Research with Time-
Varying Interventions.” Statistics in Medicine, 34(5), 753–781. doi:10.1002/sim.6377.

Neugebauer R, van der Laan M (2007). “Nonparametric Causal Effects Based on Marginal
Structural Models.” Journal of Statistical Planning and Inference, 137(2), 419–434. doi:
10.1016/j.jspi.2005.12.008.

Oberski D (2014). “lavaan.survey: An R Package for Complex Survey Analysis of Structural
Equation Models.” Journal of Statistical Software, 57(1), 1–27. doi:10.18637/jss.v057.
i01.

Pearl J (1995). “Causal Diagrams for Empirical Research.” Biometrika, 82(4), 669–688.

Pearl J (2001). “Direct and Indirect Effects.” In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, UAI’01, pp. 411–420. Morgan Kaufmann Publishers,
San Francisco.

Pearl J (2009). Causality: Models, Reasoning and Inference. 2nd edition. Cambridge Univer-
sity Press, New York.

http://dx.doi.org/10.1214/088342306000000655
http://dx.doi.org/10.1214/088342306000000655
http://dx.doi.org/10.1023/b:ejep.0000036568.02655.f8
http://dx.doi.org/10.1023/b:ejep.0000036568.02655.f8
http://dx.doi.org/10.1002/sim.3200
http://dx.doi.org/10.18637/jss.v048.i03
http://dx.doi.org/10.18637/jss.v059.i02
http://dx.doi.org/10.18637/jss.v059.i02
http://dx.doi.org/10.1016/j.jmva.2015.03.003
http://dx.doi.org/10.1002/sim.6099
http://dx.doi.org/10.1002/sim.6377
http://dx.doi.org/10.1016/j.jspi.2005.12.008
http://dx.doi.org/10.1016/j.jspi.2005.12.008
http://dx.doi.org/10.18637/jss.v057.i01
http://dx.doi.org/10.18637/jss.v057.i01

Journal of Statistical Software 41

Pearl J (2010a). “An Introduction to Causal Inference.” The International Journal of Bio-
statistics, 6(2). doi:10.2202/1557-4679.1203.

Pearl J (2010b). “The Foundations of Causal Inference.” Sociological Methodology, 40(1),
75–149. doi:10.1111/j.1467-9531.2010.01228.x.

Pearl J (2012). “The Causal Foundations of Structural Equation Modeling.” In R Hoyle (ed.),
Handbook of Structural Equation Modeling. Guilford, New York.

Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ (2012). “Diagnosing and
Responding to Violations in the Positivity Assumption.” Statistical Methods in Medical
Research, 21(1), 31–54. doi:10.1177/0962280210386207.

Petersen ML, Sinisi SE, van der Laan MJ (2006). “Estimation of Direct Causal Effects.”
Epidemiology, 17(3), 276–284. doi:10.1097/01.ede.0000208475.99429.2d.

Pornprasertmanit S, Miller P, Schoemann A (2015). simsem: SIMulated Structural Equation
Modeling. R package version 0.5, URL https://CRAN.R-project.org/package=simsem.

Porter KE, Gruber S, van der Laan MJ, Sekhon JS (2011). “The Relative Performance of
Targeted Maximum Likelihood Estimators.” The International Journal of Biostatistics,
7(1), 1–34. doi:10.2202/1557-4679.1308.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robins JM (1998). “Marginal Structural Models.” In 1997 Proceedings of the American
Statistical Association, Section on Bayesian Statistical Science, pp. 1–10.

Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of
Statistical Software, 48(2), 1–36. doi:10.18637/jss.v048.i02.

Shpitser I, Pearl J (2009). “Effects of Treatment on the Treated: Identification and Gen-
eralization.” In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 514–521. AUAI Press, Montreal.

Sofrygin O, Neugebauer R, van der Laan MJ (2017a). “Conducting Simulations in Causal
Inference with Networks-Based Structural Equation Models.” arXiv:1705.10376 [stat.CO],
URL http://arxiv.org/abs/1705.10376.

Sofrygin O, van der Laan MJ, Neugebauer R (2017b). simcausal: Simulating Longitudinal
Data with Causal Inference Applications. R package version 0.5.4, URL https://CRAN.
R-project.org/package=simcausal.

Væth M, Skovlund E (2004). “A Simple Approach to Power and Sample Size Calculations in
Logistic Regression and Cox Regression Models.” Statistics in Medicine, 23(11), 1781–1792.
doi:10.1002/sim.1753.

VanderWeele TJ (2009). “Marginal Structural Models for the Estimation of Direct and Indi-
rect Effects.” Epidemiology, 20(1), 18–26. doi:10.1097/ede.0b013e31818f69ce.

