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The aim of this work was to test if a novel transcranial direct current stimulation (tDCS)

montage boosts the accuracy of lower limb motor imagery (MI) detection by using a

real-time brain-machine interface (BMI) based on electroencephalographic (EEG) signals.

The tDCS montage designed was composed of two anodes and one cathode: one

anode over the right cerebrocerebellum, the other over the motor cortex in Cz, and

the cathode over FC2 (using the International 10–10 system). The BMI was designed

to detect two MI states: relax and gait MI; and was based on finding the power at the

frequency which attained the maximum power difference between the two mental states

at each selected EEG electrode. Two different single-blind experiments were conducted,

E1 and a pilot test E2. E1 was based on visual cues and feedback and E2 was based on

auditory cues and a lower limb exoskeleton as feedback. Twelve subjects participated

in E1, while four did so in E2. For both experiments, subjects were separated into two

equally-sized groups: sham and active tDCS. The active tDCS group achieved 12.6 and

8.2% higher detection accuracy than the sham group in E1 and E2, respectively, reaching

65 and 81.6% mean detection accuracy in each experiment. The limited results suggest

that the exoskeleton (E2) enhanced the detection of the MI tasks with respect to the

visual feedback (E1), increasing the accuracy obtained in 16.7 and 21.2% for the active

tDCS and sham groups, respectively. Thus, the small pilot study E2 indicates that using

an exoskeleton in real-time has the potential of improving the rehabilitation process of

cerebrovascular accident (CVA) patients, but larger studies are needed in order to further

confirm this claim.

Keywords: transcranial direct current stimulation (tDCS), real-time, brain-machine interface (BMI), lower limb,

exoskeleton, motor imagery (MI)

1. INTRODUCTION

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique
based on weak direct electrical current transferred between electrodes (from anode to cathode)
over the scalp in order to modulate the neural membrane resting potential (Nelson et al., 2014;
Rodríguez-Ugarte et al., 2016b; Lefaucheur et al., 2017). It modifies cortical excitability in a
polarity-specific manner (Coffman et al., 2014). This means that neural excitability is generated
under the area of the anode because the current flow goes into the brain, whereas in the underlying
cortex where the cathode is, inhibition of neural activity is produced because the current flow goes
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out from the brain (Filmer et al., 2014; Wiethoff et al., 2014).
Furthermore, the use of this technique implies adjusting four
parameters: current density, stimulation duration, electrode size
and electrode position. The vastmajority of the studies focus their
tDCS experiments on improving the performance of the upper
limbs, the speech, or the balance; where the areas stimulated are
either the motor cortex, the frontal area or the cerebellum (Monti
et al., 2013; Hortal et al., 2015; Foerster et al., 2017). In these
studies, the range of current density used is typically between 0.04
and 0.06mA/cm2 with a duration of 15 or 20min (Marquez et al.,
2013) and electrode sizes of about 35 cm2. However, there are
just few studies that center their goals in meliorating lower limb
performance and therefore, much remains to be investigated. In
addition, stimulation with such big electrode surface areas gives
only a vague idea of the areas of the brain that are important in
producing the results.

Brain machine interfaces (BMIs) are a non-invasive technique
that records and decodes electroencephalographic (EEG)
signals to control an external device (Barrios et al., 2017). Two
of the most common EEG-based BMIs are motor imagery
(MI) and motor execution (ME). MI is defined as a mentally
repetitive action without any overt motor movement (Park
et al., 2013). Various functional magnetic resonance imaging
(fMRI) studies have demonstrated that MI and ME activate
common neural networks including the primary motor
cortex (M1), supplementary motor area (SMA), premotor
area (PM) and cerebellum (Allali et al., 2013; Hétu et al.,
2013; Sharma and Baron, 2013; Zapparoli et al., 2013).
Furthermore, MI is characterized by the decrease of power in
the bands θ high (6–7 Hz), µ (8–12 Hz), and β (13–35 Hz)
(Reynolds et al., 2015).

The purpose of this work is to test if a novel tDCS montage
boosts the accuracy of lower limb MI detection using a real-time
BMI. The tDCS montage is composed by three small electrodes
that focus on the lower limbs: two anodes and one cathode. One
anode is located over the right cerebrocerebellum, the other one
over M1 in Cz, and the cathode over FC2 (using the International
10–10 system). Many studies have researched the stimulation
just over the motor cortex or the cerebellum (Boehringer et al.,
2013; Sehm et al., 2013; Clancy et al., 2014; Ferrucci and Priori,
2014), but never the two areas at the same time, like in this
study. The effects of the stimulation over the cerebellum are still
unclear, but recent studies showed an improvement of the task
performed when the anode was over the cerebellum (Hardwick
and Celnik, 2014; Bradnam et al., 2015). However, the anode over
the cerebellum is also believed to cause neural inhibition over the
motor cortex (Galea et al., 2009; Grimaldi et al., 2016). This is why
a second anode was added over Cz. This anode supplied a slightly
higher current than the one over the cerebellum to counteract
this effect and to excite neural activity in M1.

