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Abstract—Infrastructure as a Service cloud providers are
increasingly relying on scalable and efficient Virtual Machines
(VMs) placement as the main solution for reducing unnec-
essary costs and wastes of physical resources. However, the
continuous growth of the size of cloud data centers poses
scalability challenges to find optimal placement solutions. The
use of heuristics and simplified server consolidation models that
partially discard information about the VMs behavior represents
the typical approach to guarantee scalability, but at the expense of
suboptimal placement solutions. A recently proposed alternative
approach, namely Class-Based Placement (CBP), divides VMs
in classes with similar behavior in terms of resource usage,
and addresses scalability by considering a small-scale server
consolidation problem that is replicated as a building block
for the whole data center. However, the server consolidation
model exploited by the CBP technique suffers from two main
limitations. First, it considers only one VM resource (CPU) for
the consolidation problem. Second, it does not analyze the impact
of the number (and size) of building blocks to consider. Many
small building blocks may reduce the overall VMs placement
solution quality due to fragmentation of the physical server
resources over blocks. On the other hand, few large building
blocks may become computationally expensive to handle and
may be unsolvable due to the problem complexity. This paper
extends the CBP server consolidation model to take into account
multiple resources. Furthermore, we analyze the impact of block
size on the performance of the proposed consolidation model,
and we present and compare multiple strategies to estimate
the best number of blocks. Our proposal is validated through
experimental results based on a real cloud computing data center.

I. INTRODUCTION

Cloud computing is emerging as a successful paradigm

for the provision of ICT services. The on-demand, pay-as-

you-go philosophy is clearly suited to meet the demands of

highly variable workloads that characterize modern services.

The success of cloud computing is testified by the projected

increase of two orders of magnitude in fifteen years for storage

and processing power of the cloud Infrastructure as a Service

(IaaS) data centers [1]. However, this growth of the cloud data

centers determines new challenges at the level of infrastructure

monitoring and management. The number of Virtual Machines

(VMs) with variable demands in term of system resources

is a challenge when we want to collect and analyze data to

understand the dynamics of resource demands. The placement

of these VMs over the physical servers is an even more critical
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issue because it involves the solution of a bin-packing problem

encompassing the whole data center. Ensuring a scalable and

effective solution for the VMs placement problem is currently

a major challenge for the cloud computing industry.

The current solution to cope with such complexity is to

simplify the VMs placement problem to reduce its complexity

to a more manageable level. For example, we can discard the

actual behavior of VMs in terms of resource demands (i.e.,

they consider all VMs of the same nominal size equal to each

other [2], [3]). When the behavior of each VM is taken into

account, the behavior model can be simplified, considering

only few demand levels (e.g., day vs. night) or considering just

a few resources (e.g., only CPU). Even the problem solution

may be simplified exploiting highly simplified heuristics, such

as the First Fit Decreasing (FFD) algorithm [4]. In every case,

the result is a low quality solution for the VMs placement

problem that leads to a waste of cloud data center resources.

Recently, the authors proposed a novel approach,

namely Class-Based Placement (CBP), that leverages

similar behavior of classes of VMs (i.e., VMs hosting

the same software component of the same application) to

increase the scalability of the VMs placement [5]. Instead of

considering a single bin-packing problem for VMs placement,

the CBP approach splits the problem into small building

blocks that are easy to solve and can be composed to reach a

global solution. However, the initial proposal of CBP has two

main limitations. First, it still considers only CPU as the main

metric for the underlying VMs placement problem. While in

most applications CPU is the main bottleneck resource [6],

not considering other critical resources such as memory,

network, and I/O, may limit the application scenarios for

the technique. Second, the study in [5] does not provide a

complete analysis of the impact of the building block size

on the quality of the final VMs placement. The trade-off

should be clear: on one hand, a large number of small

building blocks can obtain a benefit in terms of scalability

at the expenses of a less efficient placement due to unused

spare capacity within each block (capacity fragmentation);

on the other hand, larger blocks tend to avoid fragmentation

effects, but the underlying placement problem is much more

demanding from a computational point of view.