VanderWeele TJ, Vansteelandt S (2014). “Mediation Analysis with Multiple Mediators.”
Epidemiologic Methods, 2(1), 95–115. doi:10.1515/em-2012-0010.

http://dx.doi.org/10.2202/1557-4679.1203
http://dx.doi.org/10.1111/j.1467-9531.2010.01228.x
http://dx.doi.org/10.1177/0962280210386207
http://dx.doi.org/10.1097/01.ede.0000208475.99429.2d
https://CRAN.R-project.org/package=simsem
http://dx.doi.org/10.2202/1557-4679.1308
https://www.R-project.org/
http://dx.doi.org/10.18637/jss.v048.i02
http://arxiv.org/abs/1705.10376
https://CRAN.R-project.org/package=simcausal
https://CRAN.R-project.org/package=simcausal
http://dx.doi.org/10.1002/sim.1753
http://dx.doi.org/10.1097/ede.0b013e31818f69ce
http://dx.doi.org/10.1515/em-2012-0010

42 simcausal: Causal Simulation Package in R

A. Replicating the simulation study by Lefebvre et al. (2008)
A number of IPW estimators were considered in this simulation study, each estimator de-
fined by a distinct model for the propensity scores P(A(0)|L(0)) and P(A(1)|A(0), L(1)). To
estimate these propensity scores we used the same models presented in Table I of Lefebvre
et al. (2008) for Scenarios 1 and 3. We considered three sample sizes N = 300; 1, 000; and
10, 000, and we report the bias of each IPW estimator, multiplied by 10 (Bias ×10) and the
mean-squared error, also multiplied by 10 (MSE ×10) in Tables 1 and 3.

A.1. Replicating Scenario 1

To carry out the simulation study, we first define a new distribution function rbivNorm for
simulating observations from a bivariate normal distribution with a user-specified mean vector
(specified by the argument mu) and a user-specified covariance matrix (specified by the argu-
ments var1, var2, and rho to represent the diagonal and off-diagonal scalars, respectively).
This new distribution function is based on the Cholesky decomposition of the covariance ma-
trix and independent observations simulated from the standard normal distribution which are
provided by the input argument norms. The argument whichbiv indicates whether the func-
tion should return independent observations from the first or second element of the bivariate
normal vector.

R> rbivNorm <- function(n, whichbiv, norms, mu, var1 = 1, var2 = 1,
+ rho = 0.7) {
+ whichbiv <- whichbiv[1]
+ var1 <- var1[1]
+ var2 <- var2[1]
+ rho <- rho[1]
+ sigma <- matrix(c(var1, rho, rho, var2), nrow = 2)
+ Scol <- chol(sigma)[, whichbiv]
+ bivX <- (Scol[1] * norms[, 1] + Scol[2] * norms[, 2]) + mu
+ bivX
+ }

Second, using this distribution function, we define the structural equation model specified for
data simulation according to Scenario 1 in Lefebvre et al. (2008).

R> `%+%` <- function(a, b) paste0(a, b)
R> Lnames <- c("LO1", "LO2", "LO3", "LC1")
R> D <- DAG.empty()
R> for (Lname in Lnames) {
+ D <- D +
+ node(Lname %+% ".norm1", distr = "rnorm", mean = 0, sd = 1) +
+ node(Lname %+% ".norm2", distr = "rnorm", mean = 0, sd = 1)
+ }
R> D <- D +
+ node("LO1", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ norms = c(LO1.norm1, LO1.norm2), mu = 0) +
+ node("LO2", t = 0:1, distr = "rbivNorm",

Journal of Statistical Software 43

+ whichbiv = t + 1, norms = c(LO2.norm1, LO2.norm2), mu = 0) +
+ node("LO3", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ norms = c(LO3.norm1, LO3.norm2), mu = 0) +
+ node("LC1", t = 0:1,
+ distr = "rbivNorm", whichbiv = t + 1, norms = c(LC1.norm1, LC1.norm2),
+ mu = {
+ if (t == 0) {
+ 0
+ } else {
+ -0.3 * A[t - 1]
+ }
+ }) + node("alpha", t = 0:1, distr = "rconst", const = {
+ if (t == 0) {
+ log(0.6)
+ } else {
+ log(1)
+ }
+ }) + node("A", t = 0:1, distr = "rbern", prob = plogis(alpha[t] +
+ log(5) * LC1[t] + {
+ if (t == 0) {
+ 0
+ } else {
+ log(5) * A[t - 1]
+ }
+ })) + node("Y", t = 1, distr = "rnorm", mean = (0.98 * LO1[t] +
+ 0.58 * LO2[t] + 0.33 * LO3[t] + 0.98 * LC1[t] - 0.37 * A[t]),
+ sd = 1)
R> DAGO.sc1 <- set.DAG(D)

Third, we define the target parameter as the coefficients β1 and β2 of the following correctly
specified marginal structural model:

E[Ya(0),a(1)] = β0 + β1a(0) + β2a(1),

defined by the following four possible static and deterministic interventions (a(0), a(1)) on
the treatment process (A(0), A(1)): (0, 0), (1, 0), (0, 1), and (1, 1).