Abbreviations: tDCS, transcranial direct current stimulation; MI, motor
imagery; ME, motor execution; BMI, brain-machine interface; EEG,
electroencephalographic; fMRI, functional magnetic resonance imaging; M1,
primary motor cortex; SMA, supplementary motor area; PM, premotor area; CVA,
cerebrovascular accident; SVM, support vector machine.

Two single-blind studies, E1 and E2, were conducted where
subjects were randomly separated into two groups: sham and
active tDCS. The sham group received a fake stimulation while
the active tDCS group was given 0.3 mA over Cz and 0.2
mA over the right cerebrocerebellum. A BMI based on power
difference in θ , µ and β bands was designed to detect two MI
tasks: relax and gait MI. Both experiments had a duration of
five consecutive days (for each subject). The first one, E1, was
based on visual cues and feedback. The second one, E2, was
a smaller pilot test which was based on auditory cues, where
subjects wore a lower limb exoskeleton as feedback. It should
be noted that the combination of a real-time BMI with a lower
limb exoskeleton and tDCS is quite challenging and has the
strong potential of improving (via tDCS) the quality of many
clinical applications that involve the real-time control of these
machines. Indeed, the intention of this second setup is the
later use on real-time rehabilitation therapies of cerebrovascular
accident (CVA) patients with lesions on the right leg. The main
output to measure the effectiveness of the experiments was the
MI detection accuracy, but given the experiments’ duration, the
development of brain plasticity over the course of the 5 days was
also analyzed. Our hypothesis was that the active tDCS group
would obtain better detection accuracy results than the sham
group.

2. MATERIALS AND METHODS

This work studies a novel tDCS montage with two different
experimental setups regarding cues and feedback. The first one,
called in this paper E1, gives visual cues and visual feedback, while
the second, named E2, gives auditory cues with the feedback
coming from the movement/non-movement of an exoskeleton.
E2 is a smaller pilot test to check if the feedback of the exoskeleton
provides an improvement of the results, so that it can possibly be
used later in the rehabilitation of CVA patients.

FIGURE 1 | E1 experimental setup. Subjects stood in front of a screen that

supplied instructions while their EEG signals were recorded. The instructions

given were: Relax, Imagine and + (transition). During Relax, subjects had to

clear their mind as much as possible. During Imagine, they had to visualize

they were walking. Tasks appeared at random but two tasks of the same type

never appeared more than twice in a row. The + (transition) period represented

a transition to separate the Relax and Imagine tasks. Written informed consent

was given by the subject to publish the photo.
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FIGURE 2 | E1 temporal sequence on each day. Subjects were randomly separated into two groups: sham or active tDCS. During 15 min participants received the

corresponding stimulation according to their group. After that, subjects performed 10 trials of motor imagery (MI) tasks. The tasks were composed of Relax and

Imagine tasks separated by transition periods represented by + displayed on the screen. One trial consisted of 10 Relax and 10 Imagine tasks.

FIGURE 3 | E2 experimental setup. Subjects stood wearing an exoskeleton

while their EEG signals were recorded. Once the experiment started, subjects

had to relax, clearing their mind as much as possible. Then, a beep auditory

signal indicated to the subject to start gait imagery until they heard a double

beep auditory signal. After this second beep, subjects had to relax again until

the experimental trial finished.Written informed consent was given by the

subject to publish the photo.

2.1. Subjects
Twelve healthy subjects with a mean age of 26.9 ± 5.8 years
old (age range 20–39) volunteered to perform E1 and four
volunteers with a mean age of 25.8 ± 0.7 years old (age range
22–34) participated in E2. All of them received information
prior to the experiment and gave written informed consent
according to the Helsinki declaration. None of the subjects had
a history of neurological and/or psychiatric diseases or was
receiving medication during the experiment that could alter the
central nervous system. The Ethics Committee of the Office for
Project Evaluations (Oficina Evaluadora de Proyectos: OEP) of
the Miguel Hernández University of Elche (Spain) approved the
study.

2.2. Experimental Design
The aim of both single-blind experiments was to detect two
different cognitive states: relax and gait MI, using a real-time
BMI based on EEG signals. For both experiments, initially
subjects were randomly separated into sham or active tDCS
groups of the same size (six participants in each group of E1
and two participants in each group of E2). For five consecutive
days (Monday to Friday), each participant was subjected to
one experimental session, which initiated with a period of
stimulation. The sham group received 15min of fake stimulation,
while the active tDCS group received 15 min of real stimulation
(more details in section 2.3).