This paper contains three main contributions. First, we

extend the existing server consolidation model considering

only CPU utilization to take into account multiple resources

for each VM; this means we can take into account resources

such as memory, network, I/O and even availability of special

hardware (e.g., GPU cores) besides the classical CPU utiliza-
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tion for VMs placement. Second, we analyze the impact of the

number and size of building blocks on the quality of the VMs

placement solutions. Third, we propose and compare multiple

strategies to automatically determine the best number of blocks

taking into account the quality of the VMs placement. A

preliminary version of the latter two contributions appeared

in [7]. However, in this paper we provide a deeper evaluation

of the impact of the number ad size of the building blocks

that takes into account more complex scenarios thanks to the

extended multi-resource model. Our results demonstrate that

the new proposal for the block number estimation improves the

previous approach, achieving a solution quality for the VMs

placement that significantly outperforms the state of the art

solution.

The remainder of this paper is organized as follows. Sec-

tion II describes the Class-Based Placement and provides a

model to determine an appropriate number of blocks. Sec-

tion III describes the results of the technique evaluation.

Finally, Section IV discusses the related work and Section V

concludes the paper with some final remarks.

II. VIRTUAL MACHINES PLACEMENT

In this section we present the proposed multi-resource con-

solidation model. We first outline the VMs placement problem,

next we describe the Class-Based Placement (CBP) technique

proposed in [5], that is the reference scenario for our proposal.

Next, we provide a formal model for the multi-resource server

consolidation, and we discuss the main parameter affecting the

performance of the consolidation model, that is the number of

the small-scale problems that are the building blocks for the

global solution. In particular, we outline the pros and cons of

having few large problems vs. having many small problems.

Finally, we propose multiple strategies to determine the best

number of building blocks for the consolidation model.

A. Problem overview

The generic VMs placement problem can be outlined as in

Figure 1. Each VM has requirements in terms of resources

that are necessary for the VM to run: such resources include

CPU cycles, memory, network bandwidth, and I/O operations.

We also have a physical infrastructure, composed of Physical

Servers (PS), where each server can provide a given amount

of resources. The VMs resource requirements and the physical

server resource capacity represent the input of the VMs place-

ment problem, whose key element is the server consolidation

task: the final goal is to map VMs over the physical servers

of the infrastructure, minimizing the number of used servers

while satisfying the requirements of each VM in terms of

resources usage.

The application of the class-based placement to a IaaS cloud

data center is based on the following two assumptions. First,

we consider that the VMs placement is a periodic task, based

on the expected resource requirements for the next period.

Second, we assume to be able to group VMs into classes

with similar behavior, where VMs belonging to the same class

exhibit similar resource requirements. The presence of classes

of VMs with similar behavior represents a common condition

VM VM VM

VMs Placement

PS PS PS

...

...

Virtual 

Machines

Requirements

Available

Physical

Resources

Fig. 1: VMs placement problem

that occurs every time an application is replicated over a

distributed architecture for scalability and availability [8].

Even if the knowledge of replicated application deployment is

not directly available to IaaS cloud providers, we can exploit

proposals in literature that enable the clustering of VMs with

similar behavior [9], [10].

B. Class-based placement

Class-based placement, introduced in [5], aims to improve

the scalability of the VMs placement problem solution. The

basic idea is to reduce the global server consolidation problem

for VMs placement, that operates on the whole data center, to

a smaller problem involving only few VMs for each class. The

server consolidation process is usually modeled as an integer

bin packing problem: the reduced size of the problem allows

us to solve to optimality the bin packing considering a multi

dimensional formulation with a number of time intervals that

would not be possible to consider for the global problem; then,

the obtained solution can be replicated as a building block to

determine the global solution for the placement of the VMs

in the cloud data center.