R> defAct <- function(Dact) {
+ act.At <- node("A", t = 0:1, distr = "rbern", prob = abar[t])
+ Dact <- Dact + action("A00", nodes = act.At, abar = c(0, 0)) +
+ action("A10", nodes = act.At, abar = c(1, 0)) + action("A01",
+ nodes = act.At, abar = c(0, 1)) + action("A11", nodes = act.At,
+ abar = c(1, 1))
+ return(Dact)
+ }
R> Dact.sc1 <- defAct(DAGO.sc1)
R> msm.form <- "Y ~ S(abar[0]) + S(abar[1])"
R> Dact.sc1 <- set.targetMSM(Dact.sc1, outcome = "Y", t = 1,
+ form = msm.form, family = "gaussian")

44 simcausal: Causal Simulation Package in R

Fourth, we evaluate the true values of these MSM coefficients using the eval.target()
function and note that our results closely match the true value of the MSM coefficients
reported in Table II of Lefebvre et al. (2008):

R> repstudy2.sc1.truetarget <- function() {
+ trueMSMreps.sc1 <- NULL
+ reptrue <- 50
+ for (i in (1:reptrue)) {
+ res.sc1.i <- eval.target(Dact.sc1, n = 5e+05)$coef
+ trueMSMreps.sc1 <- rbind(trueMSMreps.sc1, res.sc1.i)
+ }
+ return(trueMSMreps.sc1)
+ }
R> f1name <- "replication_dat/trueMSMreps.sc1.Rdata"
R> if (file.exists(f1name)) {
+ load(f1name)
+ } else {
+ trueMSMreps.sc1 <- repstudy2.sc3.truetarget()
+ save(list = "trueMSMreps.sc1", file = f1name)
+ }
R> trueMSM.sc1 <- apply(trueMSMreps.sc1, 2, mean)
R> trueMSM.sc1

(Intercept) S(abar[0]) S(abar[1])
-5.014196e-05 -2.944023e-01 -3.697096e-01

Note that the true values of the MSM coefficients above were obtained from the averages of
coefficient estimates obtained from several simulated counterfactual data sets. This approach
was implemented to avoid the memory limitation that can be encountered when trying to
simulate a single very large counterfactual data set. Finally, using the R code provided as a
supplementary script file, we replicate the IPW estimation results for Scenario 1 as presented
originally in Table II of Lefebvre et al. (2008).

A.2. Replicating Scenario 3

Next, using the same approach described above, we replicate the simulation results for Sce-
nario 3 reported in Table IV of Lefebvre et al. (2008). We start by defining the structural
equation model specified for data simulation according to Scenario 3 in Lefebvre et al. (2008)
as follows:

R> `%+%` <- function(a, b) paste0(a, b)
R> Lnames <- c("LO1", "LO2", "LO3", "LE1", "LE2", "LE3", "LC1", "LC2",
+ "LC3")
R> D <- DAG.empty()
R> for (Lname in Lnames) {
+ D <- D + node(Lname %+% ".norm1", distr = "rnorm") +
+ node(Lname %+% ".norm2", distr = "rnorm")

Journal of Statistical Software 45

+ }
R> coefAi <- c(-0.1, -0.2, -0.3)
R> sdLNi <- c(sqrt(1), sqrt(5), sqrt(10))
R> for (i in (1:3)) {
+ D <- D + node("LO" %+% i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ mu = 0, params = list(norms = "c(LO" %+% i %+% ".norm1, LO" %+%
+ i %+% ".norm2)")) +
+ node("LE" %+% i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ mu = 0, var1 = 1, var2 = 1, rho = 0.7,
+ params = list(norms = "c(LE" %+% i %+% ".norm1, LE" %+%
+ i %+% ".norm2)")) +
+ node("LC" %+% i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ mu = {
+ if (t == 0) {
+ 0
+ } else {
+ .(coefAi[i]) * A[t - 1]
+ }
+ }, params = list(norms = "c(LC" %+% i %+% ".norm1, LC" %+%
+ i %+% ".norm2)")) +
+ node("LN" %+% i, t = 0:1, distr = "rnorm", mean = 0,
+ sd = .(sdLNi[i]))
+ }
R> D <- D + node("alpha", t = 0:1, distr = "rconst", const = {
+ if (t == 0) {
+ log(0.6)
+ } else {
+ log(1)
+ }
+ }) + node("A", t = 0:1, distr = "rbern", prob = plogis(alpha[t] +
+ log(5) * LC1[t] + log(2) * LC2[t] + log(1.5) * LC3[t] + log(5) *
+ LE1[t] + log(2) * LE2[t] + log(1.5) * LE3[t] + {
+ if (t == 0) {
+ 0
+ } else {
+ log(5) * A[t - 1]
+ }
+ })) + node("Y", t = 1, distr = "rnorm", mean = 0.98 * LO1[t] + 0.58 *
+ LO2[t] + 0.33 * LO3[t] + 0.98 * LC1[t] + 0.58 * LC2[t] + 0.33 *
+ LC3[t] - 0.39 * A[t], sd = 1)
R> DAGO.sc3 <- set.DAG(D)