2.2.1. E1 Experiment
Participants performed one session each day for five consecutive
days. One session was composed of the initial stimulation,
followed by 10 MI trials. For each trial, subjects stood in front
of a screen that provided instructions while their EEG signals
were being recorded (Figure 1). Three types of instructions
were supplied: Relax, Imagine and + (transition). During
Relax periods, subjects had to clear their minds as much
as possible; during Imagine periods, they had to imagine a
gait movement. Relax and Imagine tasks appeared at random,
but to avoid mind tiredness or getting bored, two tasks of
the same type never appeared more than twice in a row.
The transition periods, or + periods, separated different tasks
of Relax or Imagine. Relax and Imagine lasted between 6
and 7.4 s, while the + (transition) periods lasted 3 s. Subjects
were instructed to avoid blinking, swallowing, performing head
movements or any other kind of artifact during the Relax and
Imagine periods, postponing these actions to the + (transition)
periods. Each trial consisted of 10 Relax and 10 Imagine
periods. Figure 2 represents the temporal sequence of this
experiment.
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FIGURE 4 | E2 temporal sequence on each day. Subjects were randomly separated into two groups: sham or active tDCS. During 15 min participants received the

corresponding stimulation according to their group. After that, subjects performed 80 trials of motor imagery (MI) tasks. The trial was composed of two relax periods

separated by one task of gait imagination.

2.2.2. E2 Experiment
On the very first day, before any stimulation protocols, subjects
were familiarized with the lower limb exoskeleton. They were
mounted in the exoskeleton, and the exoskeleton was activated.
Through verbal cues, the subjects were instructed to imagine gait
until they felt comfortable that they were not trying to execute
the motor task, but rather were imagining it. This pre-training
phase was intended to remove any strong noise associated to
the subjects trying to solely execute the movement later in the
experiment.

Participants performed one session each day for five
consecutive days. Throughout each session subjects stood
wearing a lower limb exoskeleton while their EEG signals were
recorded, as shown in Figure 3. One session was composed of
the initial stimulation, followed by 80 MI trials. Each trial lasted
around 35 s and was comprised of: an initial relax period where
they had to clear their mind as much as possible; then, a beep
auditory signal which indicated the subject to start the gait
(walking) imagination until they heard a double beep auditory
signal; after this, they had to relax again until the experiment
finished. Therefore, there were two Relax periods which lasted
8 s each, separated by a longer Imagine period that lasted 16 s.
A couple of seconds were needed to establish the connection
between the BMI and the exoskeleton. Figure 4 represents the
temporal sequence of this experiment.

In this experiment, the first 40 trials were used to train the
BMI and the rest to test it. During the training, the exoskeleton
moved by itself during the gait imagery period in order to
provide the subjects with a more realistic feeling. Then, during
the remaining 40 trials, the exoskeleton was turned off during the
Relax periods and was activated according to the subject’s EEG
signals (i.e., using the BMI output) during the Imagine periods.
The subjects were supposed to imagine the motor task instead

of trying to execute it. More details on the BMI can be found in
section 2.5.

2.3. Supply of tDCS
As previously mentioned, the idea was to excite simultaneously
the right cerebrocerebellum and the motor cortex because both
areas are involved in motor imagery. To do that, one anode was
located over the right cerebrocrebellum (two centimeters right
and one centimeter down of the inion) and the other one over
Cz on M1. The cathode was placed over FC2 (right hemisphere).
Figure 5 shows a scheme of the position and placement of the
electrodes. The cathode produces neural inhibition, meaning that
the left hemisphere is being favored. This is because, in the
future, the idea is to focus on patients that have suffered a CVA
over the left hemisphere, which in turn affects their right lower
limb.

The intensity was established to 0.2 and 0.3 mA for
the cerebrocerebellum and Cz anodes, respectively. These
intensities were chosen because anodal tDCS over the right
cerebrocerebellum produces inhibition over the brain motor area
(Angulo-Sherman et al., 2017), so to counteract this effect and
excite the motor area, the second anode was placed over Cz with
a slightly higher current. Using this configuration resulted in a
cathode current density of 0.16 mA/cm2, which is higher than
that used in most studies (about 0.06 mA/cm2). Having said that,
this current density is well within the range of neurological safety
that avoids brain damage (Bikson et al., 2016).