Figure 2 depicts the periodic VMs placement in a IaaS

cloud data center that adopts the CBP approach. We consider

as the input of the consolidation model the prediction of

the future resource demands for the next planning period.

Resource demands are expressed for each class of VMs (we

present them as “F1”, . . . , “FC” in Figure 2). We also consider

to have a description of the infrastructure (e.g, the servers on

which the VMs are to be placed, marked with the letter “I”)

and we expect as the output a decision (letter “D”) indicating

the mapping of the VMs over the physical servers.

C. Multi-Resource Consolidation Model

Let us now present a formal model of the proposed multi-

resource server consolidation. Let us consider a set M of VMs

that have to be deployed on a set S of physical servers. We

assume that the VMs are divided into a set C of classes, where

all the VMs of a same class present similar resource require-

ments. Examples of VM classes can be provided considering

the software components of a multi-tier application, where

Web servers, DBMS servers or specialized component Web

services can be mapped into classes. Let Mc be the set of

VMs belonging to class c ∈ C, and T the set of time intervals
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Fig. 2: Class-based VMs placement technique

composing the next planning period considered for the server

consolidation. The matrix Q represents the resource require-

ments of the VMs over the future time intervals. Specifically,

we consider multiple resources of the VMs, such as CPU,

memory, network, and I/O that may be critical for the server

consolidation problem [11], [12], [13]. We define the set of

possible resources as R. Resources can be any requirement

from the VM to the server that can be quantified. Examples

of resources are CPU computational power, available memory,

network bandwidth (in input and/or in output from the VM),

storage I/O throughput, and even access to special hardware

such as the number of GPU cores required by parallel tasks.

Since VMs belonging to the same class are characterized

by similar resource demand, we can define the demand for

resource r (r ∈ R) of a generic VM belonging to class c

(c ∈ C) for the time interval t (t ∈ T) as Qr,c,t . Furthermore,

Vr,s represents the available CPU capacity for resource r on

server s (s ∈ S).

The traditional approach to address the server con-

solidation problem is to solve the corresponding multi-

dimensional bin packing problem (MBP). In such problem

multi-dimensionality is due to both the multiple time intervals

considered and to the different resources taken into account.

The resulting number of constraints makes the global problem

computationally intractable for medium-large data centers. To

improve the scalability of the server consolidation, a possible

solution is to simplify the bin packing problem by reducing the

number of considered resources (e.g., considering only CPU)

and/or increasing the length of the time intervals considered

for resource demand estimation (thus reducing the cardinality

of the set T). Unfortunately these solutions tend to reduce the

quality of the server consolidation, leading to the use of more

physical servers with respect to the optimum. This motivates

the proposal of an alternative solution that exploits the Class-

based placement approach introduced in [5].

In Class-based placement, the global set of VMs is divided

in b B-blocks composed by the same number of VMs for each

class, while the remaining VMs form the E-block. A block

number estimator (shown in Figure 2) determines the number

of the B-blocks. For each class c ∈ C, each B-block contains

a set Bc ⊂ Mc of VMs belonging to class c. The remaining set

of VMs Ec, that are not assigned to any B-block, is assigned

to the E-block.

Since all the VMs of a same class present similar resource

requirements, the placement solution computed for a single

B-block can be replicated for all the B-blocks. We can thus

formulate the optimization problem for the generic B-block

as:

min ∑
s∈S

Os (1)

subject to:

∑
s∈S

Is,m = 1 ∀m ∈
⋃

c∈C

Bc (2)

∑
c∈C

∑
m∈Bc

Qr,c,t · Is,m ≤Vr,s ·Os ∀s ∈ S,∀t ∈ T,∀r ∈ R (3)

Is,m = {0,1} ∀s ∈ S,∀m ∈
⋃

c∈C

Bc (4)

Os = {0,1} ∀s ∈ S (5)

Where Os is a binary decision variable that discriminates if a

physical server s in the data center is on or off, Is,m is a binary

decision variable that decides if VM m is allocated on server

s. Expression 1 is the objective function of the optimization

problem that aims to minimize the number of used servers.