Similar to Scenario 1, we then define the same four actions on the new ‘DAG’ object before
defining and evaluating the causal target parameter of interest. We note that our results
match the true value of the MSM coefficients reported in Table IV of Lefebvre et al. (2008).
Finally, using the R code provided as a supplementary script file, we replicate the IPW
estimation results for Scenario 3 as presented originally in Table IV of Lefebvre et al. (2008).

46 simcausal: Causal Simulation Package in R

R> Dact.sc3 <- defAct(DAGO.sc3)
R> msm.form <- "Y ~ S(abar[0]) + S(abar[1])"
R> Dact.sc3 <- set.targetMSM(Dact.sc3, outcome = "Y", t = 1,
+ form = msm.form, family = "gaussian")
R> repstudy2.sc3.truetarget <- function() {
+ trueMSMreps.sc3 <- NULL
+ reptrue <- 50
+ for (i in (1:reptrue)) {
+ res.sc3.i <- eval.target(Dact.sc3, n = 5e+05)$coef
+ trueMSMreps.sc3 <- rbind(trueMSMreps.sc3, res.sc3.i)
+ }
+ return(trueMSMreps.sc3)
+ }
R> f2name <- "replication_dat/trueMSMreps.sc3.Rdata"
R> if (file.exists(f2name)) {
+ load(f2name)
+ } else {
+ trueMSMreps.sc3 <- repstudy2.sc3.truetarget()
+ save(list = "trueMSMreps.sc3", file = f2name)
+ }
R> trueMSM.sc3 <- apply(trueMSMreps.sc3, 2, mean)
R> trueMSM.sc3

(Intercept) S(abar[0]) S(abar[1])
0.000301926 -0.313366286 -0.390268304

Affiliation:
Oleg Sofrygin
Division of Research
Kaiser Permanente Northern California
Oakland, CA 94612, United States of America
and
Division of Biostatistics, School of Public Health
University of California, Berkeley
Berkeley, CA 94720, United States of America
E-mail: oleg.sofrygin@gmail.com

Mark J. van der Laan
Division of Biostatistics, School of Public Health
University of California, Berkeley
Berkeley, CA 94720, United States of America
E-mail: laan@berkeley.edu

mailto:oleg.sofrygin@gmail.com
mailto:laan@berkeley.edu

Journal of Statistical Software 47

Romain Neugebauer
Division of Research
Kaiser Permanente Northern California
2000 Broadway
Oakland, CA 94612, United States of America
E-mail: Romain.S.Neugebauer@kp.org

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

October 2017, Volume 81, Issue 2 Submitted: 2015-09-26
doi:10.18637/jss.v081.i02 Accepted: 2016-08-21

mailto:Romain.S.Neugebauer@kp.org
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v081.i02

	Introduction
	Motivation for simcausal
	Comparison to other simulation packages
	Organization of this article

	Technical details
	NPSEM, causal parameter and causal graph
	The workflow
	Data structures
	Routines

	Specifying a structural equation model
	Specifying interventions
	Specifying a target causal parameter
	Simulating data and evaluating the target causal parameter

	Simulation study with single time point interventions
	Specifying parametric structural equation models in simcausal
	Simulating observed data (sim)
	Specifying interventions (+ action)
	Simulating counterfactual data (sim)
	Defining and evaluating various causal target parameters
	Causal parameters defined with set.targetE()
	Causal parameters defined with set.targetMSM()

	Defining node distributions

	Simulation study with multiple time point interventions
	Specifying the structural equation model
	Simulating observed data (sim)
	Specifying interventions (+ action)
	Dynamic interventions
	Static interventions

	Simulating counterfactual data (sim)
	Converting datasets from wide to long format (DF.to.long)
	Defining and evaluating various causal target parameters
	Causal parameters defined with set.targetE()
	Causal parameters defined with set.targetMSM()

	Impact of propensity score model misspecification
	Discussion
	Replicatiing the simulation study by Lefebvre et al. (2008)
	Replicating Scenario 1
	Replicating Scenario 3