In order to corroborate that the areas of interest in the brain
(motor area, right cerebrocerebellum, thalamus, contralateral
hemisphere, red nucleus) were involved during the stimulation,
an electric field simulation was carried out first. SimNIBS free
platform (Thielscher et al., 2015) was used for the simulation.
The parameters of the electrodes were set according to the
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FIGURE 5 | The tDCS montage. Placement of tDCS electrodes as a scheme (Left) and experimentally (Right). The first anode (A1) is over the right

cerebrocerebellum (two centimeters right and one centimeter down of the inion), the second anode (A2) is over Cz, and the cathode is over FC2.

FIGURE 6 | Axial, coronal and sagittal view of the tDCS simulation using SimNIBS. The scale represents the magnitude of the electric field (V/m) induced by the

anodes A1 and A2. A1 was located over the right cerebrocerebellum and A2 over Cz. The cathode was located over FC2. A1 supplied 0.2 mA and A2 0.3 mA. The

most affected area (red) is close to the red nucleus.
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FIGURE 7 | Mean accuracy for each group in the E1 experiment. The error

bars indicate a standard deviation from the mean.

TABLE 1 | Pairwise comparison of detection accuracy for each day between the

tDCS and sham groups (E1).

Day p-value

1 0.06

2 0.04*

3 0.04*

4 0*

5 0.02*

The values statiscally significant were indicated with the * symbol.

materials employed in the experiments. All the electrodes were
1 cm of radius (surface area of π cm2), 3 mm of thickness and
with 4 mm of space for the conductive gel. Figure 6 shows the
magnitude of the electric field generated by the two anodes and
one cathode in axial, coronal and sagittal views. The electric
field produced was analyzed and it was confirmed that the sign
of the electric field was negative over the cathode (showing
directionality). Furthermore, the most affected area (red) is close
to the thalamus and the red nucleus. Both areas belong to the
cerebellum ascending output pathways toM1 and PM (Llinas and
Negrello, 2015).

At the beginning of each experimental session, the StarStim
R32 (Neuroelectrics, Barcelona, Spain) supplied direct current
stimulation to the subject’s brain. The duration was taken to be
15 min (each of the 5 days of the experiment), since various
studies which treat different diseases obtained satisfactory results
applying tDCS for that duration during 5 consecutive days
(Marangolo et al., 2011; Bolognini et al., 2015; Ferrucci et al.,
2016). Subjects in the active tDCS group were subjected to 15min
of such stimulation, while those in the sham group received a fake
stimulation to create a placebo effect. This consisted of a 3 s ramp
up followed by a 3 s ramp down to zero; then, 15 min of zero
current; and lastly, another repetition of 3 s ramp up and ramp
down.

2.4. EEG Acquisition
The StarStim R32 (Neuroelectrics, Barcelona, Spain) was also
used to acquire 30 EEG signals based on the International 10-10
system (P7, P4, CZ, PZ, P3, P8, O1, O2, C2, C4, F4, FP2, FZ, C3,
F3, FP1, C1, OZ, PO4, FC6, FC2, AF4, CP6, CP2, CP1, CP5, FC1,
FC5, AF3, PO3) with two reference electrodes (CMS and DRL) at
a frequency of 500 Hz. The device was connected to the computer
through a USB isolator.

2.5. Brain-Machine Interface (BMI)
Custom software in MATLAB (MathWorks Inc., Massachusetts,
United States) was utilized for all data analysis. The first four
trials of E1 and the first 40 trials of E2 were used to train a support
vector machine (SVM) classifier with a radial basis function
as kernel. This classifier was chosen because it was effective
in previous studies and is one of the most robust classifiers
(Rodríguez-Ugarte et al., 2016a). The SVM was in charge of
categorizing data and determining if it belonged to relax or gait
MI tasks. The remaining trials, six of E1 and 40 of E2, were
utilized to test the BMI by measuring the detection accuracy,
which was defined as the percentage of total correct classifications
divided by the total number of classifications in each run.

Both training and test data in the two experiments were
processed in very similar ways. The first 2 s of each task were
discarded to assure the total concentration of the subject in the
task and to get rid of the cue (visual or auditory) artifacts on the
EEG. Data was processed in 1 s epochs each 0.2 s. For each epoch,
the following process was carried out:

• a 4th order Butterworth high-pass filter with a cut-off
frequency of 0.05 Hz was applied to remove the direct current;

• a Notch filter was used to eliminate the power line interference
at 50 Hz;

• a 4th order Butterworth low-pass filter with cut-off frequency
of 45 Hz was utilized;

• a Laplacian spacial filter was employed as in McFarland et al.
(1997) to eliminate the influence of the other electrodes by
means of weighting by their distance;

• nine electrodes from the M1, SMA and PM were selected: Cz,
CP1, CP2, C1, C2, C3, C4, FC1, and FC2.