Due to the set of constraints 2, every VM is allocated exactly

on one physical server. The set of constraints 3 expresses the

bound that on each server the allocated VMs must not exceed

the overall capacity of the server for every considered time

interval. Finally, the sets of constraints 4 and 5 model the

boolean nature of the decision variables.

A similar optimization problem applies to the E-block

problem.

D. Block size estimation
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We now focus on how VMs are assigned to the B-blocks

and to the E-block. The parameter b plays a major role in

determining this assignment, hence the selection of the right

value for b represents a critical factor for the performance

of the proposed server consolidation model. The impact of

b over the consolidation process is twofold. On one hand,

as b is reduced, the size of the problem in the B- and E-

blocks increases. This may have a detrimental effect on the

resolvability of the corresponding bin packing problem due to

the computational cost of the large-scale optimization required

for the B-blocks. On the other hand, as b grows, we tend

to have very small problems, where the amount of unused

resources of the servers in each B-block becomes relevant. In

this case we observe a fragmentation effect that may reduce

the quality of the solution (the number of physical servers used

is much higher than the optimum). The identification of the

best value of b must solve a trade-off between computational

cost and solution quality, ensuring that the splitting of the VMs

placement problem is feasible. To this aim, we consider the

following three strategies, that will be detailed in the following

of this section: (1) Smallest B-block (SB), (2) Smallest B-

block with E-block size constraint (SBE), (3) Largest solvable

B-block (LB).

In order to formalize the three strategies, we consider the

number of VMs belonging to class c (c ∈ C) which are in the

B- and E-blocks, that is |Bc| and |Ec|, respectively:

|Bc|=

⌊

|Mc|

b

⌋

∀c ∈ C (6)

|Ec|= |Mc|%b ∀c ∈ C (7)

1) Smallest B-block (SB): In this case, we choose the

maximum possible value for b, with the only constraint that

at least a representative of each class must be present in the

B-block, that is:

|Bc| ≥ 1 ∀c ∈ C (8)

This means that b = min({|Mc|,∀c ∈ C}). This solution has

been adopted for the original proposal of the class-based

placement technique in [5].

2) Smallest B-block with E-block size constraint (SBE):

The SB strategy may result in an E-block that is larger than

the B-block. An excessive size of the E-block may determine

unwanted scalability problems. This concern motivates the

proposal of an enhanced version of the SB strategy that places

a constraint on the size of the E-block, that we require to be not

larger than the B-block. The constraints for the computation

of b are:

|Bc| ≥ 1 ∀c ∈ C (8)

∑
c∈C

|Bc| ≥ ∑
c∈C

|Ec| (9)

In this case, we start with the smallest possible B-block as in

the SB strategy and we check constraint 9. If the constraint is

not satisfied, we decrease b and reiterate the process.

3) Largest solvable B-block (LB): This strategy follows

an opposite vision with respect to the previous proposal.

Basically, we aim to maximize the size of the B-block to

limit the effect of fragmentation due to the unused physical

resources in each B-block. The constraints of the strategy are:

|Bc| ≥ 1 ∀c ∈ C (8)

∑
c∈C

|Bc| ≥ ∑
c∈C

|Ec| (9)

∑
c∈C

|Bc| ≤ H (10)

Where constraints 8 and 9 are the same of the previous

strategy. Constraint 10 places a limit to the maximum number

of VMs in a B-block. This bound is important because in

previous studies [5] we found that, as the problem size grows,

the bin packing problem becomes unsolvable and cannot be

solved. This observation motivates the upper bound on the B-

block size and provides an estimate for the threshold H: this is

the size of the largest solvable problem, that must be obtained

through preliminary experiments.

For the identification of the b value, we rely again on

an iterative approach. We start with a value of b =
⌈ |M|

H

⌉

,

that descends from constraint 10: a lower value of b would

automatically violate this condition. If we find a solution

to the problem, then we have an acceptable block splitting.

Otherwise, we increment b and we try again to solve the

optimization problem. The maximum possible value for b is

min({|Mc|,∀c ∈ C}): any higher value of b would violate the

inequality in constraint 8, as in the other strategies.

III. EXPERIMENTAL RESULTS

In this section we start describing the setup of our exper-

iments, then we discuss the results regarding the proposed

multi-resource server consolidation model, with a detailed

analysis of the impact of different values for the b parameter.

A. Experimental setup

We obtained an extensive dataset from a private cloud

data center. The set contains up to 1100 VMs traces for

the resource usage of Web/application/database servers and

ERP applications: the VMs belong to 44 different classes,

where each class has a minimum cardinality between 8 and

10 VMs, and a maximum cardinality of 50 VMs. We use

our traces as the future resource utilization for the server

consolidation model (see Figure 2). For our experiments, we

consider three main VMs resources, that are CPU utilization,

memory occupation and number of I/O operation per second,

each of which may be bottleneck resources for this type of

applications [11], [12], [13]. The resource usage is measured

in intervals of 5 minutes, that is a setup consistent with other

experiments in literature [14].

We consider multiple scenarios characterized by different

numbers of VMs to be placed on the physical servers of

the virtualized data center. In particular, we consider a VMs

set size ranging from 200 to 1100 VMs. For each VM the

resource utilization is normalized in the range [0%-100%] and
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the resulting average values are 56%, 45%, 33% for CPU,

memory, and I/O respectively. For each physical server the

resource capacity is 400%, meaning that each server can host

4 VMs with resource utilization of 100%. For each scenario,

we compare different consolidation models operating over a

planning period of 24 hours. The proposed server consoli-

dation model is solved with 288 five-minutes time intervals

and is evaluated for different values of the b parameter. When

evaluating the traditional MBP model (that is the model where

a single multi-dimensional bin-packing problem is applied to

the whole data center) we consider different setups where

the length of the intervals for the three considered resource

requirements ranges from 5 minutes to 24 hours. We also

consider a First Fit Decreasing (FFD) heuristic [4] that is used

to solve very large problems [5]. The experiments are run on

2.4 GHz, 4 cores Intel Xeon with 16 GB RAM, using IBM

ILOG CPLEX 12.6 as the optimizer solver1.

As a metric for the VMs placement quality, we consider

the number of physical servers that are required for the allo-

cation [11], [15]. The number of servers for each solution is

expressed with respect to an estimation of the optimal solution

for the considered scenario. The MBP model with five minute

time interval (MBP-5min) represents a lower bound for all the

feasible allocations, as this consolidation model exploits all the

available information to find an optimal solution. However, the

number of variables and constraints for this model increases

rapidly with the VMs set size, producing an optimization

problem instances whose computation takes extremely long

times or does not produce any feasible solution due to the huge

main memory requirements, that may finally cause the solver

to abort the optimization processing. For this reason, we use

the objective function value of the LP relaxation of the MBP-

5min consolidation model (1) as a lower bound for the optimal

number of physical servers to use. In other words, we relax the

boolean nature of the decision variables (constraints 4 and 5),

assuming that parts of a VM can be assigned to different

physical servers. This allocation is obviously not feasible from

a technical point of view but can be easily computed, hence

we exploit it as a convenient lower bound for any feasible

allocation [11].

It is worth to note that for many problems the resolution of

the MPB consolidation models may take long times, such as

hours or days, even for a limited number of time intervals. For

that reason, we used a time limit of 30 minutes (1800 seconds)

for each problem and considered the best integer solution

found as the solution of the server consolidation model, as

commonly done in similar research studies [11], [16].