In both experiments, the training data was further analyzed.
For each electrode, the power at each integer frequency from
6 to 35 Hz was calculated. This data was separated into relax
and imagine groups for each frequency, and the frequency
that attained the maximum power difference between relax
and imagine was designated as the optimum frequency of that
electrode. Finally, the power at the optimum frequency for each
electrode was computed. Therefore, each epoch was associated
with nine features (one for each electrode). Using the features,
the SVM classifier was trained.

For the actual testing of the real-time BMI, the nine features of
each epoch were computed using the power at the precomputed
optimum frequencies from the training phase. Then the data was
classified using the SVM classifier into relax or gait MI. As visual
feedback, in E1 every correct classification resulted in the increase
in size of a green bar shown in the screen. Meanwhile, in E2 the
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FIGURE 8 | Mean accuracy for each day and group in E1.

exoskeleton moved one step forward whenever three consecutive
gait MI classifications were detected.

2.6. Exoskeleton
The lower limb robotic exoskeleton used was the H2 (Technaid,
Madrid, Spain) designed by Bortole et al. (2015). The H2 has six
degrees of freedom where hip, knee and ankle of each leg are
powered joints. It was constructed for adults of heights between
1.5 m and 1.95 m and a maximum weight of 100 kg. The H2
has a lithium polymer battery of 22.5 VDC voltage and 12 Ah
of capacity. It also has direct current (DC) motors to activate the
joints actuators and sensors: potentiometers, Hall effect sensors,
strain gauges and foot switches to determine the joint angles and
human-orthosis interaction torques on the links.

The communication between the BMI and the H2 was
through a bluetooth port. The connection was established in
an Intel Core i7 laptop using MATLAB (MathWorks Inc.,
Massachusetts, United States) software. Each 0.5 s and during
gait imagination periods, the BMI sent the user’s output from the
classifier to the exoskeleton.

2.7. Post-processing
2.7.1. Statistical Analysis
For the E1 experiment, data was analyzed via the Statistical
Package Social Science (SPSS), version 22.0 (IBM Corporation,
Armonk, NY, United States). The dependent variable was the
classification accuracy and the independent variables were the
group (sham or active tDCS) and the day of the experiment (from
day 1 to day 5). Therefore, there were two types of studies: the
difference between groups and the evolution of the performance
of the subjects (here called plasticity) within groups. Hence,
the appropriate statistical test to make was a mixed factorial
ANOVA, but before doing so, the Kolmogorov-Smirnov (K-S)
normality test was computed to check the existence of outliers.
Then, for the study within groups, Mauchly’s sphericity test was
carried out to check the equality of the variances (Field, 2013).
Lastly, the mixed factorial ANOVA analysis was completed.

Furthermore, Bonferroni adjustments were applied for multiple
pairwise comparisons between groups andwithin groups. A value
of p < 0.05 was considered statistically significant.

For the E2 pilot experiment, the sample sizes were too small
(two users per group) to rigorously justify the statistical analysis
mentioned above. Therefore, the average accuracies were used
directly to make the appropriate and relevant comparisons.
Having said that, these results and their implications should come
with a warning that this is only a preliminary study, and the
sample sizes are small, so larger samples are needed to increase
the accuracy of predictions.

2.7.2. Analysis of Optimal Frequencies
As mentioned in section 2.5, based on the training data, an
optimal frequency (where the greatest differences between relax
and gait imagery was observed) was assigned to each electrode
of each subject on any given day. These frequencies form a
fundamental part of themodel used to construct the BMI. Having
said that, analyzing these frequencies independently provides
more useful information. Indeed, after removing any outliers,
it is possible to make a histogram of the optimal frequencies
associated to each group on each day (each relevant subject in
the group will have 9 optimal frequencies, one for each electrode,
on any given day) that discriminates between three distinct
frequency bands: high theta and mu rhythm (6–12 Hz), low and
mid-range beta rhythm (13–20 Hz) and high beta rhythm (21–30
Hz). With this histogram, one can then determine the preferred
frequency bands for each group and their evolution throughout
the experiment.

2.7.3. ERD/ERS Analysis
Event-related desynchronization and synchronization
(ERD/ERS) are EEG fluctuations during cognitive or motor
processes. They are highly frequency-band specific and while
ERD represents an increase of excitability, ERS represents the
opposite (Pfurtscheller, 2001). For an electrode e, and for a fixed
frequency f , let

ERDe(f ) =
(G(f )− R(f )

R(f )

)

(1)

where G(f ) is the average of the power at the frequency f over
all gait-imagery-epochs, and R(f ) is the same but averaged over
all relax-imagery-epochs. Low values of G, resulting in negative
values of ERDe, represent ERD, while higher values ofG, resulting
in positive values of ERDe, represent ERS. To obtain an average
value of ERDe over a frequency band, simply average over all
integer frequencies, f , of interest (e.g., in the 6–12 Hz band, it
would be the average of ERDe(f ) for f = 6, 7, 8, 9, 10, 11, 12).
A frequency-band ERDe can be calculated for each electrode
on each day of the experiment for each subject. This allows to
produce a topographic map of the variable in the scalp, which
one can then analyze to determine patterns of activation across
the different areas of the brain.
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TABLE 2 | E1 histogram of optimal frequencies for each day and group.

Group Frequency range Day 1 (%) Day 2 (%) Day 3 (%) Day 4 (%) Day 5 (%)

Active tDCS (6–12) Hz 81.5 77.8 81.5 85.2 79.6

(13–20) Hz 11.1 13.0 11.1 7.4 16.7

(21–30) Hz 7.4 9.3 7.4 7.4 3.7

Sham (6–12) Hz 75.6 57.8 68.9 64.4 64.4

(13–20) Hz 4.4 17.8 4.4 28.9 20.0

(21–30) Hz 20.0 24.4 26.7 6.7 17.8

FIGURE 9 | Mean accuracy for each group in the E2 experiment. The error

bars indicate a standard deviation from the mean.

FIGURE 10 | Mean accuracy for each day and group in E2.

3. RESULTS

3.1. E1 Experiment
The normality test indicated that there was an outlier within the
sham group. This subject was removed from the data.

3.1.1. Effects of tDCS in MI
This section studies if there exist any effects of tDCS on the
subjects. Results from the mixed factorial ANOVA showed that
subjects were significantly affected by the group they belonged,
F(1,9) = 9.47, p < 0.05. Figure 7 shows the mean accuracy
achieved by each group, with the tDCS and sham groups getting
65 and 52.4% of detection accuracy, respectively.

Moreover, the comparison was broken down on a day by day
basis, by making pairwise comparisons. Table 1 shows the p-
values of those comparisons and Figure 8 illustrates the mean
accuracy achieved by each group on each day. The results show
that there were significant differences (p < 0.05) between the
sham and tDCS groups from the second day onwards.

3.1.2. MI Plasticity
This section analyzes the interaction effects between the days
within groups. The results of Mauchly’s test of sphericity show
that the condition of sphericity wasmet, χ2(9) = 17.52, p > 0.05,
so it was not necessary to apply a correction factor.

The mixed factorial ANOVA showed no significant
interaction between the days and the group, F(4, 36) = 0.27,
r = 0.1, p > 0.05, meaning that there does not seem to be
any major plasticity development throughout the 5 days of the
experiment.

3.1.3. Optimal Frequencies and ERD/ERS Results
A histogram showing the percentage of electrode optimal
frequencies lying in the relevant frequency bands (high theta
and mu rhythm, low and mid-range beta rhythm, and high beta
rhythm) for each group and day of the E1 experiment is shown
in Table 2. Clearly, the preferred frequency band is the high theta
and mu rhythm (6-12 Hz).

Since the high theta and mu rhythm (6–12 Hz) was the
preferred frequency band, on each day of the E1 experiment and
for each electrode, e, the variable ERDe was averaged over all
subjects common to a group (excluding outliers) and over the
relevant frequency band (6–12 Hz). The resulting topographic
map for the active tDCS and the sham groups is shown in
Figure 11 (top).

3.2. E2 Experiment
3.2.1. Effects of tDCS in MI
Figure 9 shows the mean accuracy achieved by each group, with
the tDCS and sham groups getting 81.6 and 73.4% of detection
accuracy, respectively. Furthermore, Figure 10 illustrates the
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TABLE 3 | E2 histogram of optimal frequencies histogram for each day and group.

Group Frequency range Day 1 (%) Day 2 (%) Day 3 (%) Day 4 (%) Day 5 (%)

Active tDCS (6–12) Hz 100.0 100.0 100.0 100.0 94.4

(13–20) Hz 0.0 0.0 0.0 0.0 0.0

(21–30) Hz 0.0 0.0 0.0 0.0 5.6

Sham (6–12) Hz 66.7 66.7 50.0 50.0 50.0

(13–20) Hz 0.0 0.0 0.0 0.0 0.0

(21–30) Hz 33.3 33.3 50.0 50.0 50.0

mean accuracy achieved by each group on each day, and there
does not seem to be any significant changes in the accuracy as
the days progress for either group (i.e., no plasticity is evident).
Having said this, due to the preliminary nature of the E2 pilot
study, these results have limitations as they involve very small
sample sizes (two subjects per group), and larger data sets are
necessary to be able to produce more robust results from the
statistical standpoint.