B. Estimation of H threshold

The LB strategy for the Class-Based consolidation model is

based on a threshold H to define the largest solvable problem.

For this estimation we consider the size of the bin packing

problem constraints matrix as a measure of the problem size,

as suggested in [11]. We recall that the matrix size for

the generic multi-dimensional bin packing problem has the

1www.ibm.com/software/commerce/optimization/cplex-optimizer/

following dimensions:

size =

(

|M| · |S|+ |S|

)

×

(

|S|+ |R| · |S| · |T|

)

(11)

where |M| is the number of VMs, |S| is the number of

physical servers, |R| is the number of resources taken into

account, and |T| is the number of considered time intervals.

For example, considering 400 VMs, 3 resources, and 288 5-

minutes time intervals, we have a problem requiring in the

order of 56 physical servers (we consider that each server

has a resource capacity of 400% and the bottleneck resource

average utilization is 56%). The resulting constraints matrix

has size 22456× 48440= 1.088 ·109.

Figure 3 provides an analysis of the solver performance in

handling problems with different sizes. Specifically, we con-

sider the consolidation model relying on the multi-dimensional

bin packing problem (MBP) with different time granularities

(from 5 minutes to 24 hours) and we show, for different sizes

of the constraints matrix, whether the solver can provide an

optimal solution, an integer (but sub-optimal) solution, or no

feasible solution at all. We also consider the CBP consolidation

model, and we provide the same evaluation. However, for the

CBP model the constraints matrix size considered is the size of

the global problem provided as the input of the consolidation

problem and not the size of the B-block and E-block problems

fed into the solver.

Fig. 3: Problem resolvability vs. Problem size

From Figure 3, we observe that for the MBP problem the

performance of the solver are rather homogeneous for the

different time granularities. Problems with a constraints matrix

size up to 1 ·108 can be solved to optimality or, especially for

a small number of time interval, can reach an integer solution

(our numeric analyses suggest that the obtained solution, even

if not guaranteed to be the optimal value, is usually very close

to the optimum). Problems with a size up to 1.2 ·108 can be

solved reaching an integer solution, but, when the constraints

matrix size exceeds 1.2 · 108, the solver is no longer able to

find an integer solution, either optimal or sub-optimal within

the assigned time limit. From this observation, reversing the

formula 11 we can derive the value for the threshold H that

is used in constraint 10 of the LB strategy for the CBP

consolidation model. In our case we obtain H = 250.
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A final remark from the analysis of Figure 3 concerns

the scalability of the CBP consolidation model compared to

the traditional MBP model. The graph clearly demonstrates

that the subdivision into small problems (in this case we use

the LB strategy, but other strategies provides similar results)

provides a major benefit from a scalability point of view.

Indeed, the CBP consolidation can find solution for problems

with a constraints matrix with a size close to 1 · 1010, while

the maximum size of a problem that can be handled by MBP

is 5 ·108. Furthermore, we observe that the CBP consolidation

model is always able to provide a problem solution, as testified

by the lack of circle points in the “No Solution” part of graph.

C. Number of blocks selection

We now focus on the CBP consolidation model and we

compare the different strategies for the selection of the number

of B-blocks b outlined in Section II-D. To this aim, we

compute the values of b for the three proposed strategies (that

is SB, SBE, LB) for different sets of VMs.

Figure 4 shows the number of VMs in the B-blocks and

E-block for an example case study with 1100 VMs. The

parameter b starts from 2 (in this case we omit the case b = 1

where the CBP consolidation model would revert to the MBP

model) and reaches the value of 10 that is cardinality of the

smallest VM class, that is min({|Mc|,∀c ∈ C}).
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Fig. 4: Evaluation of 1100 VMs set size

The squares in Figure 4 represent the B-block size, while

the circles are the E-block size. The threshold value H = 250

is represented as a dashed horizontal line. The three arrows

highlight the values of b chosen by the three considered

strategies.