3.2.2. Optimal Frequencies and ERD/ERS Results
As in section 3.1.3, the associated histogram for E2 is shown in
Table 3. The preferred frequency band was once again the high
theta and mu rhythm (6–12 Hz).

Meanwhile, the analogous topographic map for E2 for the
preferred frequency band (6–12 Hz) is shown in Figure 11

(bottom).

4. DISCUSSION

The results of E1 and the preliminary results of the pilot test
in E2, seem to support the hypothesis that this novel tDCS
montage improves the real-time classification of lower limb MI
tasks. Before discussing the specific results further, a deeper
neurological explanation for why the tDCS montage seems to
have successfully worked is merited. The aim of the setup was
to enhance the brain’s learning abilities while stimulating the
motor cortex which is responsible for lower limb movement
(and imagination). With this in mind, an anode was placed over
the cerebellum, since this improves the brain’s learning abilities
according to several studies (Mandolesi et al., 2003; Ferrucci
et al., 2013; Shah et al., 2013; Hardwick and Celnik, 2014).
However, placing this anode over the cerebellum also has other
consequences. Namely, it produces the activation of Purkinje cells
which inhibit the dentate nucleus and provoke disfacilitation of
the motor cortex (Grimaldi et al., 2014; Cengiz and Boran, 2016;
Lefaucheur et al., 2017), which is the opposite of what is desired
regarding the activation of the motor cortex. For this reason,
to counteract the effect of the first anode and excite the neural
activity of the motor cortex, a second anode was placed directly
in Cz over the motor cortex, and with a slightly higher current.
Indeed, the currents used were 0.2 mA for the first anode and
0.3 mA for the second anode. The tDCS electrodes were not in
direct contact with the skin, but rather with the hair. This reduced
the probability of skin burns (Wang et al., 2015), which were not
observed during the experiments (participants were encouraged

to report any discomfort, but none was reported in association
with the tDCS).

The active tDCS group achieved average detection accuracies
of 65 and 81.6% for E1 and E2, respectively. When compared
to the sham group, the active tDCS group obtained 12.6 and
8.2% higher accuracy performance in E1 and E2, respectively
(Figures 7, 9). In addition, the active tDCS group of E1 was at
least 10% better than the sham group at each given day (see
Figure 8), while in E2, it was at least 4% better on each day
(see Figure 10). Lastly, this data and the p-values from Table 1

indicate that from the second day onwards, the active tDCS group
obtained significantly different and better results than the sham
group in E1.

These conclusions are further supported with the results of
analyzing the optimal frequencies and the ERD/ERS patterns in
the brain. Regarding the optimal frequencies, Table 2 and the
preliminary results of Table 3 show the stability of the frequency
band trained, which in both cases corresponded to the high
theta and mu rhythms (6–12 Hz). In E1 (Table 2) the preferred
frequency band for the active tDCS group represented at least
78% of the optimal frequencies on any given day, while for the
sham group it varied between 57 and 76%. The results of E2
show an even starker difference, with at least 94% of optimal
frequencies lying in the preferred frequency band for the active
tDCS group, while they ranged between 50 and 66% for the sham
group. This seems to indicate that the tDCS favors a specific
frequency band to train the new task.

Moreover, the ERD/ERS analysis shows that overall for both
E1 and E2, there seems to be more desynchronization (ERD)
on the mu rhythms of the tDCS group than in the sham group
(see Figure 11). Furthermore, this mu wave desynchronization is
occurring mostly in the sensorimotor area, as is reported widely
in the literature when there is either motor execution or motor
imagery (Pfurtscheller and Da Silva, 1999; Matsumoto et al.,
2010). This desynchronization seems to be more evident in the
preliminary study E2 than in E1, but in both cases it is observed.
Thus, the active tDCS group for both experiments appears to
enhance the modulation of the mu rhythm and the BMI control.

As observed from Figures 8, 10, for both experiments, the
changes in accuracy for each group as the days progressed
seems to have been minimal. Thus, one can say that there was
little plasticity developed in the brain during the 5 days of the
experiment. This is probably due to the simplicity of the task and
the fact that the brain could have quickly adapted to this task early
on in the training phase of the experiment of the first day.
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FIGURE 11 | Topographic maps showing ERD (red) and ERS (blue) for the 6–12 Hz frequency band averaged over all participants for each day and group of each

experiment. The results of E1 are shown in the top and those of E2 are shown in the bottom.