For SB, the choice is simple: as the smallest class contains

10 VMs, the value of b selected by such strategy is 10.

However, for this value of b we have an E-block that is

more than 50% larger than the B-block. The SBE strategy

rejects this value and decreases the value of b to 8, that is

when the E-block becomes smaller than the B-block (thus

satisfying constraint 9). The LB strategy uses a different

method to estimate b starting with the smallest possible value

and increasing until a problem of solvable size is found. In

Figure 4 this occurs when the size of the B-block drops below

the value of H and the E-block is still smaller than the B-block.

In the considered example the value of b obtained by the LB

strategy is 5.

It is worth to note that in this experiment we also validate

the process for finding the value of H. Indeed, in our tests

we found that all the problems with a B-block size selected

using the LB strategy are solvable, while larger problem (that

is problem with a value of b lower than the one found with

the LB strategy) cannot be solved within the given time.

The last experiment compares the quality solutions obtained

by the proposed server consolidation model exploiting the

three different strategies (SB, SBE, LB) to determine the

b parameter. We also consider as a term of comparison

the solution achieved by state-of-the-art solutions based on

Multiple Bin Packing (MBP) or FFD heuristic applied to the

global placement problem. Table I shows the solution qualities

for the considered consolidation models and b determination

strategies for a VM set size that ranges from 200 to 1100

VMs. For the CBP consolidation model (first three columns),

we report the b parameter value identified by each strategy. In

the last column of the table, along with the solution quality, we

report the state-of-the-art consolidation model that achieved

the solution: we observe that for very large scenarios (1100

VMs) only the FFD heuristic is able to find a feasible integer

solution, while feasible solutions can be achieved by MBP

models with an increasing number of time intervals as the

VM set size decreases.

TABLE I: Solution quality [%]

Consolidation Models
VMs Set Class-Based State of the

Size SB SBE LB art solution

200 134.02 110.56 101.34 101.34

(b = 8) (b = 6) (b = 1) (MBP-5m)

300 105.88 105.88 102.94 119.5

(b = 8) (b = 8) (b = 2) (MBP-1h)

400 110.25 110.25 107.69 126.76

(b = 8) (b = 8) (b = 2) (MBP-12h)

500 115.38 112.97 103.84 129.07

(b = 8) (b = 7) (b = 2) (MBP-12h)

600 111.29 110.89 106.76 131.43

(b = 8) (b = 7) (b = 3) (MBP-12h)

700 116.18 114.76 108.37 135.23

(b = 8) (b = 6) (b = 3) (MBP-12h)

800 114.91 111.81 107.97 134.16

(b = 10) (b = 8) (b = 3) (MBP-12h)

900 115.8 112.78 108.61 135.25

(b = 10) (b = 8) (b = 4) (MBP-12h)

1000 113.81 112.02 108.95 136.02

(b = 10) (b = 7) (b = 4) (MBP-1d)

1100 115.23 114.63 109.73 136.92

(b = 10) (b = 8) (b = 5) (FFD)

The message from Table I is manifold. First, the LB strategy

for the determination of b allows the CBP model to obtain

the best result in the solution quality for every VMs set

size. Indeed, the quality of the solutions in the corresponding

third column ranges from 101.34% to 109.73%, while for the

SBE and SB strategies the quality ranges from 105.88% to

114.76% and from 105.88% to 134.02%, respectively. This

result is motivated by the large size of the B-blocks that
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tends to limit the effect of fragmentation due to the unused

physical resources in each building block problem. The second

important result is that, for each VMs set that exceeds the

maximum size solvable through a MBP-5m consolidation

model, the CBP model significantly outperforms the state-of-

the-art solutions for any value of the b parameter. Indeed, for a

number of VMs above or equal to 300, even the worse choice

of b leads to a gain in the solution quality at least equal to

13.69% (case of 500 VMs). This is due to the capability to take

advantage of the characteristics of complementary workloads,

that can not be exploited by MBP consolidation models with

relaxed time granularity. Finally, we observe that the solution

quality achieved by the CBP consolidation model with LB

choice of b is equal to that of the MBP-5m when the VMs set

size if lower that 250 VMs. In this case (first row of the table),

the LB strategy automatically recognizes that the problem can

be solved with time constraints of 5 minutes without the need

of splitting the data in more blocks (b = 1), bringing back the

problem to a MBP-5m model.