Comparing the differences between E1 and E2 is very
interesting but one must be careful in rushing to any
conclusions, as the experimental protocols were different, and
more importantly, the results of E2 are only preliminary at the
time. Overall, E2 produced better accuracy results than E1: the
active tDCS and sham groups of E2 were 16.7 and 21.2% more
accurate than the respective groups of E1. Some differences
in the protocol that could have led to these results, are that
the duration of Relax and Imagine periods between the two
experiments was different; and more notably, that the nature of
the cues and feedback was different as well. Indeed, it should be
mentioned that all subjects in E1 reported frustration about the
visual feedback (a green bar that increased with each real-time
correct detection), saying that they became anxious when the
green bar did not move. Naturally, this could have affected the
results. Meanwhile, in E2 the feedback was much more natural
as it involved movement of the body. In fact, no such frustration
was reported by the users in E2.

Comparing the results of E1 and the preliminary results of E2
through the ERD/ERS analysis is also of interest (see Figure 11).

Indeed, the desynchronization is observed to be stronger and
more consistent in E2 than in E1. This seems to be consistent with
some results in the literature involving upper limb exoskeletons
(Gomez-Rodriguez et al., 2011), which found the discriminative
power of the sensorimotor area to be higher when using an
exoskeleton, thus providing a benefit in terms of the resulting
BMI designed.

It should be noted that the pilot test E2 was a challenging
experiment as it involved combining tDCS with a real-time BMI
connected to an exoskeleton. Exoskeletons are often simply pre-
programmed or controlled directly through third party interfaces
(joysticks, cellphone applications, etc.), but only until relatively
recently have they begun to be controlled via BMIs. Designing a
real-time BMI is also not trivial in itself (it is sometimes preceded
by the design of offline BMIs). Thus, the study of real-time BMI
control of exoskeletons is only starting and has many potential
clinical applications, especially in the rehabilitation of patients.
Thus, combining this concept with tDCS, which is aimed to
improve and accelerate cognitive ability, enriches and increases
those applications even more. Indeed, the intention is to use this
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setup in the future to enhance the recovery of CVA patients with
an affected lower right limb. Having said that, the study carried
out here was only a preliminary pilot study involving only a few
subjects. To confirm the results, a larger sample of subjects or
even patients is necessary, but the limited results obtained for
now look promising.

Some final comments are warranted regarding the real-time
functioning of the exoskeleton in E2. To have a realistic usability
of the BMI with the exoskeleton, the analysis of the false
detections during relax periods is important, and reducing it is
an essential objective. The rate of such detections is referred to
as the false positive rate, or FPR (which is the complement of the
accuracy when restricted to only relax periods). When averaging
both groups in E2, the FPR was 11.7% (equivalently, an accuracy
of 88.3% during relax), with an FPR of 11.3% for the tDCS group
and of 12.1% for the sham group. The values for both groups were
very similar, which shows that the overall increase in accuracy
resulting from the stimulation of the tDCS group, was due to
an increase in accuracy during the imagination periods (indeed,
the accuracy on those periods was 92.7% for the tDCS group
and of 80.4% for the sham group). In any case, overall, these
values of FPR seem reasonable for this preliminary experiment,
but reducing them further should be a future design goal.

5. CONCLUSION

Anovel tDCS configuration was successfully designed to improve
the detection of two MI tasks (relax and gait MI) using a real-
time BMI. Two anodes and one cathode were used: one anode
was located over the right cerebrocerebellum and supplied 0.2
mA, the other anode was over Cz and supplied 0.3 mA, and
the cathode was located over FC2. Two single-blind experiments,
E1 and E2, were carried out, where subjects were randomly
separated into two groups of the same size: sham and active tDCS.
The sham group received a fake stimulation while the active tDCS
group was truly stimulated. E1 involved twelve healthy subjects
in total who received visual instructions and real-time feedback
through a screen. Meanwhile, E2 was a pilot study involving
only four healthy subjects who received auditory cues and wore
a lower limb exoskeleton as feedback. E2 has potentially many

clinical applications in the future. In particular, it can be used in
the rehabilitation of patients that have suffered a cerebrovascular
accident (CVA) affecting their right lower limb. The analysis
indicated differences between the active tDCS and sham group
in both experiments. The active tDCS group achieved 12.6 and
8.2% higher detection accuracy than the sham group in E1
and E2, respectively, reaching 65 and 81.6% mean accuracy in
each experiment. Furthermore, the preliminary results indicate
that the exoskeleton (in E2) enhanced the detection of the MI
tasks with respect to the visual feedback (in E1), increasing
the accuracy obtained in 16.7 and 21.2% for the active tDCS
and sham groups, respectively. Having said that, more studies
with larger samples of actual patients are needed to validate this
observation.
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