IV. RELATED WORK

The management of cloud data centers is posing new

challenges due to the growing size and complexity of these

infrastructures. In particular, the placement of VMs over the

physical servers of the data center represents a critical task

to limit the costs of the infrastructure management and avoid

waste of computing resources. An efficient placement aims to

minimize the number of physical servers required to allocate

a given set of VMs in a cloud data center, while meeting the

VMs requirements in terms of system resources. Large data

centers can exploit techniques such as selectively powering

down idle servers or using hardware support for idle sleep

states [17] to improve their efficiently. However, exploiting

these techniques requires the resolution of the optimization

problem described in Section II-B, to determine how to map

VMs over the physical servers of the cloud infrastructure.

This problem is a multi-dimensional bin-packing with bounds

related to the requirement of multiple VM resources at differ-

ent time intervals over a future planning period. Solving this

problem is a challenge from a computational point of view,

where standard optimization algorithms struggle to reach an

optimal solution within acceptable time frames.

Solutions to reduce the dimensionality of the problem have

been proposed in literature or applied in real systems. For

example, some data centers [2], [3], [18] discard any infor-

mation about VM demands over time and consider only the

nominal maximum requirements of each VM. This approach

is very effective in simplifying the bin-packing problem and is

therefore widely adopted, but introduces the unreal assumption

that every VM uses the 100% of its resources. Any under-

utilized VM determines a waste of resources in the data center

and increases the carbon footprint of the cloud infrastructure.

Heuristics have been proposed to reduce the computational

cost of the solution. However, as pointed out in [19], most

research is focused on problems with few dimensions (e.g.,

from one to three [20], [21]), while if we consider the impact

of multiple resources considered in multiple time intervals

in a future planning period, the number of dimensions is in

the order of several hundreds. Finally, the last solution is to

introduce simplification in the bin packing problem model.

For example, instead of considering multiple resources (CPU,

memory, network I/O, disk I/O) and a fine-grained division

of the planning period, the focus is limited to just the CPU

requirement during a 24-hour long time interval [22], [11].

A recent approach to address the scalability issues of the

VMs placement problem has been proposed in [5]; however,

this preliminary proposal did not address the problem of

determining the best number and size of B-blocks. A first

investigation of this problem is provided in [7], where the

proposed consolidation model considers only one resource,

that is the CPU usage. The present paper further extends the

previous work in two ways: first, we consider an improved

model taking into account multiple VMs resources; second, we

propose a more comprehensive set of experiments, providing a

detailed comparison of multiple strategies to select the number

and size of the B-blocks.

V. CONCLUSIONS

In this paper we tackle the problem of parameter tuning in

the Class-based placement technique, explicitly addressing the

case where the VMs placement takes into account multiple

resources. Specifically, we consider the parameter b that is

the number of B-blocks in which the global VMs placement

problem is split. We pointed out a trade-off between using

many small building blocks (with the risk of reducing the

overall VMs placement solution quality due to the fragmen-

tation of the physical server resources over blocks) and using

few large building blocks (with the risk of being unable to

solve the optimization problem for the B-block). We compare

three different strategies to determine the b parameter applied

to a real scenario based on a cloud infrastructure. Our experi-

ments demonstrate that a simple threshold determined through

preliminary experiments can guarantee the identification of a

solvable B-block problem. The use of this threshold allows

the CBP consolidation model to exploit large building blocks,

thus avoiding the fragmentation of physical server resources

that are likely to reduce the placement solution quality.
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